PC* — mathématiques Devoir surveillé nº 3

samedi 8 novembre 2025 durée : 3 heures

Quelques consignes

- Ne pas utiliser de blanc correcteur.
- Écrire lisiblement et dans un français normal (sans abréviation).
- Écrire les numéros des questions dans la marge et respecter la numérotation de l'énoncé.
- Ne pas recopier l'énoncé (ni les titres des parties) et ne pas redéfinir les objets introduits par l'énoncé.

Problème 1 — inégalités de Hölder intégrales

On considère deux nombres p et q de $]1, +\infty[$ tels que $\frac{1}{p} + \frac{1}{q} = 1.$

Dans le devoir en temps libre n° 3, on a démontré les inégalités suivantes, que l'on pourra ici utiliser librement sans les redémontrer

$$\forall (x,y) \in \mathbb{R}^2, \quad |xy| \leqslant \frac{|x|^p}{p} + \frac{|y|^q}{q}$$

et

$$\forall (x_1, \dots, x_n) \in \mathbb{R}^n, \quad \forall (y_1, \dots, y_n) \in \mathbb{R}^n, \quad \sum_{k=1}^n |x_k y_k| \leqslant \left(\sum_{k=1}^n |x_k|^p\right)^{1/p} \left(\sum_{k=1}^n |y_k|^q\right)^{1/q}.$$

Question 1. Soit $(a, b) \in \mathbb{R}^2$ tel que a < b. Soient f et g deux éléments de $\mathcal{C}^0([a, b], \mathbb{C})$.

À l'aide de sommes de Riemann, démontrer l'inégalité

$$\int_{a}^{b} |f(t)g(t)| \, dt \le \left(\int_{a}^{b} |f(t)|^{p} \, dt \right)^{1/p} \left(\int_{a}^{b} |g(t)|^{q} \, dt \right)^{1/q}.$$

Question 2. Soient f et g deux éléments de $C^0(]0, +\infty[, \mathbb{C})$.

On suppose que les fonctions $|f|^p$ et $|g|^q$ sont intégrables sur $]0, +\infty[$.

Montrer alors que la fonction fg est intégrable sur $]0, +\infty[$.

Question 3. Sous les mêmes hypothèses qu'à la question précédente, démontrer l'inégalité

$$\int_{0}^{+\infty} |f(t)g(t)| \, dt \leq \left(\int_{0}^{+\infty} |f(t)|^{p} \, dt \right)^{1/p} \left(\int_{0}^{+\infty} |g(t)|^{q} \, dt \right)^{1/q}.$$

Problème 2 — fonction Gamma

Pour tout
$$x > 0$$
, on pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

Question 4. Justifier que la fonction Γ est effectivement définie sur $]0, +\infty[$.

Question 5. Pour tout x > 0, justifier l'égalité $\Gamma(x+1) = x\Gamma(x)$.

Question 6. Au moyen d'une formule du problème 1, montrer que la fonction $G: x \mapsto \ln(\Gamma(x))$ est convexe sur l'intervalle $]0, +\infty[$.

Problème 3 — formule des compléments

On fixe un élément α de]0,1[.

Partie I

Pour tout $x \ge 0$, on pose

$$f_{\alpha}(x) = \int_0^{+\infty} \frac{t^{\alpha - 1}}{1 + t} e^{-xt} dt.$$

Question 7. Justifier que la fonction f_{α} est effectivement définie sur $[0, +\infty[$.

Pour le reste de ce problème, on admet que la fonction f_{α} est continue sur $[0, +\infty[$ et on donne l'égalité

$$f_{\alpha}(0) = \frac{\pi}{\sin(\pi\alpha)},$$

démontrée dans le devoir en temps libre n° 2.

