Exercice 1. (*) Étudier la convergence des intégrales suivantes

$$\int_{-\pi/2}^{\pi/2} \tan(t) \ \mathrm{d}t, \quad \int_{0}^{+\infty} \frac{\sin(1/t)}{t^{2/3}} \ \mathrm{d}t, \quad \int_{2}^{+\infty} \frac{\mathrm{d}x}{(\ln(x))^{\ln(\ln(x))}}, \quad \int_{0}^{1} \frac{\sqrt{-\ln(t)}}{t^{2/3}} \ \mathrm{d}t, \quad \int_{0}^{+\infty} \exp\left(-t^2 - \frac{1}{t^2}\right) \ \mathrm{d}t.$$

Exercice 2. (*) Justifier que les intégrales suivantes existent et calculer leurs valeurs.

$$\int_0^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt, \quad \int_0^{+\infty} \frac{\mathrm{e}^{-\sqrt{t}}}{\sqrt{t}} dt, \quad \int_1^{+\infty} \left(\frac{1}{x} - \operatorname{Arctan}\left(\frac{1}{x}\right)\right) dx, \quad \int_1^{+\infty} \frac{x - \lfloor x \rfloor}{x^2} dx.$$

Exercice 3. (*) Étudier la nature des intégrales suivantes selon la valeur de (α, β, λ)

$$\int_0^{+\infty} \ln\left(1 + \frac{1}{t^\alpha}\right) dt, \quad \int_0^{+\infty} x^\alpha e^{-\lambda x^\beta} dx, \quad \int_0^{+\infty} x^\alpha (e^{\beta x} - 1) dx, \quad \int_0^1 \frac{t^\beta}{1 - t^\alpha} dt, \quad \int_0^{+\infty} \frac{\ln(1 + x^\alpha)}{x^\beta} dx.$$

Exercice 4. (*) a. Pour tout x > 0, montrer que l'intégrale $\int_0^{+\infty} t^{x-1} e^{-t} dt$ converge. Sa valeur est notée $\Gamma(x)$.

- **b.** Pour tout x > 0, montrer la relation $\Gamma(x+1) = x\Gamma(x)$.
- **c.** Calculer $\Gamma(n)$ pour tout n dans \mathbb{N}^* .
- **d.** On admet l'égalité $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. Pour tout $n \in \mathbb{N}$, exprimer $\Gamma(n + \frac{1}{2})$ avec des factorielles.
- e. Pour tout $\alpha > 0$, montrer que l'intégrale $\int_0^{+\infty} e^{-u^{\alpha}} du$ existe et exprimer sa valeur à l'aide de Γ.

Exercice 5. () a.** Montrer l'existence de $\int_0^{\pi/2} \ln(\sin(x)) dx$. Sa valeur est notée I.

- **b.** Montrer l'existence de $\int_0^{\pi/2} \ln(\cos(x)) dx$ et montrer que cette intégrale vaut I.
- c. Additionner ces deux intégrales, appliquer une identité trigonométrique puis calculer la valeur de I.

Exercice 6. (**) Pour tout α dans]0,1], prouver l'existence de l'intégrale $\int_0^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$.

Pour tout β dans]1, $+\infty$ [, en déduire l'existence de l'intégrale $\int_0^{+\infty} \sin(u^{\beta}) du$.

Exercice 7. (**) On pose $f(x) = \int_x^{+\infty} \frac{e^{-t}}{t} dt$.

- a. Montrer que f est définie sur $]0,+\infty[$. Justifier que f est de classe \mathcal{C}^1 et exprimer sa dérivée.
- **b.** En considérant f(x) f(1), montrer que f(x) est équivalent à $-\ln(x)$ quand x tend vers 0.
- c. À l'aide d'une intégration par parties, démontrer la relation

$$f(x) = \frac{e^{-x}}{x} + \mathcal{O}_{x \to +\infty} \left(\frac{f(x)}{x}\right).$$

En déduire un équivalent simple de f(x) quand x tend vers $+\infty$.

d. Montrer que l'intégrale $\int_0^{+\infty} f(x) dx$ existe et calculer sa valeur.

Exercice 8. (*) a. Pour tout $n \in \mathbb{N}$, montrer que la fonction $t \mapsto t^n e^{-t^2/2}$ est intégrable sur \mathbb{R} . On pose alors

$$I_n = \int_{\mathbb{R}} t^n e^{-t^2/2} dt.$$

- **b.** Trouver une relation de récurrence entre I_n et I_{n-2} .
- **c.** En déduire une expression de I_{2p} et de I_{2p+1} . Lien avec l'exercice 3?

Exercice 9. (**) a. Montrer la convergence de l'intégrale $\int_{0}^{+\infty} \frac{\sin^{3}(t)}{t^{2}} dt$. On note I sa valeur.

b. Linéariser $\sin^3(t)$. En déduire l'identité suivante

$$\forall x > 0,$$
 $\int_{x}^{+\infty} \frac{\sin^3(t)}{t^2} dt = \frac{3}{4} \int_{x}^{3x} \frac{\sin(t)}{t^2} dt.$

- c. Montrer que la fonction $t\mapsto \frac{\sin(t)-t}{t^2}$ se prolonge par continuité en 0. En déduire la valeur de I.
- **d.** Refaire ce travail avec $\sin^5(t)$ au lieu de $\sin^3(t)$.

Exercice 10. (**) Soit $\alpha \in (0, 1]$.

- **a.** Pour tout n dans \mathbb{N}^* , prouver la minoration $\int_{n\pi}^{(n+1)\pi} \frac{|\sin(t)|}{t^{\alpha}} dt \geqslant \frac{2}{\pi^{\alpha}(n+1)^{\alpha}}$.
- **b.** En déduire que l'intégrale $\int_0^{+\infty} \frac{|\sin(t)|}{t^{\alpha}} dt$ est divergente.

Exercice 11. (**) a. Montrer que les intégrales suivantes convergent et qu'elles ont la même valeur

$$\int_0^{+\infty} \left(\frac{\sin(t)}{t}\right)^2 dt, \quad \int_0^{+\infty} \frac{1 - \cos(v)}{v^2} dv, \quad \int_0^{+\infty} \frac{\sin(u)}{u} du.$$

b. On définit une fonction f de $[0, \pi/2]$ dans \mathbb{R} en posant

$$f(0) = 0$$
 et $\forall x \in \left] 0, \frac{\pi}{2} \right], \quad f(x) = \frac{1}{\sin(x)} - \frac{1}{x}.$

Montrer que la fonction f est de classe C^1 sur $\left[0, \frac{\pi}{2}\right]$.

c. Pour tout $\alpha > 0$, on pose $I(\alpha) = \int_0^{\pi/2} f(x) \sin(\alpha x) dx$.

Montrer que $I(\alpha)$ tend vers 0 quand α tend vers -

- **d.** Montrer que la suite de terme général $u_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{\sin(t)} dt$ est constante.
- e. Déterminer la valeur des intégrales introduites à la première question.

Exercice 12. (***) On prend une fonction f continue de \mathbb{R} dans \mathbb{R} . On suppose qu'elle admet en $-\infty$ et en $+\infty$ des limites finies A et B.

Pour tout t dans \mathbb{R} , montrer l'existence de l'intégrale $\int_{-\infty}^{+\infty} (f(x+t) - f(x)) dx$ et calculer sa valeur.

Exercice 13. (***) Soit $f:[0,+\infty[\to\mathbb{R}]$ une fonction lipschitzienne.

On suppose que l'intégrale $\int_0^{+\infty} f(t) dt$ converge. Montrer que la fonction f tend vers 0 en $+\infty$.