Lycée Henri Poincaré, Classe de PC\*

#### Definition

Système fermé : n'échange pas de matière avec l'extérieur Système ouvert : échange de la matière avec l'extérieur

Lycée Henri Poincaré, Classe de PC\*

#### Definition

Système fermé : n'échange pas de matière avec l'extérieur Système ouvert : échange de la matière avec l'extérieur

## Premier principe

- a. Énoncé
- b. Énergie interne du gaz parfait
- c. Exemples

- Premier principe
  - Énoncé

Pour tout système thermodynamique fermé, il existe une fonction d'état extensive U appelée énergie interne telle que, lorsque le système évolue d'un état  $\mathcal{E}_1$  à un état  $\mathcal{E}_2$ , la variation de U s'exprime par

$$\Delta U = U(\mathcal{E}_2) - U(\mathcal{E}_1) = W + Q \quad .$$

Plus généralement

$$\Delta U + \Delta E_m = U(\mathcal{E}_2) + E_m(\mathcal{E}_2) - (U(\mathcal{E}_1) + E_m(\mathcal{E}_1)) = W + Q$$

- b. Énergie interne du gaz parfait
- c. Exemples

- Premier principe
  - a. Énoncé
  - b. Énergie interne du gaz parfait
  - c. Exemples

- Premier principe
  - a. Énoncé
  - b. Énergie interne du gaz parfait
  - c. Exemples

- Premier principe
  - Énoncé
  - b. Énergie interne du gaz parfait
  - Exemples

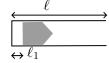
Ex 1 : compression d'un gaz de Van der Waals.

Une quantité de 10 moles de  ${
m CO_2}$  est comprimée de manière isotherme et mécaniquement réversible, à  $T=298\,{
m K}$ , du volume  $V_1=10\,{
m L}$  jusqu'au volume  $V_2=1\,{
m L}$ . On adopte le modèle du gaz de Van der Waals dont l'équation d'état s'écrit, pour une seule mole,

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT \quad .$$

Calculer le travail reçu par le gaz et le transfert thermique depuis le thermostat. On done  $a=0,36\,\mathrm{J.mol^{-2}.m^3}$ ,  $b=4,3.10^{-5}\,\mathrm{m^3.mol^{-1}}$ . Énergie interne du gaz de Van der Waals :  $U=nC_{vm}T-an^2/V$ .

- Premier principe
  - Énoncé
  - Énergie interne du gaz parfait
  - Exemples


#### Ex 2 : Entrée d'air dans un ballon

Un ballon en verre préalablement vidé est muni d'un robinet communiquant avec l'air ambiant, de température  $T_0$ . On ouvre momentanément le robinet puis on le referme. Trouver la température de l'air après son entrée dans le ballon.

- Premier principe
  - a. Énoncé
  - b. Énergie interne du gaz parfait
  - Exemples

## Ex 3: propulsion d'un obus

Un obus de masse  $m=1\,\mathrm{kg}$  se trouve dans un canon de section S et de longueur  $\ell_2=1$ . La combustion de la poudre, quasi-instantanée, produit n=10 modes de gaz parfait diatomique à la température  $T_1=1500\,\mathrm{K}$ , dans une section de longueur  $\ell_1=5,\mathrm{cm}$  au fond du canon. Quand l'obut atteint l'extrémité du canon, la température des gaz est  $T_2$ . Trouver à cet instant la vitesse de l'obus.



