Problème I — lemme de Borel-Cantelli

Exercice 1. (**) Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements d'un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On pose

$$A = \bigcap_{p \in \mathbb{N}} \bigcup_{n \geqslant p} A_n.$$

- 1. On suppose que la série $\sum \mathbb{P}(A_n)$ est convergente. Prouver que $\mathbb{P}(A)$ est nul.
- **2.** On suppose que les A_n sont mutuellement indépendants et que la série $\sum \mathbb{P}(A_n)$ est divergente. On veut prouver que $\mathbb{P}(A)$ vaut 1.

Pour tout p dans \mathbb{N} , on introduit l'événement $I_p = \bigcap_{n \geqslant p} \overline{A_n}$.

- **a.** Pour tout $x \ge 0$, prouver l'inégalité $1 x \le e^{-x}$.
- **b.** Soit $p \in \mathbb{N}$. Soit un entier $r \geqslant p$. Prouver l'inégalité $\mathbb{P}\left(\bigcap_{r \geqslant n \geqslant p} \overline{\mathcal{A}_n}\right) \leqslant \exp\left(-\sum_{r \geqslant n \geqslant p} \mathbb{P}(\mathcal{A}_n)\right)$.
- c. En déduire que I_p est de probabilité nulle.
- d. Conclure. (On a alors démontré le lemme de Borel-Cantelli.)
- 3. On fixe p dans]0,1[et on considère une suite $(X_n)_{n\geqslant 1}$ de variables aléatoires indépendantes de loi $\mathcal{B}(p)$. On fixe un entier $k\in\mathbb{N}^*$ ainsi qu'un k-uplet (a_1,\ldots,a_k) dont les termes valent 0 ou 1. Le but de cette question est de montrer que ce motif apparaît presque sûrement une infinité de fois dans la suite $(X_n)_{n\geqslant 1}$.

Pour tout $n \in \mathbb{N}$, on considère l'événement

$$A_n = \bigcap_{i=1}^k (X_{nk+i} = a_i).$$

- a. Montrer que les A_n sont mutuellement indépendants.
- b. Conclure à l'aide du lemme de Borel-Cantelli.

Problème II — distance en variation et couplage

On note ℓ^1 le \mathbb{R} -espace vectoriel des suites $(u_k)_{k\in\mathbb{N}}$ telles que la série $\sum_{k\geqslant 0}|u_k|$ converge, que l'on munit de la norme définie par

$$||u|| = \sum_{k=0}^{+\infty} |u_k|.$$

On note \mathcal{L} le sous-ensemble de ℓ^1 dont les éléments sont les suites positives de norme 1

$$\mathscr{L} = \left\{ (u_k)_{k \in \mathbb{N}} \in (\mathbb{R}^+)^{\mathbb{N}} ; \sum_{k=0}^{+\infty} u_k = 1 \right\}.$$

Si \mathbb{P} est une probabilité sur l'espace probabilisable $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, alors on peut lui associer la suite p de terme général $p_k = \mathbb{P}(\{k\})$ et cette suite est un élément de \mathscr{L} .

Réciproquement, toute suite appartenant à \mathscr{L} est associée à une certaine probabilité sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ via cette même formule, si bien que cette correspondance est une bijection.

Si X est une variable aléatoire définie sur un espace probabilisé quelconque $(\Omega, \mathcal{A}, \mathbb{P})$, telle que l'univers image soit inclus dans \mathbb{N} , on rappelle que sa loi est la probabilité \mathbb{P}^X sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ définie par

$$\forall k \in \mathbb{N}, \qquad \mathbb{P}^{X}(\{k\}) = \mathbb{P}(X = k).$$

Dans ce problème, on va donc identifier ces trois notions : suites appartenant à \mathcal{L} , probabilités sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, lois de variables aléatoires à valeurs dans \mathbb{N} .

L'objectif de ce problème est de préciser une propriété du cours concernant la convergence de lois binomiales vers une loi de Poisson : cette convergence n'est pas seulement une convergence simple mais une convergence en norme dans l'espace vectoriel normé ℓ^1 .

On fixe λ dans $]0,+\infty[$. On note $\mathcal{P}(\lambda)$ la loi de Poisson de paramètre λ , c'est-à-dire la suite u de terme général $u_k = e^{-\lambda} \lambda^k / k!$.

Pour tout entier n strictement supérieur à λ , on note $\mathcal{B}(n,\lambda/n)$ la loi binomiale de paramètres n et λ/n .

Le but de ce problème est de montrer que $||\mathcal{P}(\lambda) - \mathcal{B}(n, \lambda/n)||$ tend vers 0 quand l'entier n tend vers $+\infty$.

Question 1. Soient p et q deux éléments de \mathcal{L} . Prouver l'égalité

$$||p - q|| = 2\left(1 - \sum_{k=0}^{+\infty} \min(p_k, q_k)\right).$$

Question 2. Soient X et Y deux variables aléatoires à valeurs dans \mathbb{N} , de lois respectives p et q.

a. Pour tout k dans \mathbb{N} , prouver l'inégalité

$$\mathbb{P}(X = k, Y = k) \leqslant \min(p_k, q_k).$$

b. En déduire la majoration $||p-q|| \leq 2\mathbb{P}(X \neq Y)$.

Pour les questions qui suivent, on fixe un entier $n > \lambda$.

On considère des variables aléatoires Y_1, \dots, Y_n mutuellement indépendantes suivant chacune la loi $\mathcal{P}(\lambda/n)$ et on pose $Z_n = Y_1 + \dots + Y_n$.

Question 3. Donner, avec justification, la loi de Z_n .

Question 4. Pour tout x dans [0,1], on pose $f(x) = 1 - (1-x)e^x$. Montrer que le segment [0,1] est stable par f.

On se donne des variables aléatoires U_1, \ldots, U_n de loi de Bernoulli $\mathcal{B}(f(\lambda/n))$. On suppose que les variables aléatoires $Y_1, \ldots, Y_n, U_1, \ldots, U_n$ sont mutuellement indépendantes.

Pour tout $i \in [1, n]$, on note X_i la variable aléatoire de Bernoulli définie par

$$X_i = \begin{cases} 0 & \text{si } Y_i = 0 \text{ et } U_i = 0 \\ 1 & \text{sinon.} \end{cases}$$

On note enfin $T_n = X_1 + \cdots + X_n$.

Question 5. Pour tout i dans [1, n], montrer que X_i suit la loi de Bernoulli $\mathcal{B}(\lambda/n)$. Quelle est la loi de la variable aléatoire T_n ?

Question 6. Pour tout i dans [1, n], établir la majoration $\mathbb{P}(X_i \neq Y_i) \leq \lambda^2/n^2$.

Question 7. Prouver la majoration $\mathbb{P}\left(\sum_{i=1}^{n} X_i \neq \sum_{i=1}^{n} Y_i\right) \leqslant \mathbb{P}\left(\bigcup_{i=1}^{n} [X_i \neq Y_i]\right)$.

Question 8. En déduire une majoration de $||\mathcal{P}(\lambda) - \mathcal{B}(n, \lambda/n)||$ et conclure.