Exercice 1. (*) Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 - 3A - 4I_n = 0$.

Question 1. Étudier le nombre de racines réelles du polynôme $X^3 - 3X - 4$.

Question 2. La matrice A est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{R})$? dans $\mathcal{M}_n(\mathbb{C})$?

Question 3. Montrer que $d\acute{e}t(A) > 0$.

Question 4. Exprimer A^{-1} comme un polynôme en A.

Exercice 2. (**) On considère une matrice A dans $\mathcal{M}_n(\mathbb{C})$ et on introduit la matrice B de $\mathcal{M}_{2n}(\mathbb{C})$ suivante

$$B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}. \tag{1}$$

On suppose que la matrice B est diagonalisable. Le but de cet exercice est de prouver que la matrice A est forcément nulle.

On introduit un polynôme annulateur de B, noté P, que l'on suppose scindé, à racines simples.

Question 5. Démontrer l'égalité $P(B) = \begin{pmatrix} P(A) & AP'(A) \\ 0 & P(A) \end{pmatrix}$.

Question 6. Montrer que la matrice P'(A) est inversible.

Question 7. Conclure.

Exercice 3. Démonstration du théorème de Cayley-Hamilton (**)

On considère un \mathbb{K} -espace vectoriel E non trivial de dimension finie et un endomorphisme u de E.

On fixe provisoirement un vecteur x_0 non nul de E.

Question 8. On note $I(x_0)$ l'ensemble des entiers naturels k tels que la famille $(u^i(x_0))_{0 \le i \le k}$ soit libre.

Montrer que l'ensemble $I(x_0)$ possède un plus grand élément, que l'on note m dans la suite.

On note \mathcal{F} la famille $(u^i(x_0))_{0 \leq i \leq m}$ et on note F le sous-espace vectoriel de E engendré par cette famille. La famille \mathcal{F} est alors une base de cet espace vectoriel.

Question 9. Montrer qu'il existe un élément $(\alpha_0, \dots, \alpha_m)$ de \mathbb{K}^{m+1} tel que la relation suivante soit vérifiée

$$u^{m+1}(x_0) = \sum_{i=0}^{m} \alpha_i u^i(x_0).$$

En déduire que le sous-espace vectoriel F est stable par l'endomorphisme u.

On note \tilde{u} l'endomorphisme de F induit par u.

Question 10. Écrire la matrice de \tilde{u} dans la base \mathcal{F} de F et calculer son polynôme caractéristique $\chi_{\tilde{u}}$.

Question 11. Montrer que le vecteur $\chi_{\tilde{u}}(u)(x_0)$ est nul.

Question 12. Montrer que le polynôme caractéristique de u est un polynôme annulateur de u.

Question 13. Redémontrer cette propriété par un calcul direct dans le cas où E est de dimension 2.

Exercice 4. (**) Soit f un endomorphisme d'un espace vectoriel complexe E de dimension finie.

Montrer que f est diagonalisable si et seulement si tout sous-espace vectoriel de E possède un supplémentaire stable par f.

Exercice 5. (***) Pour tout entier n strictement positif, montrer la propriété (H_n) dont l'énoncé est « pour tout espace vectoriel réel E de dimension n, pour toute famille d'endomorphismes de E tous diagonalisables qui commutent entre eux, il existe une base de E dont les vecteurs sont des vecteurs propres pour tous les endomorphismes de cette famille »

On raisonnera bien sûr par récurrence sur n; au moment de l'hérédité, on commencera par évacuer le cas où tous les endomorphismes sont des homothéties.

Exercice 6. Rayon spectral d'une matrice carrée (**)

Pour tout ce problème, on fixe un entier n supérieur ou égal à 2.

Pour toute matrice A de $\mathcal{M}_n(\mathbb{C})$, on note $\rho(A)$ son rayon spectral, défini par $\rho(A) = \max\{|z| \; ; \; z \in \operatorname{Sp}(A)\}.$

Pour toute matrice colonne $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ de $\mathcal{M}_{n,1}(\mathbb{C})$, on note $||x||_{\infty} = \max(|x_1|, \dots, |x_n|)$. On rappelle que l'application $||\cdot||_{\infty}$ est une norme sur le \mathbb{R} -espace vectoriel $\mathcal{M}_{n,1}(\mathbb{C})$.

Pour toute matrice $A = (a_{i,j})_{1 \leq i,j \leq n}$ de $\mathcal{M}_n(\mathbb{C})$, on note

$$N_{\infty}(A) = \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{n} |a_{i,j}|.$$

Question 14. Montrer que l'application N_{∞} est une norme sur $\mathcal{M}_n(\mathbb{C})$.

Question 15. Soit $A = (a_{i,j})_{1 \leq i,j \leq n}$ une matrice de $\mathcal{M}_n(\mathbb{C})$.

- **a.** Pour toute matrice colonne x dans $\mathcal{M}_{n,1}(\mathbb{C})$, montrer la majoration $||Ax||_{\infty} \leq N_{\infty}(A)||x||_{\infty}$.
- $\mathbf{b.} \text{ Montrer l'égalité } \mathbf{N}_{\infty}(\mathbf{A}) = \max_{\substack{x \in \mathcal{M}_{n,1}(\mathbb{C})\\ x \neq 0}} \frac{||\mathbf{A}x||_{\infty}}{||x||_{\infty}}.$
- c. Montrer l'inégalité $\rho(A) \leq N_{\infty}(A)$.

Question 16. Montrer que N_{∞} est une norme matricielle, ce qui signifie ceci

$$\forall (A, B) \in (\mathcal{M}_n(\mathbb{C}))^2, \quad N_{\infty}(AB) \leq N_{\infty}(A)N_{\infty}(B).$$

Question 17. Pour toute matrice Q dans $\mathrm{GL}_n(\mathbb{C})$, on note N_Q l'application de $\mathcal{M}_n(\mathbb{C})$ dans \mathbb{R} définie par

$$N_Q: A \mapsto N_\infty(Q^{-1}AQ).$$

- **a.** Montrer que N_Q est une norme matricielle sur $\mathcal{M}_n(\mathbb{C})$.
- **b.** Pour chaque matrice Q dans $GL_n(\mathbb{C})$, montrer l'existence d'une constante réelle C_Q strictement positive vérifiant

$$\forall A \in \mathcal{M}_n(\mathbb{C}), \quad \frac{1}{C_O} N_\infty(A) \leqslant N_Q(A) \leqslant C_Q N_\infty(A).$$

Question 18. On fixe $\varepsilon > 0$.

a. Soit $T \in \mathcal{M}_n(\mathbb{C})$ une matrice triangulaire supérieure. Montrer l'existence de $s \in]0, +\infty[$ tel qu'en notant D_s la matrice diagonale de $\mathcal{M}_n(\mathbb{C})$ de coefficients diagonaux s, s^2, \ldots, s^n (dans cet ordre), on ait la relation suivante

$$N_{D_s}(T) \leq \rho(T) + \varepsilon$$
.

b. Soit A dans $\mathcal{M}_n(\mathbb{C})$. Montrer qu'il existe une norme matricielle N_{ε} telle que l'inégalité $N_{\varepsilon}(A) \leq \rho(A) + \varepsilon$ ait lieu.

Question 19. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que la suite $(A^k)_{k \in \mathbb{N}}$ converge vers la matrice nulle si et seulement si $\rho(A)$ est strictement inférieur à 1.