Exercice 1. (*) Soit $(a_1, a_2, a_3) \in \mathbb{R}^3$. Les fonctions $x \mapsto \sin(x + a_k)$ sont-elles linéairement indépendantes?

Exercice 2. (*) Montrer que les fonctions définies sur $]0, +\infty[$ par

$$f_1: x \mapsto x$$
 $f_2: x \mapsto x^2$ $f_3: x \mapsto x \ln(x)$ $f_4: x \mapsto x^2 \ln(x)$

forment une famille libre.

Exercice 3. (**) Soit E un espace vectoriel complexe. On prend des vecteurs v_1, \ldots, v_n de E.

Soit A une matrice de $\mathrm{GL}_n(\mathbb{C})$. On fait l'hypothèse

$$\forall i \in [1, n], \quad a_{i,1}v_1 + \dots + a_{i,n}v_n = 0_E.$$

Montrer que les vecteurs v_1, \ldots, v_n sont nuls.

Exercice 4. (*) Soit E un K-espace vectoriel. Soit $f \in \mathcal{L}(E)$. Montrer les équivalences suivantes

$$\operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0\} \iff \operatorname{Ker}(f) = \operatorname{Ker}(f^2);$$

 $\operatorname{Im}(f) + \operatorname{Ker}(f) = \operatorname{E} \iff \operatorname{Im}(f) = \operatorname{Im}(f^2).$

On note g l'endomorphisme de Im(f) induit par f. Que signifient ses égalités pour g?

Exercice 5. (*) Soient f et g dans $\mathcal{L}(E,F)$, où E et F sont de dimension finie. Démontrer l'encadrement suivant

$$|\operatorname{rg}(f) - \operatorname{rg}(g)| \le \operatorname{rg}(f+g) \le \operatorname{rg}(f) + \operatorname{rg}(g).$$

Exercice 6. (*) Soit E un espace vectoriel de dimension finie. On considère deux endomorphismes f et g de E et on fait les hypothèses suivantes

$$f + g = \mathrm{Id}_{\mathrm{E}}$$
 et $\mathrm{rg}(f) + \mathrm{rg}(g) \leqslant \dim(\mathrm{E})$.

Montrer que Im(f) et Im(g) sont supplémentaires dans E. Montrer de plus que f et g sont les projecteurs associés.

Exercice 7. (**) Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel \mathcal{E} .

On suppose que pour tout $x \in E \setminus \{0_E\}$, la famille (x, f(x)) est liée.

Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $f = \lambda \operatorname{Id}_{\mathbf{E}}$.

Exercice 8. (**) Soient p et q deux projecteurs d'un espace vectoriel E. Montrer que si p et q commutent, alors $p \circ q$ est un projecteur, dont on exprimera le noyau et l'image en fonction de ceux de p et de q.

Exercice 9. (*) a. Soient E, F, G des K-espaces vectoriels de dimension finie. Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Démontrer l'égalité

$$\dim(\operatorname{Im}(f) \cap \operatorname{Ker}(g)) = \operatorname{rg}(f) - \operatorname{rg}(g \circ f).$$

Pour cela, on considérera la restriction de q à Im(f).

b. Soit f un endomorphisme d'un espace vectoriel de dimension finie E. Montrer que la suite de terme général $\rho_k = \operatorname{rg}(f^k) - \operatorname{rg}(f^{k+1})$ est décroissante.

Montrer de plus que les termes de cette suite sont nuls à partir d'un certain rang p.

- c. Montrer que $F = Ker(f^p)$ et $G = Im(f^p)$ sont supplémentaires dans E.
- **d.** Vérifier que F et G sont stables par f.
- e. On note f_1 et f_2 les endomorphismes de F et de G induits par f. Montrer que $(f_1)^p$ est nul et que f_2 est bijectif.

Exercice 10. (*) On pose $N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Soit M une matrice de $\mathcal{M}_3(\mathbb{C})$. On fait l'hypothèse $M^2 = N$

- a. Justifier que M laisse stables Ker(N) et Im(N).
- b. Déterminer le noyau et l'image de N. Qu'en déduit-on quant aux coefficients de M?
- c. Conclure.

