Fonctions de plusieurs variables

Théorème (développement limité à l'ordre 1). Soit un entier $p \ge 2$. Soit U un ouvert non vide de \mathbb{R}^p . Soit $f : \mathbb{U} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 sur U, à valeurs réelles.

Étant donné un point $a=(a_1,\ldots,a_p)$ de U, la fonction f admet le développement limité suivant au voisinage de a:

$$f(a+h) = f(a) + \langle \operatorname{grad} f(a)|h\rangle + \underset{h \to 0}{\operatorname{o}}(||h||).$$

Démonstration du théorème dans le cas p = 2. Je me contente de rédiger la démonstration dans ce cas car le cas général nécessite d'écrire des formules plus longues et moins lisibles, bien que le principe soit rigoureusement le même.

Fixons $\varepsilon > 0$ et munissons \mathbb{R}^2 de la norme infinie N_{∞} .

Comme U est un ouvert, il existe r > 0 tel que la boule de rayon r centrée en a soit incluse dans U. Par continuité des dérivées partielles de f, il est possible de choisir r suffisamment petit pour que les majorations suivantes soient valables pour tout $x = (x_1, x_2)$ dans B(a, r)

$$\left| \frac{\partial f}{\partial x_1}(x_1, x_2) - \frac{\partial f}{\partial x_1}(a_1, a_2) \right| \leqslant \varepsilon \quad \text{et} \quad \left| \frac{\partial f}{\partial x_2}(x_1, x_2) - \frac{\partial f}{\partial x_2}(a_1, a_2) \right| \leqslant \varepsilon.$$

Prenons donc un vecteur $h = (h_1, h_2)$ non nul de \mathbb{R}^2 de norme strictement majorée par r. Notons (e_1, e_2) la base canonique de \mathbb{R}^2 et remarquons cette première égalité

$$f(a+h) - f(a) = f(a_1 + h_1, a_2 + h_2) - f(a_1 + h_1, a_2) + f(a_1 + h_1, a_2) - f(a_1, a_2).$$

Le théorème des accroissements finis donne l'existence d'éléments c_1 et c_2 dans les intervalles $]a_1 - |h_1|, a_1 + |h_1|[$ et $]a_2 - |h_2|, a_2 + |h_2|[$ respectivement, vérifiant les égalités suivantes

$$f(a_1 + h_1, a_2) - f(a_1, a_2) = h_1 \frac{\partial f}{\partial x_1}(c_1, a_2) \quad \text{et}$$

$$f(a_1 + h_1, a_2 + h_2) - f(a_1 + h_1, a_2) = h_2 \frac{\partial f}{\partial x_2}(a_1 + h_1, c_2).$$

En mettant toutes nos formules bout à bout, on obtient

$$f(a+h) - f(a) - \langle \operatorname{grad} f(a) | h \rangle = h_1 \left(\frac{\partial f}{\partial x_1}(c_1, a_2) - \frac{\partial f}{\partial x_1}(a_1, a_2) \right) + h_2 \left(\frac{\partial f}{\partial x_2}(a_1 + h_1, c_2) - \frac{\partial f}{\partial x_2}(a_1, a_2) \right).$$

L'inégalité triangulaire donne ensuite

$$|f(a+h) - f(a) - \langle \operatorname{grad} f(a)|h\rangle| \leq |h_1| \times \left| \frac{\partial f}{\partial x_1}(c_1, a_2) - \frac{\partial f}{\partial x_1}(a_1, a_2) \right| + |h_2| \times \left| \frac{\partial f}{\partial x_2}(a_1 + h_1, c_2) - \frac{\partial f}{\partial x_2}(a_1, a_2) \right|$$

puis

$$|f(a+h) - f(a) - \langle \operatorname{grad} f(a)|h\rangle| \leq \varepsilon(|h_1| + |h_2|) \leq 2\varepsilon N_{\infty}(h).$$

Plus précisément, on a montré ceci

$$\forall \varepsilon > 0, \ \exists r > 0, \ \forall h \in B(0, r),$$

$$|f(a+h) - f(a) - \langle \operatorname{grad} f(a)|h \rangle| \leq \varepsilon(|h_1| + |h_2|) \leq 2\varepsilon N_{\infty}(h).$$