- 2 Enthalpie
- Second principe
- 4 Efficacité des machines thermiques

- 2 Enthalpie
- Second principe
- 4 Efficacité des machines thermiques

- 2 Enthalpie
- Second principe
- 4 Efficacité des machines thermiques

### 2 Enthalpie

- a) Définition et propriété
- b) Enthalpie du gaz parfait
- Enthalpie d'une phase condensée idéale
- 3 Second principe
- 4 Efficacité des machines thermiques

- 2 Enthalpie
  - a) Définition et propriété
  - b) Enthalpie du gaz parfait
  - Enthalpie d'une phase condensée idéale
- Second principe
- 4 Efficacité des machines thermiques

- 2 Enthalpie
  - a) Définition et propriété
  - b) Enthalpie du gaz parfait
  - Enthalpie d'une phase condensée idéale
- 3 Second principe
- 4 Efficacité des machines thermiques

- 2 Enthalpie
  - a) Définition et propriété
  - b) Enthalpie du gaz parfait
  - c) Enthalpie d'une phase condensée idéale
- Second principe
- 4 Efficacité des machines thermiques

- 2 Enthalpie
- 3 Second principe
  - a. Énoncé
  - b. Identité thermodynamique et entropie des systèmes modèles
  - c. Exemple de phénomènes irréversibles
- 4 Efficacité des machines thermiques

- 2 Enthalpie
- 3 Second principe
  - a. Énoncé

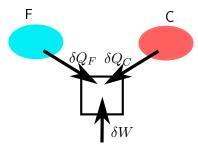
Pour tout système thermodynamique fermé, il existe une fonction d'état extensive S appelée entropie telle que, lorsque le système évolue d'un état  $\mathcal{E}_1$  à un état  $\mathcal{E}_2$ , la variation de S s'exprime par

$$\Delta S = S(\mathcal{E}_2) - S(\mathcal{E}_1) = S_e + S_c$$

οù

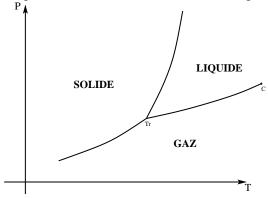
- b. Identité thermodynamique et entropie des systèmes modèles
- Exemple de phénomènes irréversibles
- 4 Efficacité des machines thermiques




- 2 Enthalpie
- 3 Second principe
  - Énoncé
  - b. Identité thermodynamique et entropie des systèmes modèles
  - c. Exemple de phénomènes irréversibles
- 4 Efficacité des machines thermiques

- 2 Enthalpie
- 3 Second principe
  - Énoncé
  - b. Identité thermodynamique et entropie des systèmes modèles
  - **c** Exemple de phénomènes irréversibles
- 4 Efficacité des machines thermiques

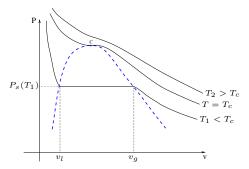
- 2 Enthalpie
- 3 Second principe
- 4 Efficacité des machines thermiques


- 2 Enthalpie
- Second principe
- 4 Efficacité des machines thermiques

Ex : Un climatiseur de puissance électrique  $P=2,5\,\mathrm{kW}$  refroidit une pièce de capacité calorifique C depuis la température  $T_i$ , égale à la température extérieure  $T_2=35\,^\circ C$ , jusqu'à la température  $T_f=25\,^\circ C$ . Trouver une borne inférieure du temps nécessaire pour cela.



- 5 Changements d'état des corps pur
  - a) Diagramme d'équilibre et enthalpie de changement d'état
  - b) Équilibre liquide-vapeur


- 5 Changements d'état des corps pur
  - a) Diagramme d'équilibre et enthalpie de changement d'état



Équilibre liquide-vapeur

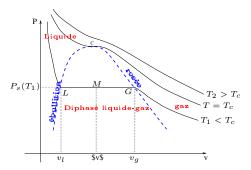
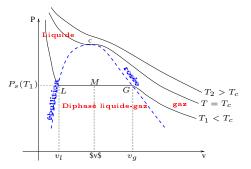

- 5 Changements d'état des corps pur
  - a) Diagramme d'équilibre et enthalpie de changement d'état
  - **b)** Équilibre liquide-vapeur

Figure – Diagramme de Clapeyron d'un corps pur



- 5 Changements d'état des corps pur
  - a) Diagramme d'équilibre et enthalpie de changement d'état
  - **b)** Équilibre liquide-vapeur


