Exercice 1. (*) Soient A et B deux sous-espaces vectoriels d'un espace euclidien E. Prouver l'égalité $(A + B)^{\perp} = A^{\perp} \cap B^{\perp}$.

Exercice 2. (*) Soient x_1, \ldots, x_n des vecteurs d'un espace euclidien E.

- a. Montrer que la fonction $f: x \mapsto \sum_{k=1}^{n} ||x x_k||^2$ possède un minimum sur E et que ce minimum est atteint en un unique point, qui sera noté y dans la suite.
 - **b.** Exprimer f(y) en fonction de ||y|| et des nombres $||x_k||$.

Exercice 3. (**) On considère un espace euclidien E non trivial, dont on note n la dimension. On se donne un entier p et des vecteurs v_1, \ldots, v_p de E.

On suppose que pour tout couple (i, j) d'indices distincts entre 1 et p, le nombre $(v_i|v_j)$ est strictement négatif.

a. Soit $(x_1, \ldots, x_p) \in \mathbb{R}^p$. On pose

$$x = \sum_{i=1}^{p} x_i v_i$$
 et $y = \sum_{i=1}^{p} |x_i| v_i$.

Prouver l'inégalité $||x|| \ge ||y||$.

- **b.** Dans le cas où x est nul, montrer que les x_i sont tous nuls ou tous non nuls.
- **c.** Montrer que la famille (v_1, \ldots, v_{p-1}) est libre. Qu'en déduit-on?
- d. (***) Construire (par récurrence) une famille (v_1, \ldots, v_{n+1}) de \mathbb{R}^n vérifiant les conditions du préambule.

Exercice 4. (*) Justifier que la fonction

$$f:(a,b)\mapsto \int_0^1 (e^t-at-b)^2 dt$$

possède un minimum sur \mathbb{R}^2 et qu'il est atteint en un unique point.

Déterminer ce minimum.

Exercice 5. (*) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Soit F un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$.

Prouver que F est stable par A si, et seulement si, son orthogonal est stable par A^T.

Qu'obtient-on dans le cas d'une matrice symétrique ou antisymétrique?

Exercice 6. (**) Soit u un endomorphisme d'un espace vectoriel euclidien E.

On se donne une base orthonormale $\mathcal{E} = (e_1, \dots, e_n)$ de E et on note A la matrice représentative de u dans cette base.

On appelle adjoint de u tout endomorphisme v de E tel que

$$\forall (x, y) \in \mathcal{E}^2, \quad (u(x)|y) = (x|v(y)).$$

- **a.** Dans cette question, on suppose que u possède un adjoint v. Déterminer la matrice représentative de v dans la base \mathcal{E} .
 - **b.** Montrer que u possède exactement un adjoint.

Exercice 7. (*) On note P le plan de \mathbb{R}^4 engendré par les vecteurs u=(1,1,1,0) et v=(1,1,0,1). On munit \mathbb{R}^4 de son produit scalaire canonique.

Déterminer la matrice canoniquement associée au projecteur orthogonal sur P. Même question pour la symétrie orthogonale d'axe P.

Exercice 8. (*) Déterminer la matrice de la projection orthogonale sur le plan P de \mathbb{R}^3 d'équation x - y + 2z = 0 relativement à la base canonique de \mathbb{R}^3 . Idem pour la symétrie orthogonale d'axe P.

Exercice 9. (*) Soit F un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$. Soit (X_1,\ldots,X_p) une base orthonormée de F.

Démontrer que la matrice canoniquement associée à la projection orthogonale sur F s'écrit $\sum_{k=1}^{p} X_k \cdot X_k^T$.

Exercice 10. (*) Une réflexion d'un espace euclidien E est une symétrie orthogonale relativement à un hyperplan, c'est-à-dire un sous-espace vectoriel de E dont la dimension vaut $\dim(E) - 1$.

a. Soit v un vecteur de E non nul. On note H_v l'hyperplan de E défini par $H_v = \text{Vect}(v)^{\perp}$ et on note s_v la réflexion relative à H_v .

Pour tout vecteur x de E, démontrer la relation

$$s_v(x) = x - 2\frac{(v|x)}{(v|v)}v.$$

b. Soit $\theta \in \mathbb{R}$. Dans \mathbb{R}^2 , on note D_{θ} la droite dirigée par le vecteur $u(\theta) = (\cos(\theta), \sin(\theta))$ et on note s_{θ} la réflexion relative à cette droite.

Déterminer la matrice canoniquement associée à s_{θ} .

c. (**) On se donne deux vecteurs a et b de E distincts et non nuls tels que ||a|| = ||b||. Montrer qu'il existe une unique réflexion de E qui envoie a sur b.

Exercice 11. (*) Soit $M \in \mathcal{M}_{n,p}(\mathbb{R})$.

a. Prouver l'égalité $Ker(M^T) = (Im(M))^{\perp}$.

Qu'obtient-on dans le cas d'une matrice symétrique ou antisymétrique?

- **b.** Prouver l'égalité $Ker(M^T \cdot M) = Ker(M)$.
- **c.** Prouver l'égalité $rg(M^T \cdot M) = rg(M)$.
- **d.** Dans cette question et la suivante, on ajoute la condition $2 \le p < n$. On pose $B = M^T \cdot M$ et on suppose que M est de rang p.

Montrer alors que B est inversible. Montrer ensuite que la matrice $M \cdot B^{-1} \cdot M^{T}$ (notée P) est une matrice de projection orthogonale. Vérifier l'égalité Im(P) = Im(M).

Exercice 12. (**) Matrice de Gram Soit (x_1, \ldots, x_p) une famille de vecteurs d'un espace euclidien E. On lui associe sa matrice de Gram, qui est la matrice

$$G(x_1, ..., x_p) = ((x_i|x_j))_{1 \le i, j \le p}$$

de $\mathcal{M}_p(\mathbb{R})$.

- a. On note n la dimension de E. Trouver une matrice M de $\mathcal{M}_{n,p}(\mathbb{R})$ vérifiant l'égalité $M^T \cdot M = G(x_1, \dots, x_p)$.
- **b.** En déduire que la matrice $G(x_1, \ldots, x_p)$ est inversible si, et seulement si, la famille (x_1, \ldots, x_p) est libre.

Exercice 13. (**) Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ telle que A^2 soit nulle.

- a. Prouver l'égalité $Ker(A + A^T) = Ker(A) \cap Ker(A^T)$.
- **b.** Montrer que l'inversibilité de $A + A^{T}$ équivaut à l'égalité Im(A) = Ker(A).

Exercice 14. (**) Soient p et q deux projecteurs orthogonaux d'un espace euclidien E. Montrer que les deux énoncés ci-dessous sont équivalents.

- (i) $\operatorname{Im}(p) \subset \operatorname{Im}(q)$.
- (ii) $\forall x \in E$, $||p(x)|| \le ||q(x)||$.