On a donc prouvé le développement limité annoncé. \heartsuit

Règle de la chaîne. Soit U un ouvert non vide de \mathbb{R}^p . Soit f une fonction de classe \mathcal{C}^1 sur U, à valeurs réelles. Soit I un intervalle non vide de \mathbb{R} . Soit γ une fonction de classe \mathcal{C}^1 sur I, à valeurs dans U. La fonction $g = f \circ \gamma$ est alors de classe \mathcal{C}^1 sur I et sa dérivée est donnée par

$$\forall t \in \mathcal{I}, \qquad g'(t) = \mathrm{d}f(\gamma(t)) \cdot \gamma'(t) = (\nabla f(\gamma(t))|\gamma'(t)) = \sum_{i=1}^{p} \frac{\partial f}{\partial x_i}(x_1(t), \dots, x_p(t))x_i'(t),$$

où l'on a noté x_1, \ldots, x_p les fonctions coordonnées de la fonction vectorielle γ .

Démonstration de la règle de la chaîne. Soit t_0 un élément de I. Pour tout indice i, on connaît le développement limité

$$x_i(t_0 + s) = x_i(t_0) + x_i'(t_0)s + o_s(s).$$

Plus précisément, on va écrire que pour chaque indice i, il existe une fonction ε_i de limite nulle en 0 vérifiant l'identité

$$\forall s \in J, \quad x_i(t_0 + s) = x_i(t_0) + x_i'(t_0)s + s\varepsilon_i(s),$$

où J désigne l'image de I par la translation $t\mapsto t-t_0$ (l'intervalle dans lequel on fait varier le déplacement s). Introduisons la fonction

$$\vec{\varepsilon}: s \mapsto (\varepsilon_1(s), \dots, \varepsilon_p(s)).$$

On peut alors écrire

$$\forall s \in J, \qquad \gamma(t_0 + s) = \gamma(t_0) + s\vec{\gamma}'(t_0) + s\vec{\varepsilon}(s),$$

ce qui est un développement limité à l'ordre 1 pour la fonction vectorielle γ . Rappelons de même le développement limité de la fonction f au point $\gamma(t_0)$

$$f(\gamma(t_0) + \vec{h}) = f(\gamma(t_0)) + df(\gamma(t_0)) \cdot \vec{h} + \underset{\vec{h} \to \vec{0}}{o}(||\vec{h}||).$$

De même, cette formule se réécrit

$$f(\gamma(t_0) + \vec{h}) = f(\gamma(t_0)) + df(\gamma(t_0)) \cdot \vec{h} + ||\vec{h}||\eta(\vec{h}).$$

La fonction η est une fonction définie sur une certaine boule ouverte B centrée en l'origine, de limite nulle en l'origine, et le domaine de validité de cette formule est la boule B.

Le vecteur $s\vec{\gamma}'(t_0) + s\vec{\varepsilon}(s)$ tend vers le vecteur nul quand s tend vers 0 donc il existe $s_0 > 0$ tel que pour tout s dans l'intervalle K défini par

$$K =] - s_0, s_0 [\cap J,$$

le vecteur $s\vec{\gamma}'(t_0) + s\vec{\varepsilon}(s)$ soit dans la boule ouverte B. Pour tout s dans K, on peut alors écrire

$$f(\gamma(t_0+s)) = f(\gamma(t_0)+s\vec{\gamma}'(t_0)+s\vec{\varepsilon}(s)) = f(\gamma(t_0))+df(\gamma(t_0))\cdot(s\vec{\gamma}'(t_0)+s\vec{\varepsilon}(s)) + ||s\vec{\gamma}'(t_0)+s\vec{\varepsilon}(s)|| \times \eta(s\vec{\gamma}'(t_0)+s\vec{\varepsilon}(s)).$$

On utilise la linéarité de la différentielle $df(\gamma(t_0))$ puis on regroupe tous les termes qui se factorisent par s ou |s|.

$$f(\gamma(t_0+s)) = f(\gamma(t_0)) + s \operatorname{d}f(\gamma(t_0)) \cdot \vec{\gamma}'(t_0) + s \operatorname{d}f(\gamma(t_0)) \cdot \vec{\varepsilon}(s) + |s| \times ||\vec{\gamma}'(t_0) + \vec{\varepsilon}(s)|| \times \eta(s\vec{\gamma}'(t_0) + s\vec{\varepsilon}(s))).$$

La différentielle $df(\gamma(t_0))$ est linéaire donc continue. Le terme $df(\gamma(t_0) \cdot \vec{\varepsilon}(s))$ a donc une limite nulle quand s tend vers 0.