Figure – Diagramme de Clapeyron d'un corps pur

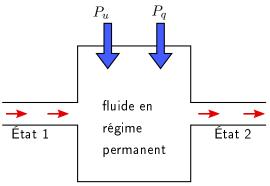


## 5 Changements d'état des corps pur

- a) Diagramme d'équilibre et enthalpie de changement d'état
- Équilibre liquide-vapeur

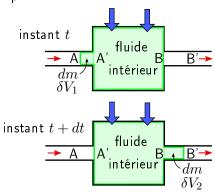
Figure – Diagramme de Clapeyron d'un corps pur




Ex : on porte 10 kg d'eau à 300 °C dans un volume  $V=10\,\mathrm{L}$ . À cette température, on donne  $v_g=22\,\mathrm{L.kg^{-1}}$  et  $v_\ell=1,4\,\mathrm{L.kg^{-1}}$ . Trouver les masses de liquide et de vapeur.

LII. Application du premier principe aux systèmes ouverts

- Cadre d'étude
- Premier principe « industriel »
- Exemples
- Cas des systèmes présentant plusieurs entrées et/ou plusieurs sorties


LII. Application du premier principe aux systèmes ouverts





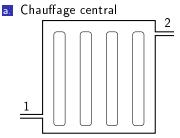
- 2 Premier principe « industriel »
- 3 Exemples
- 4 Cas des systèmes présentant plusieurs entrées et/ou plusieurs sorties

- Cadre d'étude
- Premier principe « industriel »



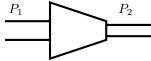
- 3 Exemples
- Cas des systèmes présentant plusieurs entrées et/ou plusieurs sorties

- Cadre d'étude
- Premier principe « industriel »


## Premier principe « industriel »

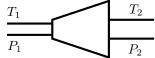
$$\Delta(h + e_m) = w_u + q$$
  $D_m \Delta(h + e_m) = \mathcal{P}_u + \mathcal{P}_Q$ 

- 3 Exemples
- 4 Cas des systèmes présentant plusieurs entrées et/ou plusieurs sorties


- Cadre d'étude
- Premier principe « industriel »
- 3 Exemples
  - a. Chauffage central
  - b. Compresseur
  - c. Turbine motrice à gaz
  - d. Détente de Joule-Thomson
  - e. Tuyère
- 4 Cas des systèmes présentant plusieurs entrées et/ou plusieurs sorties

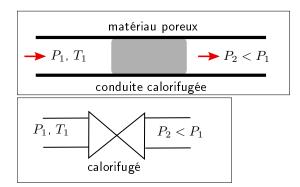
- Cadre d'étude
- Premier principe « industriel »
- 3 Exemples




- b. Compresseur
- c. Turbine motrice à gaz
- d. Détente de Joule-Thomson
  - Tuyère
- 4 Cas des systèmes présentant plusieurs entrées et/ou plusieurs sorties

- 1 Cadre d'étude
- 2 Premier principe « industriel »
- 3 Exemples
  - Chauffage central
  - **b.** Compresseur




- c. Turbine motrice à gaz
- d. Détente de Joule-Thomson
- e. Tuyère
- 4 Cas des systèmes présentant plusieurs entrées et/ou plusieurs sorties

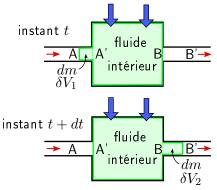
- Cadre d'étude
- 2 Premier principe « industriel »
- 3 Exemples
  - Chauffage central
  - b. Compresseur
  - c. Turbine motrice à gaz



- d. Détente de Joule-Thomson
- e. Tuyère
- 4 Cas des systèmes présentant plusieurs entrées et/ou plusieurs sorties

