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PC* 26 - DEVOIR No 10
corrigé

Effet Marangoni
inspiré de divers documents

1. L’élément considéré est soumis à F⃗1 = γ(y + dy)ℓu⃗y de la part du fluide supérieur et à F⃗2 = −γ(y)ℓu⃗y de
la part du fluide inférieur.

dF⃗ = F⃗1 + F⃗2 = (γ(y + dy) − γ(y))ℓu⃗y = ℓ dγ u⃗y = ℓ c dy u⃗y

Comme dS = ℓ dy, on a dF⃗ = c dS u⃗y.
2. La loi de Newton donne dF⃗visq = −γ ∂v

∂x(h, y) dS u⃗y. Les forces de pression ont pour somme dF⃗P =
(P (h, y) − P0)dSu⃗x.

3. Comme cet élément est de masse nulle, le PFD s’écrit
∑

F⃗ = 0 c’est-à-dire dF⃗ + dF⃗visq + dF⃗P = 0⃗. En
projetant, on obtient : {

c dS − γ ∂v
∂x(h, y) dS = 0

(P (h, y) − P0) dS = 0 d’où
{

∂v
∂x(h, y) = c

γ

P (h, y) = P0
.

4. L’accélération est donnée par a⃗ = Dv⃗
Dt = ∂v⃗

∂t + (v⃗ · ∇⃗)v⃗.
— l’écoulement est stationnaire : ∂v⃗

∂t = 0⃗ ;

— (v⃗ · ∇⃗) = v ∂
∂y et (v⃗ · ∇⃗)v⃗ = v ∂

∂y (v(x)u⃗y) = 0⃗ car v⃗ ne dépend pas de y.

Donc a⃗ = 0⃗ partout dans cet écoulement.
5. Comme Dv⃗

Dt = 0, l’équation de Navier-Stokes s’écrit 0⃗ = −∇⃗P + ρg⃗ + η∆v⃗ avec ∆v⃗ = d2v
dx2 u⃗y. En projection

on obtient {
0 = −∂P

∂x

0 = −∂P
∂y − ρg + η d2v

dx2
. (1)

6. En intégrant la première des relations (1), on obtient P (x, y) = K(y) et grâce à P (h, y) = P0, on trouve
K(y) = P0 donc P (x, y) = P0.

7. En x = 0, la condition d’adhérence du fluide visqueux donne v(0) = 0. En x = h, on a d’après la question
3 : ∂v

∂x(h) = c
η .

8. La seconde ligne des relations (1) s’intègre en v = ρg
η

x2

2 + Ax + B. Comme v(0) = 0, B = 0. Comme
dv
dx(h) = c

η , ρg
η h + A = c

η donc A = c
η − ρgh

η et

v = ρg

2η
x2 +

(
c

η
− ρgh

η

)
x .

9. Le calcul de Dv =
´ h

0 v(x)ℓ dx donne Dv = ℓh2

η

(
c

2 − ρgh

3

)
.

10. Dv > 0 si et seulement si c > clim avec clim = 2
3ρgh .

11. Pour c = clim,
v = ρg

2η
(x2 − 2

3xh) = ρg

η
x

(
x

2 − h

3

)
.

Cette vitesse v s’annule pour x = 2
3h et passe par un minimum pour x = h/3. La nullité du débit s’exprime

par le fait que l’aire sous la partie négative de la courbe possède la même valeur absolue que l’aire sous la
partie positive. Près de l’interface, le fluide est tiré vers le haut par le gradient de tension superficielle. Plus
loin de l’interface, c’est l’effet gravitaire qui domine et le fluide descend.
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Figure 1 – Graphique de v en fonction de x.

I Effet Marangoni thermique

1. c = dγ
dx = −bγ0

dT
dx .

2. Il suffit d’adapter les relations de la question 3 en inversant les rôles respectifs des coordonnées x et y.

P (x, h) = P0
∂v

∂y
(h) = c

η

3. En pojection, l’équation de Navier-Stokes s’écrit :{
0 = −∂xP + η d2v

dy2

0 = −∂yP − ρg

En tenant compte de la condition de bord P (x, h) = P0, la projection selon u⃗y s’intègre en P = P0−ρg(y−h).
Comme ∂xP = 0, la première projection devient d2v

dy2 = 0 et s’intègre en v = Ay + B. Comme v(0) = 0,

B = 0 et l’autre condition de bord donne A = c
η . Finalement v = c

η
y .

Comme c = −γ0bdT
dx , v est de signe opposé à dT/dx. L’écoulement se fait vers la région froide.