De même, le terme $\eta(s\vec{\gamma}'(t_0) + s\vec{\epsilon}(s))$) a une limite nulle quand s tend vers 0 car ce qui est dans η tend vers 0.

Enfin, le terme $||\vec{\gamma}'(t_0) + \vec{\varepsilon}(s)||$ tend vers $||\vec{\gamma}'(t_0)||$ quand s tend vers 0.

Tout ceci permet d'obtenir le développement limité

$$f(\gamma(t_0+s)) = f(\gamma(t_0)) + s \, df(\gamma(t_0)) \cdot \vec{\gamma}'(t_0) + \underset{s \to 0}{o}(s).$$

On en déduit que la fonction g est dérivable en t_0 , avec pour dérivée

$$g'(t_0) = \mathrm{d}f(\gamma(t_0)) \cdot \vec{\gamma}'(t_0).$$

C'est vrai pour tout t_0 dans I donc la fonction g est dérivable sur I. De plus, en développant la différentielle, on obtient plus précisément

$$\forall t \in I, \qquad g'(t) = \sum_{i=1}^{p} \frac{\partial f}{\partial x_i} (\gamma(t)) x_i'(t).$$

Les fonctions f et γ étant de classe \mathcal{C}^1 , cette formule prouve que g' est continue. La fonction g est donc de classe \mathcal{C}^1 . \heartsuit

Théorème de Schwarz. Soit U un ouvert non vide de \mathbb{R}^2 . Soit f une fonction de classe \mathcal{C}^2 sur U, à valeurs réelles. Pour tout élément (x_0, y_0) de U, on peut alors écrire

$$\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0).$$

Démonstration du théorème de Schwarz.

L'ensemble U étant ouvert, il existe r > 0 tel que le carré $]x_0 - r, x_0 + r, y_0 - r, y_0 + r[$, qui est une boule ouverte pour la norme infinie de \mathbb{R}^2 , soit inclus dans U. Pour tout t dans]-r,r[, on peut alors poser

$$F(t) = f(x_0 + t, y_0 + t) - f(x_0 + t, y_0) - f(x_0, y_0 + t) + f(x_0, y_0).$$

Prenons t dans [0, r[. On peut alors écrire

$$f(x_0 + t, y_0 + t) - f(x_0 + t, y_0) = \int_{y_0}^{y_0 + t} \frac{\partial f}{\partial y}(x_0 + t, y) \, dy \qquad \text{et} \qquad f(x_0, y_0 + t) - f(x_0 + t, y_0) = \int_{y_0}^{y_0 + t} \frac{\partial f}{\partial y}(x_0, y) \, dy$$

puis

$$F(t) = \int_{y_0}^{y_0+t} \left(\frac{\partial f}{\partial y}(x_0+t,y) - \frac{\partial f}{\partial y}(x_0,y) \right) dy = \int_{y_0}^{y_0+t} \left(\int_{x_0}^{x_0+t} \frac{\partial^2 f}{\partial x \partial y}(x,y) dx \right) dy.$$

Fixons $\varepsilon > 0$. Par continuité de la fonction $\frac{\partial^2 f}{\partial x \partial y}$, il existe t_0 dans]0, r[vérifiant

$$\forall (x,y) \in [x_0, x_0 + t_0] \times [y_0, y_0 + t_0], \qquad \left| \frac{\partial^2 f}{\partial x \partial y}(x,y) - \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \right| \leqslant \varepsilon.$$

