PC* — mathématiques Devoir surveillé nº 1

jeudi 11 septembre 2025 durée : 3 heures

Quelques consignes

- Ne pas utiliser de blanc correcteur.
- Écrire lisiblement et dans un français normal (sans abréviation).
- Écrire les numéros des questions dans la marge et respecter la numérotation de l'énoncé.
- Ne pas recopier l'énoncé (ni les titres des parties) et ne pas redéfinir les objets introduits par l'énoncé.

Questions de cours et de calcul

Question 1. Déterminer l'ensemble des solutions à valeurs réelles de l'équation différentielle y'' - y' + y = 0.

Question 2. Donner la définition de la trace d'une matrice carrée et de la trace d'un endomorphisme.

Question 3. Rappeler la définition d'une famille libre.

Question 4. Pour tout $n \in \mathbb{N}$, justifier l'égalité $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

Question 5. Pour tout $n \in \mathbb{N}$, justifier l'égalité $\sum_{i=0}^{n} \sum_{j=0}^{n} \max(i,j) = \frac{n(n+1)(4n+5)}{6}$.

Question 6. On note $\mathcal{L} = (L_1, L_2, L_3)$ la base de Lagrange de $\mathbb{R}_2[X]$ associée au triplet (1, 3, -4).

Expliciter ces trois polynômes et rappeler (sans démonstration) la décomposition d'un élément quelconque de $\mathbb{R}_2[X]$ dans la base \mathcal{L} .

Exercice 1. Soit $(a, b, c, d) \in \mathbb{R}^4$. On considère les matrices

$$\mathbf{A} = \begin{pmatrix} a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \\ a^4 & b^4 & c^4 & d^4 \end{pmatrix} \quad \text{et} \quad \mathbf{M} = \begin{pmatrix} a+b & b+c & c+d & a-d \\ a^2+b^2 & b^2+c^2 & c^2+d^2 & a^2-d^2 \\ a^3+b^3 & b^3+c^3 & c^3+d^3 & a^3-d^3 \\ a^4+b^4 & b^4+c^4 & c^4+d^4 & a^4-d^4 \end{pmatrix}.$$

Question 7. Calculer le déterminant de A sous forme factorisée.

Question 8. Trouver une matrice B telle que $M = A \times B$.

Question 9. En déduire la valeur du déterminant de M.

Exercice 2. On note I l'intervalle $]0, +\infty[$. On note (E) l'équation différentielle

$$x^2y''(x) + y(x) = 0$$

d'inconnue $y \in \mathcal{C}^2(I, \mathbb{R})$.

On considère donc une fonction $y \in \mathcal{C}^2(I,\mathbb{R})$ quelconque et on lui associe une fonction $z:\mathbb{R} \to \mathbb{R}$ définie par

$$z: t \mapsto y(e^t).$$

Question 10. Pour tout $x \in I$, exprimer $x^2y''(x) + y(x)$ à l'aide de la fonction z et de ses dérivées successives.

Question 11. En déduire que y est solution de (E) sur I si et seulement si z est solution sur \mathbb{R} d'une équation différentielle linéaire d'ordre 2 à coefficients constants, que l'on déterminera.

Question 12. Donner finalement l'ensemble des solutions de (E) sur I.

Exercice 3. On considère le polynôme $P = X^3 - 13X + 12$. On considère aussi la matrice réelle

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & 13 & 0 \end{pmatrix}.$$

Pour tout $n \in \mathbb{N}$, on note Q_n et R_n le quotient et le reste de la division euclidienne de X^n par P.

Question 13. Factoriser le polynôme P dans $\mathbb{R}[X]$.

Question 14. Pour tout $n \in \mathbb{N}$, déterminer le polynôme R_n .

Question 15. Pour tout $n \in \mathbb{N}$, en déduire une expression de A^n .

Le résultat sera exprimé sous la forme d'une somme de termes de la forme $\alpha^n M$, où α est un nombre et M est une matrice indépendante de l'entier n (dont on ne cherchera pas à calculer tous les coefficients).

On considère une suite réelle $(u_n)_{n\in\mathbb{N}}$ vérifiant la relation de récurrence

$$\forall n \in \mathbb{N}, \quad u_{n+3} - 13u_{n+1} + 12u_n = 0.$$

Pour tout $n \in \mathbb{N}$, on considère le vecteur colonne $\mathbf{V}_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}$.

Question 16. Pour tout $n \in \mathbb{N}$, trouver une relation matricielle entre V_{n+1} et V_n faisant intervenir la matrice A.

Question 17. En déduire une expression de V_n en fonction de V_0 et d'une matrice faisant intervenir la matrice A.

Question 18. Obtenir finalement une expression de u_n (on pourra ne pas développer la totalité des calculs).

Exercice 4. Soit $f \in \mathcal{C}^2([0,1],[0,1])$. On fait les hypothèses

$$f(0) = 0$$
, $f'(0) = 0$, $f(1) = 1$, $f'(1) = 0$.

Le but de cet exercice est de prouver l'existence de c dans [0,1] tel que $|f''(c)| \ge 4$.

Pour cela, on raisonne par l'absurde, en faisant l'hypothèse

$$\forall x \in [0, 1], |f''(x)| < 4.$$

Question 19. Pour tout x dans]0,1[, prouver les inégalités

$$f(x) < 2x^2$$
 et $f(x) > 1 - 2(1-x)^2$.

Question 20. Qu'obtient-on pour f(1/2)?

Question 21. Conclure.

Exercice 5. On rappelle l'équivalent de Stirling $k! \sim k^k e^{-k} \sqrt{2\pi k}$.

Question 22. Montrer que le coefficient binomial $\binom{n^2}{n}$ est équivalent à $n^n e^n / \sqrt{2\pi en}$ quand n tend vers $+\infty$.