Exercice 1. (*) Soient A et B deux matrices de $\mathcal{M}_{n,p}(\mathbb{R})$.

Interpréter les coefficients de la matrice $A^T \times B$ en termes de produit scalaire.

Exercice 2. (*) Soit E un espace euclidien. Sa dimension est notée n et on se donne une base orthonormée

$$\mathcal{E} = (e_1, \dots, e_n)$$

de E. On considère un endomorphisme f de E et on note M la matrice de f relativement à la base \mathcal{E} .

Dire que f est une isométrie vectorielle signifie que f préserve la norme euclidienne, ce qui s'écrit

$$\forall x \in \mathcal{E}, \quad ||f(x)|| = ||x||.$$

Dire que f est un endomorphisme orthogonal signifie que f préserve le produit scalaire, ce qui s'écrit

$$\forall (x,y) \in E^2, \quad (f(x)|f(y)) = (x|y).$$

L'ensemble des endomorphismes orthogonaux de E est noté $\mathcal{O}(E)$.

- 1. Montrer que f est une isométrie vectorielle si et seulement si c'est un endomorphisme orthogonal.
- **2.** Montrer que f est une isométrie vectorielle si et seulement si la famille $(f(e_1), \ldots, f(e_n))$ est une base orthonormée de E.
- 3. Trouver une condition nécessaire et suffisante sur les colonnes de la matrice M pour que f soit une isométrie vectorielle.

Trouver une traduction de cette condition sous la forme d'une relation entre M et M^T.

- 4. Montrer que $\mathcal{O}(E)$ est un sous-ensemble de GL(E) stable par composition et par passage à l'inverse.
- 5. Vérifier que les symétries orthogonales sont des isométries vectorielles et montrer que ce sont les seules symétries à être des isométries.

Exercice 3. (*) Déterminer la matrice de la projection orthogonale sur le plan P de \mathbb{R}^3 d'équation x - y + 2z = 0 relativement à la base canonique de \mathbb{R}^3 .

Exercice 4. (**) Soit p un projecteur d'un espace euclidien E. Montrer que les deux propriétés suivantes sont équivalentes

- (i) l'endomorphisme p est un projecteur orthogonal;
- (ii) l'endomorphisme p est 1-lipschitzien pour la norme euclidienne.

Exercice 5. (*) Soit $A = (a_{i,j})_{1 \leq i,j \leq n}$ une matrice symétrique réelle, dont on note $\lambda_1, \ldots, \lambda_n$ les valeurs propres (répétées selon leur multiplicité).

Montrer l'égalité
$$\sum_{1 \leq i,j \leq n} (a_{i,j})^2 = \sum_{k=1}^n (\lambda_k)^2$$
.

Exercice 6. (**) Soit f un endomorphisme symétrique d'un espace euclidien de dimension n. On note $\lambda_1, \ldots, \lambda_n$ les valeurs propres de f avec la condition $\lambda_1 \leqslant \ldots \leqslant \lambda_n$.

- a. Montrer l'encadrement $\lambda_1 ||x||^2 \leq (x|f(x)) \leq \lambda_n ||x||^2$ pour tout x de E.
- **b.** Montrer que l'égalité $(x|f(x)) = \lambda_1||x||^2$ a lieu si et seulement si x appartient à $Ker(f \lambda_1 Id_E)$.
- c. Montrer que l'égalité $(x|f(x)) = \lambda_n ||x||^2$ a lieu si et seulement si x appartient à $\operatorname{Ker}(f \lambda_n \operatorname{Id}_E)$.
- **d.** (***) Soit $k \in [1, n]$. On note \mathcal{G}_k l'ensemble des sous-espaces vectoriels de E de dimension k. Montrer la formule suivante

$$\lambda_k = \min_{F \in \mathscr{G}_k} \max_{x \in F \setminus \{0\}} \frac{(x|f(x))}{||x||^2}.$$

Exercice 7. (***) Soit $A = (a_{i,j})_{1 \leq i,j \leq n}$ une matrice symétrique de $\mathcal{M}_n(\mathbb{R})$. On note B la matrice extraite $(a_{i,j})_{1 \leq i,j \leq n-1}$, qui est donc une matrice symétrique de $\mathcal{M}_{n-1}(\mathbb{R})$.