Pour tout t dans $[0, t_0]$, on obtient alors

$$F(t) - t^2 \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \int_{y_0}^{y_0 + t} \left(\int_{x_0}^{x_0 + t} \left(\frac{\partial^2 f}{\partial x \partial y}(x, y) - \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \right) dx \right) dy.$$

Pour tout t dans $[0, t_0]$, on trouve ensuite

$$\left|\frac{\mathbf{F}(t)}{t^2} - \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)\right| \leqslant \frac{1}{t^2} \int_{y_0}^{y_0 + t} \left(\int_{x_0}^{x_0 + t} \left|\frac{\partial^2 f}{\partial x \partial y}(x, y) - \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)\right| \, \mathrm{d}x\right) \, \mathrm{d}y \leqslant \frac{1}{t^2} \int_{y_0}^{y_0 + t} \left(\int_{x_0}^{x_0 + t} \varepsilon \, \mathrm{d}x\right) \, \mathrm{d}y = \varepsilon.$$

Ainsi, pour tout $\varepsilon > 0$, il existe t_0 dans]0, r[tel que pour tout t dans $]0, t_0[$, la majoration $\left| \frac{\mathbf{F}(t)}{t^2} - \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \right| \leqslant \varepsilon$ ait lieu.

On en déduit que le quotient $F(t)/t^2$ tend vers $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$ quand t tend vers 0 par valeurs strictement positives.

De la même manière, pour tout t dans [0, r[, on obtient

$$F(t) = \int_{x_0}^{x_0+t} \left(\int_{y_0}^{y_0+t} \frac{\partial^2 f}{\partial y \partial x}(x, y) \, dy \right) \, dx.$$

Par le même raisonnement epsilonesque, on montre alors que le quotient $F(t)/t^2$ tend vers $\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$ quand t tend vers 0 par valeurs strictement positives.

Par unicité de la limite, on obtient l'égalité $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$. \heartsuit

Théorème (condition nécessaire d'extremum local sur un ouvert). Soit U un ouvert non vide de \mathbb{R}^p . Soit f une fonction de classe \mathcal{C}^1 sur U, à valeurs réelles.

Soit $a \in U$. On suppose que f admet un extremum local en a. Alors le vecteur $\nabla f(a)$ est nul.

Démonstration. Introduisons les coordonnées de a

$$a=(a_1,\ldots,a_p).$$

Pour simplifier les raisonnements, on suppose que f admet un maximum local en a (pour le cas d'un minimum local, il suffit de renverser les inégalités).

Le fait que U soit ouvert donne l'existence de r > 0 tel que l'ensemble

$$|a_1-r,a_1+r[\times\cdots\times]a_p-r,a_p+r[$$

soit inclus dans U (c'est la boule ouverte de rayon r centrée en a pour la norme infinie).

Le fait que f ait un maximum local en a signifie qu'en choisissant r suffisamment petit, la restriction de f à la boule ci-dessus admet un maximum en a.

Prenons un indice i entre 1 et p. La fonction partielle

$$f_i: t \mapsto f(a_1, \dots, a_{i-1}, t, a_{i+1}, \dots a_p)$$

admet alors un maximum en a_i sur l'intervalle ouvert $]a_i-r,a_i+r[$. Sa dérivée en a_i est donc nulle. Autrement dit, le nombre $\frac{\partial f}{\partial x_i}(a)$ est nul.

C'est vrai pour tout indice i entre 1 et p donc le gradient de f en a est nul. \heartsuit

Théorème des bornes atteintes. Soit A une partie non vide, fermée et bornée de \mathbb{R}^p . Soit f une fonction continue sur U, à valeurs réelles.

Alors f possède un maximum et un minimum (globaux) sur A.

Préambule à la démonstration. Pour démontrer ce théorème, je vais devoir admettre un autre théorème, qui n'est pas à notre programme : le *théorème de Bolzano-Weierstraß*. Ce théorème affirme que toute suite bornée d'un \mathbb{R} -espace vectoriel de dimension finie possède une sous-suite convergente.

Démonstration du théorème des bornes atteintes. Montrons d'abord que f est majorée.

On raisonne par l'absurde, en supposant que f n'est pas majorée sur A. Pour tout $n \in \mathbb{N}$, on peut alors sélectionner un élément x_n de A tel que $f(x_n) \ge n$.

