Exercice 1. (*) Déterminer les éléments propres des matrices suivantes. Sont-elles diagonalisables sur \mathbb{R} ?

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}, \quad E = \begin{pmatrix} 3 & 0 & 0 \\ -5 & 2 & 0 \\ 4 & 0 & 1 \end{pmatrix}.$$

On donne $\chi_C = X^3 + X^2 - 10X + 8$ et $\chi_D = X^3 - 7X^2 + 16X - 12$.

Exercice 2. (*) On fixe un entier $n \ge 2$. La matrice I_n est notée I.

- **a.** On note J la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients valent 1. Déterminer ses éléments propres. Est-elle diagonalisable?
- **b.** Pour tout $(a,b) \in \mathbb{C}^2$, on note M(a,b) la matrice de $\mathcal{M}_n(\mathbb{C})$ dont les coefficients diagonaux valent a, les autres valant b. Montrer que M(a,b) est diagonalisable et calculer son déterminant.
 - c. Exprimer les puissances de M(a,b) comme combinaison linéaire de I et J

Exercice 3. (**) Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel \mathbb{E} de dimension finie.

On note \tilde{f} l'endomorphisme de Im(f) induit par f.

- a. Montrer que les valeurs propres non nulles de f sont exactement les valeurs propres non nulles de \tilde{f} .
- **b.** Soit λ une éventuelle valeur propre non nulle de f. Montrer alors l'égalité $\mathcal{E}_{\lambda}(f) = \mathcal{E}_{\lambda}(\tilde{f})$.

Exercice 4. (*) Dans cet exercice, l'entier n est supérieur ou égal à 3. On pose $M = (\delta_{i,n} + \delta_{j,n})_{1 \leq i,j \leq n}$.

- a. Déterminer le noyau de M. Qu'en déduit-on sur les éventuelles valeurs propres non nulles de M?
- **b.** On considère l'endomorphisme $\varphi: U \mapsto MU$ de Im(M).

Écrire la matrice de φ relativement à une base bien choisie de $\operatorname{Im}(M)$. En déduire les éléments propres de φ .

c. Montrer que la matrice M est diagonalisable et proposer une matrice de passage.

Exercice 5. (*) Soit un entier $n \ge 2$. On pose $f(P) = (X^2 - X)P(1) + (X^2 + X)P(-1)$ pour tout P dans $\mathbb{K}_n[X]$. Montrer que f est un endomorphisme de $\mathbb{K}_n[X]$. Déterminer son noyau, son image, ses éléments propres. Est-il diagonalisable?

Exercice 6. (**) On fixe un entier n strictement positif.

Pour tout $P \in \mathbb{R}_n[X]$, on pose $\Phi(P) = X(X+1)P' - nXP$.

- **a.** Montrer que Φ est un endomorphisme de $\mathbb{R}_n[X]$.
- **b.** Déterminer les éléments propres de Φ . Cet endomorphisme est-il diagonalisable?

Exercice 7. (*) À quelle condition la matrice
$$A = \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 2 & f \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
 est-elle diagonalisable?

Exercice 8. (*) Pour tout
$$z \in \mathbb{C}$$
, on considère la matrice $M(z) = \begin{pmatrix} 0 & 0 & z \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$.

- a. Déterminer les valeurs de z pour les quelles $\chi_{\mathrm{M}(z)}$ admet des racines multiples.
- **b.** Déterminer les valeurs de z pour lesquelles M(z) est diagonalisable.

Exercice 9. (*) On note $j = e^{i2\pi/3}$ et on pose $A = \begin{pmatrix} 1 & j & j^2 \\ j & j^2 & 1 \\ j^2 & 1 & j \end{pmatrix}$.

- a. Calculer le rang de A et en déduire χ_A .
- b. Étudier si cette matrice est diagonalisable.
- c. Diagonaliser ou trigonaliser cette matrice selon ce qui est possible.

Exercice 10. (**) Soit $n \in \mathbb{N}^*$. Soit E un \mathbb{C} -espace vectoriel de dimension n.

Soit $f \in \mathcal{L}(E)$. On suppose que f possède n valeurs propres distinctes.

- 1. Soit $P \in \mathbb{C}[X]$. Montrer que f et P(f) sont diagonalisables et admettent une base de diagonalisation commune.
- 2. Soit $g \in \mathcal{L}(\mathbf{E})$ tel que f et g commutent. Montrer que g est diagonalisable.
- **3.** Montrer que l'ensemble des endomorphismes de E qui commutent avec f est $\{Q(f); Q \in \mathbb{C}[X]\}$.

Exercice 11. (**) On considère une matrice A de $\mathcal{M}_n(\mathbb{C})$, que l'on suppose triangulaire. On suppose que les coefficients diagonaux sont donnés par

$$\forall k \in [1, n], \qquad a_{k,k} = \exp\left(i\frac{(2k+1)\pi}{n}\right).$$

Déterminer la matrice A^n .

Exercice 12. (*) Soit $A \in \mathcal{M}_n(\mathbb{R})$. On fait l'hypothèse $A^2 + I_n = 0$. Montrer que n est pair et que la trace de A est nulle. Que vaut le déterminant de A?

Exercice 13. (*) Soit $A \in \mathcal{M}_3(\mathbb{R})$ vérifiant les relations $A^4 = A^2$ et $\{-1,1\} \subset \operatorname{Sp}(A)$. Montrer que A est diagonalisable.