Exercice 11. (**) Soit E un espace vectoriel de dimension finie, donc la dimension est notée n. Soit f un endomorphisme de E.

On suppose que f est nilpotent, ce qui signifie qu'il existe un entier k tel que f^k soit l'endomorphisme nul de E. L'indice de nilpotence de f est l'entier

$$p = \min\{k \in \mathbb{N} ; f^k = 0\}.$$

a. On prend x_0 dans $E \setminus Ker(f^{p-1})$. Montrer que la famille

$$\mathcal{F}_{x_0} = (f^{p-1}(x_0), \dots, f(x_0), x_0)$$

est libre.

- **b.** En déduire une inégalité entre p et n.
- c. Dans cette question, on suppose que p est égal à n. En choisissant x_0 comme à la question \mathbf{a} , la famille \mathcal{F}_{x_0} est alors une base de \mathbf{E} .

Écrire la matrice représentative de f relativement à cette base.

Exercice 12. (**) Une matrice triangulaire supérieure stricte de $\mathcal{M}_n(\mathbb{K})$ est une matrice triangulaire supérieure de $\mathcal{M}_n(\mathbb{K})$ dont tous les coefficients diagonaux sont nuls.

- a. Soit A une matrice triangulaire supérieure stricte de $\mathcal{M}_n(\mathbb{K})$. Montrer que A^n est la matrice nulle.
- **b.** (***) Réciproquement, montrer que toute matrice nilpotente de $\mathcal{M}_n(\mathbb{K})$ est semblable à une matrice triangulaire supérieure stricte (raisonner par récurrence sur n).
 - c. Retrouver le résultat de la question b de l'exercice précédent.
- **Exercice 13.** (***) Soient E, F et G trois K-espaces vectoriels de dimension finie. Soient $u \in L(E, G)$ et $v \in L(F, G)$. Montrer que l'inclusion $Im(u) \subset Im(v)$ a lieu si, et seulement si, il existe $h \in \mathcal{L}(E, F)$ vérifiant $u = v \circ h$.
- **Exercice 14.** (**) Soit E un K-espace vectoriel de dimension p. Soit F un K-espace vectoriel de dimension n. Soit E_1 un sous-espace vectoriel de E de dimension p_1 . Soit F_1 un sous-espace vectoriel de F de dimension n_1 . On pose $\mathcal{A} = \{u \in \mathcal{L}(E, F) ; u(E_1) \subset F_1\}$.

Montrer que \mathcal{A} est un sous-espace vectoriel de $\mathcal{L}(E,F)$ et calculer sa dimension.

Pour cela, on établira un isomorphisme entre \mathcal{A} et un sous-espace vectoriel de $\mathcal{M}_{n,p}(\mathbb{K})$ en représentant les éléments de $\mathcal{L}(E,F)$ dans deux bases bien choisies.

Exercice 15. (*) Montrer que les matrices $\begin{pmatrix} 1 & 1 & 1 \\ -2 & -2 & -2 \\ 1 & 1 & 1 \end{pmatrix}$ et $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ sont semblables.

Exercice 16. (*) Montrer que la matrice $A = (\sin(i+j))_{1 \leq i,j \leq n}$ est de rang 2.

Exercice 17. (**) Trouver tous les couples (A, B) de matrices de $\mathcal{M}_2(\mathbb{R})$ vérifiant les égalités $AB = BA = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Exercice 18. On note $(E_{i,j})_{1 \leq i,j \leq n}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$.

a. (*) Pour tout quadruplet (i, j, k, ℓ) d'indices de [1, n], montrer l'égalité

$$\mathbf{E}_{i,j} \cdot \mathbf{E}_{k,\ell} = \delta_{i,k} \mathbf{E}_{i,\ell}.$$

b. (**) Soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose que l'égalité tr(ABC) = tr(ACB) a lieu pour tout couple (B, C) d'éléments de $\mathcal{M}_n(\mathbb{R})$.