4. Comme dans la question 3, P = P0 − ρg(y − h) mais h dépend ic de x. On a bien un gradient de pression
selon u⃗x :

∂P

∂x
= ρg

dh

dx
.

5. La projection de l’équation de Navier-Stokes sur u⃗x s’écrit d2v
dy2 = ρg

η
dh
dx et s’intègre en v = ρg

2η
dh
dxy2+Dy+D′.

L’adhérence en y = 0 donne D′ = 0.
6. Le débit vers la droite est Dv =

´ h
0 lv(y) dy.

DV = l

[
ρg

2η

dh

dx

h3

3 + Dh2

2

]

L’écoulement en profondeur compense l’effet Marangoni si Dv = 0 c’est-à-dire si

D = −ρgh

3η

dh

dx
.

7. La condition de bord ∂yv(h) = c/η évaluée avec h ≃ h0 donne

ρg

η

dh

dx
h0 + D = c

η
.

En éliminant D, on trouve

dh

dx
= 3

2
c

ρgh0
puis dh

dx
= −3

2
bγ0

ρgh0

dT

dx
.
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8.
dh

dx
= 0, 0525 α = arctan(0, 0525) = 3.0◦

Glissement des skis
corrigé

1. Comme l’écoulement est incompressible, div u⃗ = 0 donc ∂u
∂x = 0 ; u ne dépend pas de x.

2. L’équation de Navier-Stokes s’écrit :

ρ

(
∂u⃗

∂t
+ (u⃗ · ∇⃗)u⃗

)
= − ⃗grad p + eg⃗ + η

∂2u⃗

∂y2

En régime permanent, ∂u⃗
∂t = 0 et (u⃗ · ∇⃗)u⃗ = u∂u

∂x = 0. En projection sur e⃗x, on obtient :

0 = − ∂p

∂x
+ η

d2u

dy2

Comme ∂p
∂x est supposé nul, on a d2u

dy2 = 0. Avec les conditions de bord u(0) = 0 et u(h) = v, on obtient :

u = v
z

h

3. La force visqueuse Rx1 en z = h est donnée par :

Rx1 = −η
∂u

∂y
(h)A1 = −ηA1

v

h

4. Le patin exerce −Rx1 sur les particules fluides en contact avec lui, de vitesse v. Donc :

P1 = −Rx1v = ηA1
v2

h

5. Le nombre de Reynolds est donné par :

Re = vh

ν
= 0, 06

Cette valeur assez basse valide l’hypothèse d’un écoulement laminaire.
6. (a) La pression aux frontières de ce système est uniforme, notons-la P0. Le travail des forces de pression

est :
δW = −P0δV

Comme l’eau est incompressible, la variation de volume δV de ce système fermé est nulle et δW = 0.
(b) En appliquant le premier principe à ce système fermé :

dU = δW + δQ

En régime permanent et en négligeant les effets de bord, dU = 0, donc δQ = −δW = 0. La puissance
thermique cédée par ce système est donc :

Pth = −δQ

δt
= −P1 Pth = η

A1v2

h

C’est la puissance dissipée par les forces visqueuses.
7. Pour la masse de glace qui fond pendant δt, dH = δQ :

Lf dm = Pthδt

Or dm = ρA1dh, donc :

dh = Pth

ρA1Lf
dt

dh

dt
= ηv2

ρhLf
.
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8. L’incompressibilité se traduit par div u⃗ = 0 :

1
r

∂

∂r
(rur) + ∂uz

∂z
= 0

En ordre de grandeur, cela donne : U
D ≃ W

h donc U ≃ W
h D.

9. Les termes diffusifs sont ceux qui comprennent η :

∂2ur

∂z2 ≃ U

h2
1
r

∂u

∂r
≃ U

D2
ur

r2 ≃ U

D2
∂2ur

∂z2 ≃ U

h2

Numériquement, D = 1000 h donc 1
D2 = 10−6 1

h2 . Le dernier terme est donc dominant.
10. Le terme visqueux Qdiff a été estimé ci-dessus. Les termes convectifs sont :

Qconv1 = ρur
∂ur

∂r
≃ ρ

U2

D
et Qconv2 = ρuz

∂ur

∂z
≃ ρ

U2

D

Calculons le quotient
Qdiff
Qconv

≃
η U

h2

ρU2

D

≃ ηD

ρUh2

Avec U = W
h D et W = h/τ , on obtient :

Qdiff
Qconv

≃ η

ρWh
= ντ

h2 ;

Numériquement :
Qdiff
Qconv

≃ 2 · 10−6 · 10−4

(1 · 10−7)2 ≃ 2 · 104

On peut donc négliger les termes convectifs.
11. ρ∂ur

∂t ≃ ρU
τ et U ≃ D

τ donc τ ≃ D
U . Ainsi, ρ∂ur

∂t ≃ ρU2

D : même ordre de grandeur que les termes
convectifs, on peut le négliger aussi.
12. L’équation de mouvement selon r se réduit à :

∂p

∂r
= η

∂2ur

∂z2 .