Exercice 14. (*) Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant l'égalité $A^3 = A^2 - 2A$. Montrer que le rang de A est pair.

Exercice 15. (*) Déterminer toutes les matrices M de $\mathcal{M}_n(\mathbb{C})$ qui vérifient les égalités $M^5 = M^2$ et tr(M) = n.

Exercice 16. (**) Pour toute matrice carrée complexe M, on pose

$$S(M) = \sum_{\lambda \in Sp(M)} \dim(E_{\lambda}(M)).$$

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On pose $B = \begin{pmatrix} 0 & I_n \\ A & 0 \end{pmatrix}$ de $\mathcal{M}_{2n}(\mathbb{C})$.

- **a.** Soit λ dans \mathbb{C} . Trouver un isomorphisme entre $\text{Ker}(B \lambda I_{2n})$ et $\text{Ker}(A \lambda^2 I_n)$.
- **b.** En déduire une relation entre S(A) et S(B).
- c. Montrer que B est diagonalisable si, et seulement si, la matrice A est diagonalisable et inversible.

Exercice 17. (*) Soit $M \in \mathcal{M}_n(\mathbb{C})$. On pose

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} M & -M \\ 2M & 4M \end{pmatrix}.$$

- **a.** Justifier que B est semblable à la matrice $D = \begin{pmatrix} 2M & 0 \\ 0 & 3M \end{pmatrix}$.
- b. Justifier que B est diagonalisable si et seulement si M est diagonalisable.

Exercice 18. (*) Soient A une matrice de $\mathcal{M}_n(\mathbb{K})$. On cherche les matrices $M \in \mathcal{M}_n(\mathbb{K})$ telles que $M^2 + M = A$.

Dans les deux premières questions, on suppose que M est une solution de cette équation.

- a. Montrer que les espaces propres de A sont stables par M.
- b. On suppose que A est diagonalisable et que ses espaces propres sont de dimension 1. Montrer que toute base de diagonalisation de A en est une aussi pour M. Préciser les liens entre les valeurs propres de A et celles de M.
 - c. Réaliser une synthèse de l'analyse de la question précédente.
 - **d.** Résoudre l'équation $M^2 + M = A$, d'inconnue $M \in \mathcal{M}_2(\mathbb{R})$, dans le cas $A = \begin{pmatrix} -30 & -24 \\ 48 & 38 \end{pmatrix}$.

Exercice 19. (*) Soit f un endomorphisme d'un \mathbb{C} -espace vectoriel \mathcal{E} de dimension finie. On suppose que f est diagonalisable. Montrer l'égalité

$$rg(f) = rg(f^2).$$

Exercice 20. (**) Soit f un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension finie. On suppose que f^2 est diagonalisable. On suppose aussi que l'égalité

$$rg(f) = rg(f^2)$$

est vraie.

Montrer alors que f est diagonalisable. Trouver un contre-exemple si on enlève cette condition.

Exercice 21. (**) Soient A et B dans $\mathcal{M}_n(\mathbb{C})$. On veut prouver que les matrices AB et BA ont le même polynôme caractéristique.

- a. Montrer que c'est vrai dans le cas où A est inversible.
- **b.** On revient au cas général. On fixe $\lambda \in \mathbb{C}$ et on pose $f(z) = \det(\lambda \mathbf{I}_n (\mathbf{A} z\mathbf{I}_n)\mathbf{B}) \det(\lambda \mathbf{I}_n \mathbf{B}(\mathbf{A} z\mathbf{I}_n))$ pour tout z dans \mathbb{C} .

Montrer que f est le polynôme nul. Conclure.

Exercice 22. Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{C})$ diagonalisables qui commutent.

Montrer qu'il existe une base de diagonalisation commune à A et B.

Exercice 23. (***) Montrer par récurrence sur n l'énoncé suivant : pour toute famille $(A_i)_{i\in I}$ de matrices diagonalisables de $\mathcal{M}_n(\mathbb{K})$ qui commutent deux à deux, il existe une base de diagonalisation commune à toutes les A_i . Pour l'hérédité, on distinguera selon que les A_i sont toutes des matrices scalaires ou non.

Exercice 24. (*) Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soit Φ_A l'endomorphisme de $\mathcal{M}_n(\mathbb{K})$ défini par $\Phi_A : M \mapsto AM$.

Montrer que si A est diagonalisable, alors Φ_A l'est aussi. La réciproque est-elle vraie?

Exercice 25. (**) Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice diagonalisable.

- a. Décrire l'ensemble $\mathcal{C}(A) = \{M \in \mathcal{M}_n(\mathbb{C}) ; AM = MA\}$, appelé *commutant* de A. On montrera que c'est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ et on exprimera sa dimension en fonction des dimension des espaces propres de A.
 - **b.** Décrire l'ensemble des solutions de l'équation $M^2 = A$ d'inconnue $M \in \mathcal{M}_n(\mathbb{C})$.

Exercice 26. (**) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonalisable (sur \mathbb{R}).

Montrer qu'une condition nécessaire et suffisante pour que l'équation $M^2 = A$ d'inconnue $M \in \mathcal{M}_n(\mathbb{R})$ possède des solutions est que pour toute valeur propre λ strictement négative de A (s'il en existe), la dimension de l'espace propre associé soit paire.

Exercice 27. (*) On note E_n l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$.

Montrer que E_n est dense dans $\mathcal{M}_n(\mathbb{C})$.