On admet également que la fonction f_{α} est de classe \mathcal{C}^1 sur $]0,+\infty[$, avec

$$\forall x > 0, \quad f'_{\alpha}(x) = -\int_{0}^{+\infty} \frac{t^{\alpha}}{1+t} e^{-xt} dt.$$

Question 8. Pour tout x > 0, vérifier l'égalité $f_{\alpha}(x) - f'_{\alpha}(x) = \frac{\Gamma(\alpha)}{x^{\alpha}}$.

Question 9. Soit x > 0. Pour tout v > 0, montrer les majorations

$$f_{\alpha}(x) \leqslant \int_{0}^{v} t^{\alpha - 1} dt + e^{-xv} \int_{v}^{+\infty} \frac{t^{\alpha - 1}}{1 + t} dt \leqslant \frac{v^{\alpha}}{\alpha} + e^{-xv} f_{\alpha}(0).$$

Question 10. En déduire que la fonction f_{α} admet une limite nulle en $+\infty$ (on fera un raisonnement avec des ε).

Partie II

Pour tout $x \ge 0$, on pose

$$h_{\alpha}(x) = \int_{x}^{+\infty} \frac{\mathrm{e}^{-t}}{t^{\alpha}} \, \mathrm{d}t \quad \text{et} \quad g_{\alpha}(x) = \Gamma(\alpha) \, \mathrm{e}^{x} \, h_{\alpha}(x).$$

Question 11. Justifier que la fonction h_{α} est effectivement définie sur $[0, +\infty[$.

Question 12. Justifier que la fonction h_{α} est de classe \mathcal{C}^1 sur $]0, +\infty[$ et continue sur $[0, +\infty[$.

Donner de plus une expression de la fonction h'_{α} sur $]0, +\infty[$.

Question 13. Pour tout x > 0, vérifier l'égalité $g_{\alpha}(x) - g'_{\alpha}(x) = \frac{\Gamma(\alpha)}{x^{\alpha}}$.

Question 14. Pour tout x > 0, justifier la majoration $h_{\alpha}(x) \leqslant \frac{e^{-x}}{r^{\alpha}}$.

Question 15. En déduire que la fonction g_{α} admet une limite nulle en $+\infty$.

Partie III

On considère la fonction $\delta_{\alpha} = f_{\alpha} - g_{\alpha}$.

Question 16. Montrer qu'il existe une constante c telle que

$$\forall x > 0, \quad \delta_{\alpha}(x) = c e^x$$

puis prouver que c = 0.

Question 17. Démontrer finalement la formule des compléments

$$\Gamma(\alpha)\Gamma(1-\alpha) = \frac{\pi}{\sin(\pi\alpha)}.$$

Question 18. En déduire la valeur de $\Gamma(1/2)$ puis celle de l'intégrale $\int_0^{+\infty} \mathrm{e}^{-s^2} \, \mathrm{d}s$.

Problème 4 — comparaison de normes

Étant donné un polynôme réel $\mathbf{P} = \sum_{k=0}^{+\infty} a_k \mathbf{X}^k$, on note

$$N_1(P) = \max\{|a_k| ; k \in \mathbb{N}\} \text{ et } N_2(P) = \sum_{k=0}^{+\infty} \frac{|a_k|}{k!}.$$

Question 19. Justifier que N_1 est une norme sur $\mathbb{R}[X]$. On admet que N_2 est également une norme sur $\mathbb{R}[X]$.

Question 20. Vérifier que la suite $(X^n)_{n\in\mathbb{N}}$ converge vers le polynôme nul pour la norme N_2 .

Question 21. Pour tout $P \in \mathbb{R}[X]$, justifier l'inégalité $N_2(P) \leqslant e \times N_1(P)$.

Question 22. On suppose que la suite $(X^n)_{n\in\mathbb{N}}$ converge vers un certain polynôme L pour la norme N_1 .

Montrer qu'elle converge alors vers L pour la norme N_2 également.

Question 23. La suite $(X^n)_{n\in\mathbb{N}}$ est-elle convergente pour la norme N_1 ?

Question 24. Les normes N_1 et N_2 sont-elles équivalentes?