Plan de cours année scolaire 2018-2019

Chapitre 6 — suites de fonctions

Les espaces de fonctions ne sont pas de dimension finie. Il n'y a donc pas de manière canonique de définir la convergence d'une suite de fonctions. Ce chapitre présente deux modes de convergence.

1 Convergence simple

Suites de fonctions. Convergence simple. Exemples de comportements non satisfaisants.

2 Convergence uniforme

2.1 Définition

Définition. Exemples et contre-exemples.

Remarque : la convergence uniforme implique la convergence simple.

2.2 Théorème de continuité

Soit I un intervalle de \mathbb{R} . Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur I, à valeurs dans \mathbb{K} . Soit f une fonction définie sur I, à valeurs dans \mathbb{K} .

Hypothèses:

- pour tout n dans \mathbb{N} , la fonction f_n est continue sur \mathbb{I} ;
- la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction f sur I.

Conclusion: la fonction f est continue sur I.

Traduction topologique : pour la norme infinie, le sous-espace vectoriel $\mathcal{C}^0(I,\mathbb{R})$ est fermé dans l'espace vectoriel des fonctions bornées sur I.

Cas où la convergence uniforme n'a lieu que sur les segments.

2.3 Passage à la limite sous l'intégrale

Soient a et b dans \mathbb{R} tels que a < b. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions définies sur le segment [a, b], à valeurs dans \mathbb{K} . Soit f une fonction définie sur le segment [a, b], à valeurs dans \mathbb{K} .

Hypothèses:

- pour tout n dans \mathbb{N} , la fonction f_n est continue sur le segment [a, b];
- la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction f sur le segment [a,b].

Conclusion : la suite de terme général $\int_a^b f_n(t) dt$ converge vers le nombre $\int_a^b f(t) dt$.

Traduction topologique : la forme linéaire $f \mapsto \int_a^b f(t) dt$ est continue sur $\mathcal{C}^0([a,b],\mathbb{K})$ pour la norme infinie.

2.4 Théorème de dérivation

Soit I un intervalle de \mathbb{R} . Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur I, à valeurs dans \mathbb{K} . Soient g et h deux fonctions définies sur I à valeurs dans \mathbb{K} .

Hypothèses:

- Pour tout n dans \mathbb{N} , la fonction f_n est de classe \mathcal{C}^1 sur I.
- La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement vers la fonction g sur I.
- Pour tout segment [a,b] inclus dans I, la suite de fonctions $(f'_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction h sur [a,b].

Conclusions : la fonction g est de classe \mathcal{C}^1 sur I et sa dérivée est la fonction h.

Variante pour les fonctions de classe \mathcal{C}^k : l'hypothèse de convergence uniforme porte uniquement sur l'ordre de dérivation le plus élevé.