Montrer que A est une matrice scalaire (c'est-à-dire un multiple de la matrice I_n).

Exercice 19. (**) On fixe A dans $\mathcal{M}_n(\mathbb{R})$ et on définit l'endomorphisme $\Phi_A : X \mapsto XA$ de $\mathcal{M}_n(\mathbb{R})$.

Calculer la trace de Φ_{A} .

Exercice 20. (**) On considère une matrice $M = (m_{j,k})_{1 \leq j,k \leq n}$ de $\mathcal{M}_n(\mathbb{C})$ et on suppose que M est une matrice à diagonale dominante selon les lignes, ce qui s'écrit en formule

$$\forall j \in [1, n], \qquad |m_{j,j}| > \sum_{\substack{1 \leqslant k \leqslant n \\ k \neq j}} |m_{j,k}|.$$

Le but de cet exercice est de montrer que la matrice M est inversible.

Pour cela, on considère un élément Y de son noyau et on raisonne par l'absurde en supposant que Y n'est pas nul. Choisir un coefficient de Y dont le module est maximal et obtenir une absurdité.

Exercice 21. (*) On fixe n dans \mathbb{N}^* et pour tout couple $(a,b) \in \mathbb{R}^2$, on note M(a,b) la matrice de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux valent a et tous les autres coefficients valent b.

- a. On pose $J = \frac{1}{n}M(1,1)$. Trouver un polynôme annulateur de J.
- **b.** Soit $(a,b) \in \mathbb{R}^2$. Écrire la matrice M(a,b) comme polynôme en J. En déduire le calcul des puissances de $M(a,b)^p$.
- **c.** Montrer que l'ensemble $\mathcal{M} = \{ M(x,y) ; (x,y) \in \mathbb{R}^2 \}$ est stable par produit.

Exercice 22. (***) Soit E un espace vectoriel de dimension finie. Soient F et G deux sous-espaces vectoriels de E ayant même dimension.

Montrer qu'il existe un sous-espace vectoriel de E qui soit à la fois un supplémentaire de F et de G dans E.

Exercice 23. (**) Soient E, F, G trois espaces vectoriels de dimension finie. On considère $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$. Montrer les inégalités

$$rg(v \circ u) \leq min(rg(u), rg(v))$$
 et $rg(v \circ u) \geq rg(u) + rg(v) - dim(F)$.

Exercice 24. (*) Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose que A est de rang 1.

- a. Montrer qu'il existe des vecteurs colonnes X et Y non nuls tels que $A = X \cdot Y^T$.
- **b.** En déduire un polynôme annulateur de A de degré 2.

Exercice 25. (*) Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note r le rang de A.

Montrer qu'il existe des vecteurs colonnes $X_1, \dots, X_r, Y_1, \dots, Y_r$ tels que $A = \sum_{k=1}^r X_k \cdot Y_k^T$.

Exercice 26. (**) Soit $M \in \mathcal{M}_n(\mathbb{C})$. On suppose que M n'est pas un multiple de I_n .

- a. Montrer qu'il existe $P \in GL_n(\mathbb{C})$ telle que $P^{-1}MP$ ait E_2 pour première colonne.
- **b.** Montrer que l'ensemble $\{Q^{-1}MQ ; Q \in GL_n(\mathbb{C})\}$ n'est pas borné.

On pourra utiliser des matrices Q diagonales.

Exercice 27. (*) Soit
$$(a, b, c) \in \mathbb{K}^3$$
. Calculer $\begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix}$.

Exercice 28. (*) Calculer le déterminant de la matrice $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ de coefficients $a_{i,j} = \max(i,j)$.

Exercice 29. (*) Pour tout n dans \mathbb{N}^* et tout z dans \mathbb{C}^* , calculer le déterminant de la matrice $M_n(z)$ de $\mathcal{M}_n(\mathbb{C})$ dont les coefficients diagonaux valent $z + \frac{1}{z}$, les coefficients qui bordent la diagonale valent 1, et les autres sont nuls.