La suite $(x_n)_{n\in\mathbb{N}}$ ainsi construite est alors bornée donc, d'après le théorème de Bolzano-Weierstraß, elle admet une sous-suite convergente. Il existe donc une fonction $\varphi:\mathbb{N}\to\mathbb{N}$ strictement croissante et un élément ℓ de E tels que la suite $(x_{\varphi(n)})_{n\in\mathbb{N}}$ converge vers ℓ .

L'ensemble A est fermé donc, d'après le critère séquentiel, la limite ℓ est encore un élément de A. La continuité de f donne donc que la suite de terme général $f(x_{\varphi(n)})$ converge vers $f(\ell)$.

Cependant, la minoration $f(x_{\varphi(n)}) \ge \varphi(n) \ge n$ donne que cette suite tend vers $+\infty$.

On a obtenu une contradiction, qui prouve que f est majorée sur A.

Notons maintenant M la borne supérieure de f sur A. Pour tout entier n strictement positif, on peut alors sélectionner un élément y_n de A tel que

$$f(y_n) \geqslant M - \frac{1}{n}$$
.

La suite $(y_n)_{n\geqslant 1}$ ainsi construite est bornée donc, d'après le théorème de Bolzano-Weierstraß, elle admet une soussuite convergente. Il existe donc une fonction $\psi: \mathbb{N} \to \mathbb{N}^*$ strictement croissante et un élément s de E tels que la suite $(y_{\psi(n)})_{n\in\mathbb{N}}$ converge vers s.

L'ensemble A est fermé donc, d'après le critère séquentiel, la limite s est encore un élément de A. La continuité de f sur A donne donc que la suite de terme général $f(y_{\psi(n)})$ converge vers f(s).

Par ailleurs, pour tout $n \in \mathbb{N}^*$, on connaît l'encadrement

$$M \geqslant f(y_{\psi(n)}) \geqslant M - \frac{1}{\psi(n)} \geqslant M - \frac{1}{n}.$$

On en déduit que $f(y_{\psi(n)})$ tend vers M quand n tend vers $+\infty$. On en déduit l'égalité M=f(s) par unicité de la limite.

On a alors prouvé que la fonction f admet un maximum sur A.

En appliquant ce raisonnement à la fonction -f, on voit que -f admet un maximum sur A, si bien que f admet un minimum sur A. \heartsuit

Théorème (développement limité à l'ordre 2). Soit un entier $p \ge 2$. Soit U un ouvert non vide de \mathbb{R}^p . Soit $f: \mathbb{U} \to \mathbb{R}$ une fonction de classe C^2 sur U, à valeurs réelles.

Étant donné un point $a=(a_1,\ldots,a_p)$ de U, la fonction f admet le développement limité suivant au voisinage de a

$$f(a+h) = f(a) + (\nabla f(a)|h) + \frac{1}{2}(h|H_f(a)h) + \inf_{h \to 0}(h^2).$$

Démonstration du théorème. On fixe r > 0 tel que $B_f(a,r) \subset U$.

Soit $h \in \mathbb{R}^p$ tel que $||h|| \le r$. En particulier, on remarque que pour tout $t \in [0,1]$, le vecteur a+th est dans $B_f(a,r)$ donc dans U.

On peut donc définir la fonction $\gamma: t \mapsto f(a+th)$. Cette fonction est de classe \mathcal{C}^2 . La règle de la chaîne donne

$$\forall t \in [0,1], \quad \gamma'(t) = \sum_{j=1}^{p} \frac{\partial f}{\partial h_j}(a+th)h_j.$$

Une deuxième dérivation donne alors

$$\forall t \in [0,1], \quad \gamma''(t) = \sum_{j=1}^{p} \sum_{i=1}^{p} \frac{\partial^2 f}{\partial h_i \partial h_j} (a+th) h_i h_j.$$