13. Comme p ne dépend pas de z, on intègre pour obtenir :

ur = 1
2η

dp

dx
z2 + Az + B

On trouve A et B avec les conditions aux limites ur = 0 en z = 0 et z = h. Finalement :

ur = 1
2η

dp

dr
(z2 − zh)

14. Le débit volumique Dv est donné par :

Dv =
ˆ

u⃗ · dSu⃗r =
ˆ h

0
ur 2πr dz Dv = −πrh3

6η

dp

dr
.
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15. La conservation du débit volumique indique que le volume expulsé latéralement est égal à celui perdu
au sommet du cylindre par diminution de h :

Dv = −πr2 dh

dt
.

16. En identifiant les deux expressions de Dv, on obtient :

dp

dr
= 6η

h3 r
dh

dt
.

On intègre avec la condition P (r = D
2 ) = P0 pour trouver :

P = P0 + 3η

h3
dh

dt

(
r2 − D2

4

)

17. La résultante des forces de pression Rp est :

Rp =
ˆ

P dS =
ˆ

P (r) 2πr dr .

On obtient :

Rp = π
D2

4 P0 − 3πη

h3
dh

dt

D4

32 .

18. On identifie le second terme de Rp à Rz1 donc

Rz1 = −3πη

h3
D4

32
dh

dt
Rz1 dt = −3πηD4

32
dh

h3 .

On intègre à partir de t = 0 pour obtenir

Rz1t = 3πηD4

64

( 1
h2 − 1

h2
0

)
ou encore t = h2

0τ1

( 1
h2 − 1

h2
0

)
d’où h = h0√

1 + t
τ1

19. τ1 = 1,3.10−4 s et h(τ) = 75 nm.
20. On reprend l’expression de Dv établie dans la question 15, et on évalue en r = D/2. On élimine dh/dt

en le reliant à Rz1 comme dans la question 18.

Dv = −πD2

4 × −32h3Rz1
3πηD4 = 8h3Rz1

3ηD2 .

21. En ajoutant les effets de la fusion et de l’expulsion, on obtient l’équation suivante pour l’évolution de
h :

dh

dt
= C1

h
− C2h3 avec C1 = ηv2

ρLf
et C2 = 32Rz1

3πηD4 .

22. hlim est défini par dh
dt = 0 ce qui conduit à

hlim = 4

√
C1
C2

.

23. D’après la partie A, on a :
Rx1 = ηA1

v

hlim

Comme C1 ∝ v2 et hlim ∝ C
1/2
1 , hlim ∝

√
v, puis on en déduit que :

Rx1 ∝
√

v .

Ce résultat correspond aux observations expérimentales.
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Lubrification hydrodynamique
corrigé

1. div −→v = 0 s’écrit ∂vx
∂x + ∂vy

∂y = 0
2. ∣∣∣∣∂vy

∂y

∣∣∣∣ ∼ Vt

h

∣∣∣∣∂vx

∂x

∣∣∣∣ ∼ V0
l

D’après la relation de la question précédente, Vt
ht

∼ V0
l → Vt ∼ ht

l V0 ≪ V0 : on peut négliger la vitesse
transversale, −→v ≃ vx

−→ux.
3. (a)

µvx
∂vx

∂x
= − ∂p

∂x
+ η

[
∂2vx

∂x2 + ∂2vx

∂y2

]
0 = −∂p

∂y
(2)

(b) ∣∣∣∣∣∂2vx

∂x2

∣∣∣∣∣ ∼ V0
l2

∣∣∣∣∣∂2vx

∂y2

∣∣∣∣∣ ∼ V0
h2

Comme h ≪ l, ∂2vx
∂x2 ≪ ∂2vx

∂y2 .

(c) On a Re = µV0h/η et α ∼ h/l donc Re α ∼ νV0h2/(ηl).∣∣∣∣µvx
∂vx

∂x

∣∣∣∣ ∼ µ
V 2

0
l

∣∣∣∣η ∂vx

∂y2

∣∣∣∣ ∼ η
V0
h2

Le rapport de ces deux termes a donc pour ordre de grandeur µV0h2

ηl ∼ Re α ≪ 1.
(d) En négligeant les deux termes dont on vient de montrer la petitesse, les projections de Navier-Stokes

deviennent
∂p

∂x
= η

∂2vx

∂y2 et∂p

∂y
= 0

4. ∂p
∂y = 0 donc p ne dépend que de x. On pose K(x) = p′(x) = ∂p

∂x .
5. Les conditions d’adhésion du fluide visqueux aux parois s’écrivent : en y = 0, vx = V0 ; en y = h, vx = 0.

