Problème 1 — Inégalités de Hölder et de Minkowski

On fixe p dans $]1,+\infty[$ et on pose $q=\frac{p}{p-1}$. Par commodité, on estime que le nombre 0^p est bien défini et qu'il vaut 0.

Provisoirement, on fixe un entier $n \ge 2$. Pour tout élément $x = (x_1, \dots, x_n)$ de \mathbb{R}^n , on pose

$$||x||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}$$

et on définit $||x||_q$ de manière analogue.

Question 1. Montrer que la fonction $|| \cdot ||_p$ est positivement homogène et qu'elle vérifie la propriété de séparation.

Question 2. Vérifier que q est dans $]1, +\infty[$ et qu'il vérifie l'égalité $\frac{1}{p} + \frac{1}{q} = 1$.

Question 3. Pour tout couple (α, β) de \mathbb{R}^2 , prouver l'inégalité $|\alpha\beta| \leqslant \frac{|\alpha|^p}{p} + \frac{|\beta|^q}{q}$.

Question 4. Soient $x=(x_1,\ldots,x_n)$ et $y=(y_1,\ldots,y_n)$ dans \mathbb{R}^n . Montrer *l'inégalité de Hölder*

$$\sum_{k=1}^{n} |x_k y_k| \leqslant ||x||_p ||y||_q.$$

Pour cela, on appliquera la formule de la question précédente aux nombres x_k/X et y_k/Y pour des choix habiles de X et Y.

Question 5. Soient $x = (x_1, \ldots, x_n)$ et $y = (y_1, \ldots, y_n)$ dans \mathbb{R}^n .

a. Montrer la majoration

$$\sum_{k=1}^{n} |x_k| \times |x_k + y_k|^{p-1} \le ||x||_p \times \left(\sum_{k=1}^{n} |x_k + y_k|^p\right)^{1/q}.$$

b. Majorer de même la somme $\sum\limits_{k=1}^{n}|y_k|\times|x_k+y_k|^{p-1}.$

c. En déduire *l'inégalité de Minkowski* $||x+y||_p \leq ||x||_p + ||y||_p$.

d. Qu'a-t-on démontré?

Question 6. Soit x dans \mathbb{R}^n . Montrer que $||x||_p$ tend vers $||x||_{\infty}$ quand p tend vers $+\infty$.

Maintenant, on note ℓ^p l'ensemble des suites réelles $u=(u_k)_{k\geqslant 0}$ telles que la série $\sum |u_k|^p$ soit absolument convergente. Pour toute suite u de ℓ^p , on pose

$$N_p(u) = \left(\sum_{k=0}^{+\infty} |u_k|^p\right)^{1/p}.$$

Question 7. Montrer que ℓ^p est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

Question 8. Montrer que N_p est une norme sur ℓ^p .

Question 9. Soient $u \in \ell^p$ et $v \in \ell^q$. Montrer que la série $\sum |u_k v_k|$ est convergente et prouver la majoration

$$\sum_{k=0}^{+\infty} |u_k v_k| \leqslant \mathcal{N}_p(u) \mathcal{N}_q(v).$$

Problème 2

Dans ce problème, on fixe un entier n supérieur ou égal à 2. On note U_n la matrice colonne de $\mathcal{M}_{n,1}(\mathbb{R})$ dont tous les coefficients valent 1.

Étant donné une matrice ligne L de $\mathcal{M}_{n,1}(\mathbb{R})$, dire que cette matrice est *stochastique* signifie que ses coefficients sont tous positifs et que leur somme vaut 1.

Étant donné une matrice $A = (a_{i,j})_{1 \leq i,j \leq n}$ de $\mathcal{M}_n(\mathbb{R})$, dire que cette matrice est stochastique signifie qu'elle vérifie les deux conditions ci-dessous

$$\forall (i,j) \in [1,n]^2, \ a_{i,j} \geqslant 0 \tag{1}$$

$$\forall i \in [1, n], \sum_{j=1}^{n} a_{i,j} = 1,$$
 (2)

ce qui revient à dire que toutes ses lignes sont stochastiques.

On note \mathcal{E}_n l'ensemble des matrices stochastiques de $\mathcal{M}_n(\mathbb{R})$.

Pour tout vecteur colonne
$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 de $\mathcal{M}_{n,1}(\mathbb{R})$, on pose $||X||_{\infty} = \max(|x_1|, \dots, |x_n|)$.

On rappelle que $|| ||_{\infty}$ est une norme sur l'espace vectoriel $\mathcal{M}_{n,1}(\mathbb{R})$.

Partie I — généralités sur les matrices stochastiques

Question 10. Vérifier que la condition (2) équivaut à l'égalité $AU_n = U_n$.

Question 11. Montrer que \mathcal{E}_n est stable par le produit matriciel.

Question 12. Montrer que \mathcal{E}_n est une partie convexe de $\mathcal{M}_n(\mathbb{R})$.