Exercice 30. (*) Soient A, B, C dans $\mathcal{M}_n(\mathbb{K})$. Calculer le déterminant de la matrice $\begin{pmatrix} 0 & A \\ B & C \end{pmatrix}$.

Exercice 31. (*) Soit $B \in \mathcal{M}_n(\mathbb{C})$. Montrer l'égalité dét $\begin{pmatrix} I_n & B \\ B & I_n \end{pmatrix} = \det(I_n - B^2)$.

Exercice 32. (**) Soit $C \in \mathcal{M}_n(\mathbb{K})$. On suppose que l'égalité dét(C + M) = dét(M) a lieu pour toute matrice M de $\mathcal{M}_n(\mathbb{K})$. Montrer que C est nulle.

Pour cela, on pourra raisonner par l'absurde en supposant que C n'est pas nulle : on extrait une colonne non nulle de C et on la complète en une base de $\mathcal{M}_{n,1}(\mathbb{K})$ puis on construit une matrice M non inversible telle que C + M soit inversible.

Exercice 33. (*) Calculer le déterminant et la trace de l'endomorphisme $T: M \mapsto M^T$ de $\mathcal{M}_n(\mathbb{K})$.

Exercice 34. (**) Soit $A \in \mathcal{M}_n(\mathbb{K})$. Calculer le déterminant de l'endomorphisme $M \mapsto AM$ de $\mathcal{M}_n(\mathbb{K})$.

Exercice 35. On fixe un entier $n \ge 2$.

1. (*) Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$. Montrer que la fonction

$$f_{A,B} : \mathbb{K} \to \mathbb{K}$$

 $t \mapsto \det(A + tB)$

est une fonction polynomiale.

Montrer de plus que le degré de $f_{A,B}$ est majoré par le rang de B et que le degré de $f_{A,B}$ vaut n si B est inversible.

- **2.** (**) On note J la matrice de $\mathcal{M}_n(\mathbb{K})$ dont tous les coefficients valent 1.
 - a. Calculer le déterminant de la matrice $\begin{pmatrix} x + a_1 & x & \cdots & x \\ x & x + a_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & x \\ x & \cdots & x & x + a_n \end{pmatrix}.$
 - **b.** On prend α et β distincts dans \mathbb{K} et on prend $A = \begin{pmatrix} \gamma_1 & \beta & \cdots & \beta \\ \alpha & \gamma_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \beta \\ \alpha & \cdots & \alpha & \gamma_n \end{pmatrix}$. Exprimer la fonction $f_{A,J}$ et en

déduire une expression du déterminant de A.

- **3.** (***) On considère quatre matrices A, B, C, D de $\mathcal{M}_n(\mathbb{K})$ et on pose M = $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$. On suppose que A et C commutent.
 - **a.** On suppose dans cette question que A est inversible. Montrer l'égalité dét(M) = dét(AD CB).
- **b.** Montrer cette égalité dans le cas où A n'est pas nécessairement inversible. On pourra pour cela introduire la fonction de $\mathbb K$ dans $\mathbb K$ qui à λ associe le déterminant de la matrice $M_{\lambda} = \begin{pmatrix} A \lambda I_n & B \\ C & D \end{pmatrix}$.
 - **c.** Quelle formule obtient-on si A est inversible mais ne commute pas avec C?
- **4.** Pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$, justifier l'égalité $\overline{\det(M)} = \det \overline{M}$.

Exercice 36. (**) Soit un entier $n \ge 2$. On pose $\omega = \exp(i2\pi/n)$.

On note A la matrice de $\mathcal{M}_n(\mathbb{C})$ de coefficients $a_{p,q} = \omega^{(p-1)(q-1)}$.

- a. Calculer un argument du déterminant de A.
- **b.** Calculer $\overline{A} \times A$. En déduire la valeur du déterminant de A.