On note $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A rangées dans l'ordre croissant et μ_1, \ldots, μ_{n-1} celles de B.

Montrer alors les inégalités $\lambda_1 \leqslant \mu_1 \leqslant \lambda_2 \leqslant \mu_2 \leqslant \ldots \leqslant \lambda_{n-1} \leqslant \mu_{n-1} \leqslant \lambda_n$.

Exercice 8. (**) On munit $\mathbb{R}[X]$ du produit scalaire (|) défini par $(P|Q) = \int_{-1}^{1} P(t)Q(t) dt$.

Pour tout polynôme réel P, on pose

$$\varphi(P) = ((X^2 - 1)P')'.$$

- **a.** Vérifier que φ est un endomorphisme de $\mathbb{R}[X]$.
- **b.** Pour tout P dans $\mathbb{R}[X]$, prouver l'inégalité $\deg(\varphi(P)) \leq \deg(P)$. En déduire que pour tout n dans \mathbb{N} , l'espace vectoriel $\mathbb{R}_n[X]$ est stable par φ .

On note φ_n l'endomorphisme de $\mathbb{R}_n[X]$ induit par φ .

- c. Vérifier que φ_n est un endomorphisme symétrique de $\mathbb{R}_n[X]$. Trouver ses valeurs propres.
- **d.** Trouver une base de diagonalisation dans le cas n=3. Vérifier qu'elle est orthogonale.
- e. Pour tout $k \in \mathbb{N}$, on pose $\mathbf{P}_k = ((\mathbf{X}^2 1)^k)^{(k)}$. En partant de l'identité

$$((\mathbf{X}^2-1)^k(\mathbf{X}^2-1))^{(k+2)} = (((\mathbf{X}^2-1)^{k+1})')^{(k+1)},$$

calculer $\varphi(P_k)$.

Exercice 9. (**) Soit A une matrice symétrique de $\mathcal{M}_n(\mathbb{R})$. On suppose que A est définie positive, ce qui signifie qu'elle vérifie la propriété suivante

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \qquad X^{T} \cdot A \cdot X > 0.$$

- 1. Montrer qu'il existe une matrice B de $\mathcal{M}_n(\mathbb{R})$ symétrique définie positive telle que $B^2=A$.
- 2. On note λ la plus grande valeur propre de A et μ la plus petite.

On fixe un vecteur X non nul de $\mathcal{M}_{n,1}(\mathbb{R})$ et on veut démontrer l'encadrement

$$||X||^4 \leqslant (X|AX)(X|A^{-1}X) \leqslant \frac{(\lambda + \mu)^2}{4\lambda\mu}||X||^4.$$

On considère la fonction polynomiale $f: s \mapsto (X|AX)s^2 - (\lambda + \mu)(X|X)s + \lambda\mu(X|A^{-1}X)$.

- a. On pose $N = -A + (\lambda + \mu)I \lambda \mu A^{-1}$. Vérifier que N est une matrice symétrique à valeurs propres positives.
- **b.** Déterminer le signe de f(0)f(1).
- c. Conclure.

Exercice 10. (**) Soit A une matrice de $GL_n(\mathbb{R})$. Montrer qu'il existe un unique couple (O, S) de matrices de $\mathcal{M}_n(\mathbb{R})$ vérifiant les trois conditions

- A = OS;
- la matrice S est symétrique définie positive;
- la matrice O est orthogonale.

On raisonnera par analyse-synthèse en commençant par déterminer l'unique choix possible pour S.

Exercice 11. (**) Soit u un endomorphisme d'un espace euclidien E.

Démontrer l'existence d'une base orthonormale (e_1, \ldots, e_n) de E telle que la famille $(u(e_1), \ldots, u(e_n))$ soit orthogonale.