∂2vx

∂y2 = K(x)
η

→ vx = K(x)
η

y2

2 + Ay + B

Les conditions de bord permettent de trouver B = V0 et A = −Kh
2η − V0

h de sorte que

vx = K

η

y2

2 −
(

Kh(x)
2η

+ V0
h(x)

)
y + V0 = V0

(
1 − y

h(x)

)(
1 − Kh(x)2

2ηV0

y

h(x)

)

6.
qv =

ˆ h(x)

0
vxLdy = L

[
V0h

2 − 1
12

Kh3

η

]
après calcul

Ce débit se conserve, il ne dépend pas de x car le fluide est incompressible.
7. (a) Du résultat de la question précédente, on tire

dp

dx
= K = 6V0η

h2 − 12 ηqv

Lh3

Comme l’énoncé indique qu’il faut prendre h comme variable d’intégration on calcule dp
dh = dp

dx
dx
dh =

K × −1
α . donc

dp

dh
= dp

dx

dx

dh
= K × −1

α
= −6V0η

αh2 + 12qvη

αLh3

qui s’intègre pour donner

p − p0 = 6V0η

α

(1
h

− 1
h1

)
− 6qvη

αL

( 1
h2 − 1

h2
1

)
.
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(b) On a p(h2) = p0 soit p(h2) − p0 = 0. En évaluant la relation précédente en h = h2, on obtient :

0 = 6V0η

α

(−1
h2

+ 1
h1

)
+ 6qvη

αL

( 1
h2

2
− 1

h2
1

)
→ qv = LV0

h1h2
h1 + h2

= 1
2LV0h∗ .

(c) En utilisant l’expression précédente de qv, on obtient K(x) = 6V0η
h(x)3 (h(x) − h∗). Il suffit de reporter ce

résultat dans l’ expression de v trouvée à la question 5, et dans celle de p trouvée à la question 6, pour
obtenir les expressions de vx et p fournies par l’énoncé. Pour p, le calcul n’est pas évident, mais il n’est
pas demandé !

(d) Le sens de variation de p(x) est donné par le signe de K : Pour h > h∗, K > 0 donc p(x) crôıt. C’est
le contraire pour h < h∗. La pression présente donc un maximum à l’abscisse x∗ telle que h = h∗.

x

p − p0

x∗

(e) Comme ∂2v
∂y2 = K

η ∝ (h − h∗), vx(y) varie linéairement pour h = h∗ et la concavité du profil de vitesse
est dans un sens ou dans l’autre selon que h > h∗ ou h < h∗.
On calcule ∂vx

∂y (x, 0) = v0
h2 (3h∗ − 4h) et ∂vx

∂y (x, h) = v0
h2 (2h − 3h∗). D’où le tableau de signe suivant :

y y y y

− − + +

+ − − −

− − − +

profil

vx
vx

vx vx

h

∂2v
∂y2

∂v
∂y

(x, 0)

∂v
∂y

(x, h)

h2 h13h∗/4 h∗ 3h∗/2

Avec les valeur numériques de l’énoncé, 3h∗/2 = h1 et 3h∗/4 = h2, donc on observer seulement les deux
courbes du milieu. Attention : h décrôıt avec x, donc les courbes sont inversées si on met x en abscisse.

8. La résultante des forces de pression s’exprime par Fp =
´ l

0(p(x)−p0)Ldx . Numériquement Fp = 6620 N.
Pour un film plan, β → 1. En posant β = 1 + ϵ, des développements limités à l’ordre 3 donnent

1
(β − 1)2

[
ln β − 2β − 1

β + 1

]
∼ ϵ

12

donc Fp → 0. On retrouve dans ce cas l’écoulement de Couette plan.
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9. En utilisant la loi de Newton, la résultante des forces visqueuses sur la paroi s’exprime par

Fv = −
ˆ l

0
η

∂vx

∂y
Ldx = 19, 3 N .

On calcule f = Fv/Fp = 2, 9.10−3 N. Fp représente une force normale, Fv une force tangentielle. Le coefficient
f joue donc un rôle analogue au coefficient de frottement dynamique intervenant dans les lois de Coulomb.
Mais il est bien plus faible que celui qu’on obtient usuellement entre deux solides, de l’ordre de 0,1 pour un
contact acier du acier. C’est tout l’intérêt de la lubrification.