- Cadre d'étude
- Premier principe « industriel »
- 3 Exemples
  - a. Chauffage central
  - b. Compresseur
  - Turbine motrice à gaz
  - d. Détente de Joule-Thomson




- Cadre d'étude
- Premier principe « industriel »
- 3 Exemples
  - a. Chauffage central
  - b. Compresseur
  - c. Turbine motrice à gaz
  - d. Détente de Joule-Thomson
    - Ouvrir le diagramme (T, s) de l'hélim
  - e. Tuyère
- Cas des systèmes présentant plusieurs entrées et/ou plusieurs sorties

- Cadre d'étude
- Premier principe « industriel »
- 3 Exemples
  - Chauffage central
  - **b.** Compresseur
  - c. Turbine motrice à gaz
  - d. Détente de Joule-Thomson
  - Tuyère
- 4 Cas des systèmes présentant plusieurs entrées et/ou plusieurs sorties

- Cadre d'étude
- Premier principe « industriel »
- 3 Exemples
  - Chauffage central
  - **b.** Compresseur
  - c. Turbine motrice à gaz
  - d. Détente de Joule-Thomson
  - Tuyère
- 4 Cas des systèmes présentant plusieurs entrées et/ou plusieurs sorties

- Second principe « industriel »
- 2 Exemples
  - Chauffage central
  - Compresseur
  - Détente de Joule et Thomson

Second principe « industriel »



- 2 Exemples
  - Chauffage central
  - Compresseur
  - Détente de Joule et Thomson

- Second principe « industriel »
- 2 Exemples
  - a) Chauffage central
  - **b)** Compresseur
  - c) Détente de Joule et Thomson

- Second principe « industriel »
- 2 Exemples
  - a) Chauffage central
  - b) Compresseur
  - c) Détente de Joule et Thomson

- Second principe « industriel »
- 2 Exemples
  - a) Chauffage central
  - **b)** Compresseur
  - Détente de Joule et Thomson

- Second principe « industriel »
- 2 Exemples
  - a) Chauffage central
  - **b)** Compresseur
  - Détente de Joule et Thomson

 $lacksymbol{lack}$  Duvrir le diagramme (T,s) de l'hélim  $lacksymbol{lack}$ 

THERMODYNAMIQUE DES SYSTÈMES OUVERTS  $L_{\text{IV}}$ . Étude de machines avec changement de phase

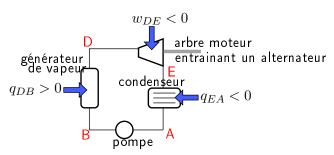
1 Cycle de Rankine

THERMODYNAMIQUE DES SYSTÈMES OUVERTS  $L_{\text{IV}}$ . Étude de machines avec changement de phase

1 Cycle de Rankine

## Cycle de Rankine

 $\mathsf{A}$  : liquide saturant à  $T_1$ 


 $\mathsf{AB}:\mathsf{compression}\;\mathsf{ad}\;\mathsf{r\'{e}v}\;p_1 o p_2$ 

BC : échauffement isobare du liquide jusqu'à saturation

CD: vaporisation isobare totale

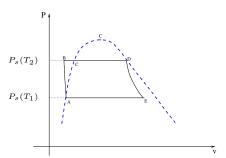
 ${\sf DE}$  : détente ad. rév. dans la turbine  $p_2 o p_1$ 

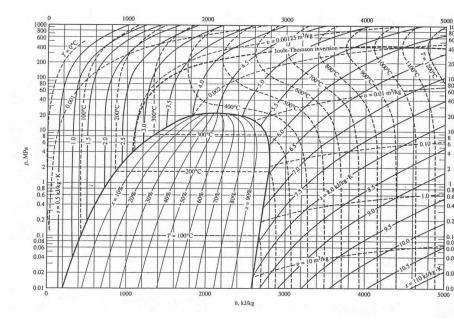
 $\mathsf{EA}$  : liquéfaction totale sous pression  $p_1$ 