Question 13. Soit $(A_p)_{p\in\mathbb{N}}$ une suite d'éléments de \mathcal{E}_n . On suppose que cette suite converge vers une certaine matrice B de $\mathcal{M}_n(\mathbb{R})$. Montrer que la matrice B est un élément de \mathcal{E}_n .

Question 14. Soit $A \in \mathcal{E}_n$. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Prouver l'inégalité $||AX||_{\infty} \leq ||X||_{\infty}$.

Partie II — une propriété de convergence

On fixe une matrice A de \mathcal{E}_n . Pour tout entier k strictement positif, on pose

$$R_k = \frac{1}{k} \sum_{i=0}^{k-1} A^i$$
, c'est-à-dire $R_k = \frac{1}{k} \left(I_n + A + A^2 + \dots + A^{k-1} \right)$.

Question 15. Soit $W \in Ker(A - I_n)$. Vérifier que la suite $(R_k W)_{k \in \mathbb{N}^*}$ est convergente et préciser sa limite.

Question 16. Soit $W \in Im(A - I_n)$. Montrer que la suite $(R_k W)_{k \in \mathbb{N}}$ converge vers le vecteur nul de $\mathcal{M}_{n,1}(\mathbb{R})$.

Question 17. À l'aide de ces deux résultats, montrer que $Ker(A-I_n)$ et $Im(A-I_n)$ sont supplémentaires dans $\mathcal{M}_{n,1}(\mathbb{R})$.

Notation. On note p_A la projection sur $Ker(A - I_n)$ parallèlement à $Im(A - I_n)$. On note P_A la matrice de $\mathcal{M}_n(\mathbb{R})$ qui représente p_A dans la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$.

Question 18. Pour tout vecteur W de $\mathcal{M}_{n,1}(\mathbb{R})$, montrer que la suite $(R_k W)_{k \in \mathbb{N}}$ converge vers $p_A(W)$.

Question 19. Montrer que la suite de matrices $(R_k)_{k\in\mathbb{N}}$ converge vers la matrice P_A .

Partie III — matrice stochastique régulière

Dans cette partie, on considère une matrice A de \mathcal{E}_n et on suppose qu'elle est régulière, ce qui signifie qu'il existe un entier p pour lequel les coefficients de A^p sont tous strictement positifs. On fixe un tel entier p.

Question 20. Soit
$$W = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$$
 un élément de $\operatorname{Ker}(A^p - I_n)$.

On considère un indice s tel que $w_s = \max(w_1, \dots, w_n)$. Montrer que $W = w_s U_n$.

Question 21. En déduire l'égalité $Ker(A^p - I_n) = Vect(U_n)$.

Question 22. En déduire l'égalité $Ker(A - I_n) = Vect(U_n)$.

Question 23. Montrer que la matrice P_A (introduite dans la deuxième partie) est de rang 1.

Question 24. Montrer l'existence d'une matrice ligne stochastique L de $\mathcal{M}_{1,n}(\mathbb{R})$ telle que $P = U \times L$.

Question 25. Prouver l'égalité PA = P.

Question 26. En déduire l'égalité LA = L.

Question 27. Montrer que les coefficients de L sont tous strictement positifs.

Problème 3

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur [0,1], à valeurs réelles. On suppose que cette suite de fonctions converge simplement sur [0,1] vers une certaine fonction f et on suppose que f est continue sur [0,1]. On suppose également que pour tout $n \in \mathbb{N}$, la fonction f_n est croissante sur [0,1].

Le but de ce problème est de prouver que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur [0,1].

Question 28. Montrer que la fonction f est croissante.

Pour les questions suivantes, on fixe $\varepsilon > 0$ et on prend un entier $m \geqslant 1$ tel que $\frac{f(1) - f(0)}{m} \leqslant \varepsilon$.

Pour tout $k \in [0, m]$, on pose $y_k = f(0) + k \times \frac{f(1) - f(0)}{m}$.

Question 29. Montrer l'existence de $(x_0,\ldots,x_m)\in[0,1]^{m+1}$ tel que $0=x_0\leqslant x_1\leqslant\cdots\leqslant x_m=1$ et

$$\forall k \in [0, m], \quad f(x_k) = y_k.$$

Question 30. Montrer l'existence d'un entier r tel que

$$\forall n \geqslant r, \quad \forall k \in [0, m], \quad |f_n(x_k) - f(x_k)| \leqslant \varepsilon.$$

Question 31. Pour tout entier $n \ge r$ et tout k dans [0, m-1], montrer la majoration $f_n(x_{k+1}) - f_n(x_k) \le 3\varepsilon$.

Question 32. Pour tout entier $n \ge r$, en déduire la majoration $||f_n - f||_{\infty,[0,1]} \le 5\varepsilon$. Conclure.

Problème 4

Pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$, on pose

$$\mathcal{E}(\mathbf{M}) = \{ \mathbf{P} \mathbf{M} \mathbf{P}^{-1} ; \mathbf{P} \in \mathbf{GL}_n(\mathbb{C}) \}.$$

Montrer que $\mathcal{E}(M)$ est borné si, et seulement si, la matrice M est un multiple de I_n .