En identifiant le vecteur h de \mathbb{R}^p au vecteur colonne qui lui est canoniquement associé, cette formule se réécrit

$$\gamma''(t) = h^{\mathrm{T}} \times \mathrm{H}_f(a + th) \times h.$$

La formule de Taylor avec reste intégral à l'ordre 1 donne

$$\gamma(1) = \gamma(0) + \gamma'(0) + \int_0^1 \gamma''(t)(1-t) dt,$$

c'est-à-dire

$$f(a+th) = f(a) + (\nabla f(a)|h) + \int_0^1 h^{\mathrm{T}} \times H_f(a+th) \times h(1-t) \, \mathrm{d}t.$$

On en déduit l'égalité

$$f(a+th) - f(a) - (\nabla f(a)|h) - \frac{1}{2}h^{\mathrm{T}} \times H_f(a) \times h = \int_0^1 h^{\mathrm{T}} \times (H_f(a+th) - H_f(a)) \times h \times (1-t) \, \mathrm{d}t.$$

Pour tout $t \in [0, 1]$, on trouve

$$h^{\mathrm{T}} \times (\mathrm{H}_{f}(a+th) - \mathrm{H}_{f}(a)) \times h = \sum_{i=1}^{p} \sum_{j=1}^{p} h_{i}h_{j} \left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (a+th) - \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (a+th) \right).$$

Soit $\varepsilon > 0$. Pour tout $(i,j) \in [1,p]^2$, la continuité de la fonction $\frac{\partial^2 f}{\partial x_i \partial x_j}$ donne l'existence d'un nombre $\alpha_{i,j} \in]0,r[$ tel que

$$\forall y \in \mathcal{B}(a, \alpha_{i,j}), \quad \left| \frac{\partial^2 f}{\partial x_i \partial x_j}(y) - \frac{\partial^2 f}{\partial x_i \partial x_j}(a) \right| \leqslant \varepsilon.$$

L'ensemble $\{\alpha_{i,j} ; (i,j) \in [1,p]^2\}$ est une partie finie et non vide de $]0,+\infty[$ donc il possède un plus petit élément, noté α , qui est strictement positif.

À partir de maintenant, on suppose que $||h|| < \alpha$, ce qui donne

$$\forall (i,j) \in [1,p]^2, \quad \forall t \in [0,1], \quad \left| \frac{\partial^2 f}{\partial x_i \partial x_j}(a+th) - \frac{\partial^2 f}{\partial x_i \partial x_j}(a) \right| \leqslant \varepsilon.$$

L'inégalité triangulaire donne alors

$$\forall t \in [0,1], \quad \left| h^{\mathrm{T}} \times \left(\mathrm{H}_f(a+th) - \mathrm{H}_f(a) \right) \times h \right| \leqslant \sum_{i=1}^p \sum_{j=1}^p \left| h_i h_j \right| \times \left| \frac{\partial^2 f}{\partial x_i \partial x_j}(a+th) - \frac{\partial^2 f}{\partial x_i \partial x_j}(a) \right| \leqslant p^2 \times ||h||_{\infty}^2 \times \varepsilon.$$

On en déduit alors la majoration

$$\left| \int_0^1 h^{\mathrm{T}} \times \mathbf{H}_f(a+th) \times h(1-t) \, dt \right| \leq \int_0^1 \left| h^{\mathrm{T}} \times \mathbf{H}_f(a+th) \times h \right| \times (1-t) \, dt \leq \int_0^1 p^2 \times ||h||_{\infty}^2 \times \varepsilon(1-t) \, dt = \frac{p^2 \varepsilon}{2} ||h||_{\infty}^2.$$

On a alors démontré que pour tout $\varepsilon > 0$, il existe $\alpha > 0$ tel que pour tout vecteur h de \mathbb{R}^p tel que $||h|| < \alpha$, on ait la majoration

$$\left| f(a+th) - f(a) - (\nabla f(a)|h) - \frac{1}{2}h^{\mathrm{T}} \times \mathrm{H}_f(a) \times h \right| \leqslant \frac{p^2 \varepsilon}{2} ||h||_{\infty}^2.$$

On a donc prouvé précisément la formule

$$f(a+th) - f(a) - (\nabla f(a)|h) - \frac{1}{2}h^{\mathrm{T}} \times H_f(a) \times h = \underset{h \to 0}{\text{o}} (||h||^2),$$

ce qui est la formule attendue. \heartsuit