Exercice 1. (*) Soit (F, N) un espace vectoriel normé. Soit E un \mathbb{R} -espace vectoriel. Soit $u \in \mathcal{L}(E, F)$. On suppose que u est injective.

Montrer que la fonction $N_u : x \mapsto N(u(x))$ est une norme sur E.

Exercice 2. (*) Pour tout $x = (x_1, x_2)$ de \mathbb{R}^2 , on pose $M(x) = \max(|x_1|, |x_1 + x_2|)$.

- **a.** Montrer que M est une norme sur \mathbb{R}^2 .
- **b.** Dessiner la boule unité fermée de M.
- c. Trouver des constantes λ et μ strictement positives telles que

$$\forall x \in \mathbb{R}^2$$
, $M(x) \leqslant \lambda N_2(x)$ et $N_2(x) \leqslant \mu M(x)$,

les constantes λ et μ étant aussi petites que possible.

Exercice 3. (*) Pour tout polynôme réel P, écrit sous la forme $P = \sum_{k=0}^{+\infty} a_k X^k$, on note

$$||\mathbf{P}|| = \sup_{0 \leqslant x \leqslant 1/2} |\mathbf{P}(x)| \qquad \text{et} \qquad \mathbf{N}(\mathbf{P}) = \left| \sum_{k=0}^{+\infty} a_k \right| + \sum_{k=1}^{+\infty} \frac{|a_k|}{k}.$$

- **a.** Prouver que || || et N sont des normes sur $\mathbb{R}[X]$.
- **b.** Montrer que la suite $(X^n)_{n\in\mathbb{N}}$ converge vers 0 pour la norme || || et vers 1 pour la norme N.
- c. Construire une norme sur $\mathbb{R}[X]$ pour laquelle la suite $(X^n)_{n\in\mathbb{N}}$ converge vers le polynôme X.
- **d.** (***) Pour tout polynôme P non nul de $\mathbb{R}[X]$, construire une norme sur $\mathbb{R}[X]$ pour laquelle la suite $(X^n)_{n\in\mathbb{N}}$ converge vers le polynôme P.

Exercice 4. (**) Pour toute matrice A de $\mathcal{M}_{n,p}(\mathbb{C})$, on pose

$$||\mathbf{A}|| = \max_{1 \leqslant k \leqslant n} \sum_{\ell=1}^{p} |a_{k,\ell}|.$$

- **a.** Vérifier que || || est une norme sur $\mathcal{M}_{n,p}(\mathbb{C})$. Reconnaître cette norme dans le cas p=1.
- **b.** Pour toute matrice A de $\mathcal{M}_{n,p}(\mathbb{C})$ et toute matrice B de $\mathcal{M}_{p,r}(\mathbb{C})$, prouver l'inégalité $||AB|| \leq ||A|| \times ||B||$.
- **c.** Soit $A \in \mathcal{M}_{n,p}(\mathbb{C})$. Trouver un vecteur $X \in \mathcal{M}_{p,1}(\mathbb{C})$ tel que

$$||X||_{\infty} = 1$$
 et $||AX||_{\infty} = ||A||$.

Exercice 5. (*) Soit (E, || ||) un espace vectoriel normé. Soit $x_0 \in E$. Montrer l'égalité

$$\bigcap_{n\geqslant 1} \mathbf{B}\left(x_0, 1 + \frac{1}{n}\right) = \mathbf{B}_f(x_0, 1).$$

Exercice 6. (*) Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'éléments de $\mathcal{M}_{p,q}(\mathbb{R})$ et $(B_n)_{n\in\mathbb{N}}$ une suite d'éléments de $\mathcal{M}_{q,r}(\mathbb{R})$.

On suppose que la suite $(A_n)_{n\in\mathbb{N}}$ converge vers une certaine matrice A et que la suite $(B_n)_{n\in\mathbb{N}}$ converge vers une certaine matrice B.

Montrer alors que la suite $(A_n \times B_n)_{n \in \mathbb{N}}$ converge vers $A \times B$.

Exercice 7. (*) Soit $A \in \mathcal{M}_p(\mathbb{R})$. On suppose que la suite $(A^n)_{n \geqslant 0}$ converge. Montrer que sa limite est une matrice de projection.

Exercice 8. (*) Soit $A \in \mathcal{A}_p(\mathbb{R})$. On suppose que la suite $(A^n)_{n\geqslant 0}$ converge. Montrer que sa limite est la matrice nulle.

Exercice 9. (**) Soit f un endomorphisme d'un espace euclidien E. On suppose que f préserve le produit scalaire, ce qui signifie que

$$\forall (x,y) \in E^2, \quad (f(x)|f(y)) = (x|y).$$

On pose $g = f - Id_E$.

- **a.** Prouver l'égalité $\text{Im}(g) = (\text{Ker}(g))^{\perp}$.
- **b.** Pour tout entier n strictement positif, on pose

$$p_n = \frac{1}{n} \sum_{k=0}^{n-1} f^k.$$

Pour tout vecteur x de E, montrer que la suite $(p_n(x))_{n\geqslant 1}$ converge vers le projeté orthogonal de x sur $\mathrm{Ker}(g)$.

Exercice 10. (*) Montrer que l'adhérence de $\mathrm{GL}_p(\mathbb{R})$ dans $\mathcal{M}_p(\mathbb{R})$ est $\mathcal{M}_p(\mathbb{R})$.

Exercice 11. (**) Soit U un ouvert non vide d'un espace vectoriel normé (E, || ||).

Montrer que le sous-espace vectoriel de E engendré par U est égal à E.

Exercice 12. (**) On définit de E dans E la fonction

$$f: x \mapsto \frac{x}{\max(1, ||x||)}.$$

Montrer que la fonction f est 2-lipschitzienne.

Exercice 13. (**) Soit (E, || ||) un espace vectoriel normé de dimension finie. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de E.

On suppose que la série $\sum_{n\geqslant 0}||u_{n+1}-u_n||$ converge.

- a. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente. Sa limite est notée u^* .
- **b.** Pour tout $n \in \mathbb{N}$, prouver la majoration $||u_n u^*|| \leq \sum_{k=n}^{+\infty} ||u_{k+1} u_k||$.

Exercice 14. (**) Soit (E, || ||) un espace vectoriel de dimension finie. Soit F une partie fermée de E.

Soit $\phi: \mathcal{F} \to \mathcal{F}$ une application. On suppose qu'il existe $k \in [0, 1]$ tel que ϕ soit k-lipschitzienne.

On choisit $x_0 \in F$.

- **a.** Montrer que la relation de récurrence $x_{n+1} = \phi(x_n)$ permet de définir une suite d'éléments de F.
- **b.** Montrer qu'une telle suite est convergente dans F.
- **c.** Montrer que sa limite ne dépend pas de x_0 .
- **d.** Montrer que ϕ possède un unique point fixe dans F.