#### Cycle de Rankine

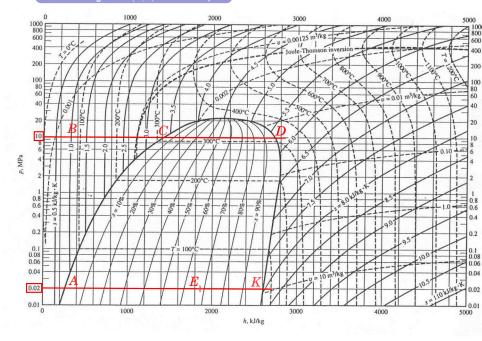
 ${\sf A}$  : liquide saturant à  $T_1$ 


 $\mathsf{AB}$  : compression ad. rév.  $p_1 o p_2$ 


BC : échauffement isobare du liquide jusqu'à saturation

CD: vaporisation isobare totale

 ${\sf DE}$  : détente ad. rév. dans la turbine  $p_2 o p_1$ 


 $\mathsf{EA}$  : liquéfaction totale sous pression  $p_1$ 





lacktriangle Ouvrir le diagramme (h,P) de l'eau) lacktriangle Ouvrir le diagramme (T-s) de l'eau

À vous de jouer!



| T       | $h_L  (\mathrm{kJ/kg})$ | $s_L  (\mathrm{kJ/kg/K})$ | $h_v  (\mathrm{kJ/kg})$ | $s_v \left( \text{kJ/kg/K} \right)$ |
|---------|-------------------------|---------------------------|-------------------------|-------------------------------------|
| $T_1 =$ |                         |                           |                         |                                     |
| $T_2 =$ |                         |                           |                         |                                     |

| T                      | $h_L$ ( | kJ/kg) | $s_L$ (k. | J/kg/K) | $h_v$ ( | kJ/kg) | $s_v  (\mathrm{kJ})$ | /kg/K) |
|------------------------|---------|--------|-----------|---------|---------|--------|----------------------|--------|
| $T_1 = 333 \mathrm{K}$ | A       | 250    | A         | 0,84    | K       | 2600   | K                    | 7,88   |
| $T_2 = 583 \mathrm{K}$ | C       | 1400   | C         | 3,40    | D       | 2750   | D                    | 5,64   |

**A**: gaz à  $T_A = 5^O$  C,  $P_A = P_1 = 3$  bar

AB : compression ad. rév.  $p_1 \rightarrow p_2 = 10\,\mathrm{bar}$ 

BC : condensation isobare jusqu'au liquide saturant

 $\mathsf{CD}$  : détente de type JT jusqu'à la pression  $P_1$ 

DA : évaporation et échauffement isobare pour revenir à l'état

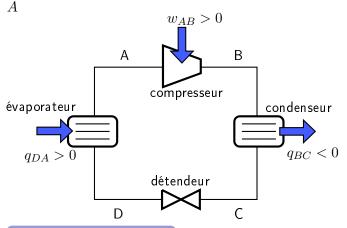



Diagramme de Mollier du fluide R134a avec le cyle

|                                     | A | B | C | D |
|-------------------------------------|---|---|---|---|
| T (°C)                              |   |   |   |   |
| $h\left(\mathrm{kJ.kg}^{-1}\right)$ |   |   |   |   |
| $s\left(kJ.kg^{-1}.K^{-1}\right)$   |   |   |   |   |

| 1 ompe a charear                           |      |      |      |      |  |  |
|--------------------------------------------|------|------|------|------|--|--|
|                                            | A    | B    | C    | D    |  |  |
| T (°C)                                     | 5    | 47   | 39   | 1    |  |  |
| $h\left(\mathrm{kJ.kg}^{-1}\right)$        | 400  | 425  | 255  | 255  |  |  |
| $s\left(\mathrm{kJ.kg^{-1}.K^{-1}}\right)$ | 1,74 | 1,74 | 1,19 | 1,20 |  |  |