Recueil des oraux de mathématiques PC^* — lycée Henri Poincaré

Exercice 1. (ENS PC 2019, Arthur Sauder)

On appelle polynôme tempéré tout polynôme complexe dont toutes les racines sont de module 1.

- **a.** Soit $(b, c) \in \mathbb{C}^2$. Trouver une condition nécessaire et suffisante pour que le polynôme $X^2 + bX + c$ soit tempéré.
 - **b.** Soit $(b, c) \in \mathbb{C}^2$. On pose $P = X^3 + bX^2 + cX + 1$.

Montrer que si P est tempéré, alors $b = \overline{c}$.

c. Pour tout b complexe, on pose $P_b = X^3 + bX^2 + \bar{b}X + 1$.

On note K l'ensemble des b complexes pour lesquels le polynôme P_b est tempéré.

Déterminer K et préciser l'ensemble $K \cap \mathbb{R}$.

Exercice 2. (Centrale Python PC 2019, Mathieu Schaeffer)

On fixe un entier $r \geq 1$. Pour toute matrice A de $\mathcal{M}_r(\mathbb{C})$ et tout entier $n \geq 1$, on pose

$$f_n(\mathbf{A}) = \prod_{k=1}^n \left(\mathbf{I}_r + \frac{k}{n^2} \mathbf{A} \right).$$

- 1. Dans cette question, on prend r=1. Vérifier numériquement que la suite $(f_n(a))_{n\geqslant 1}$ converge vers e^a .
- **2.** Soit f une fonction définie sur [0,1], à valeurs dans \mathbb{C} , dérivable en 0, telle que f(0) = 0. Pour tout $n \in \mathbb{N}^*$, on pose

$$S_n(f) = \sum_{k=1}^n f\left(\frac{k}{n^2}\right).$$

Montrer que la suite $(S_n(f))_{n\geq 1}$ converge vers f'(0)/2.

3. En déduire que pour tout z complexe, la suite $(f_n(z))_{n\geqslant 1}$ converge vers $e^z/2$.

[Tentative de prolongement de l'énoncé.]

On note $\operatorname{diag}(z_1,\ldots,z_r)$ la matrice diagonale de $\mathcal{M}_r(\mathbb{C})$ dont les coefficients diagonaux sont z_1,\ldots,z_n dans cet ordre.

- **4.** Si $A = \operatorname{diag}(z_1, \ldots, z_r)$, montrer que la suite de matrices $(f_n(A))_{n\geqslant 1}$ converge vers la matrice diagonale $\operatorname{diag}(e^{z_1}, \ldots, e^{z_r})$.
 - **5.** Si A est une matrice diagonalisable, montrer que la suite de matrices $(f_n(A))_{n\geqslant 1}$ est convergente.

Commentaire. Je ne vois pas de méthode simple pour généraliser cela au cas général. À vrai dire, les polynômes de matrices ne sont pas vraiment au programme de la filière PC.

Exercice 3. (Centrale Python PC 2019, Hugo da Maia)

Étant donné une fonction f définie de \mathbb{R} dans \mathbb{R} et un nombre réel α non nul, on définit la fonction $\nabla_{\alpha}(f)$ par

$$\nabla_{\alpha}(f): t \mapsto \frac{f(t+\alpha) - f(t)}{\alpha}.$$

1. Soit $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$. Pour tout t réel, prouver les égalités

$$f'(t) = \lim_{\alpha \to 0} \nabla_{\alpha}(f)(t)$$
 et $f''(t) = \lim_{\alpha \to 0} \nabla_{\alpha}^{2}(f)$.

- 2. Écrire une fonction nabla(f, alpha) qui prend en entrée une fonction f et un flottant α , et renvoie la fonction $\nabla_{\alpha}(f)$.
 - 3. Écrire une fonction derive(f, n, t) qui renvoie le nombre $\nabla_{\alpha}^{n}(f)(t)$.
- **4.** On prend deux fonctions g et h de $\mathcal{C}^2(\mathbb{R},\mathbb{R})$ et on suppose que h ne s'annule pas. On pose f=g/h.

Donner l'expression des dérivées successives de g en fonction de celles de f et de h.

5. On considère la matrice $A(t) = (a_{i,j}(t))_{0 \le i,j \le n}$ de coefficients

$$a_{i,j}(t) = \begin{cases} \binom{i}{j} h^{(i-j)}(t) & \text{si } j \leq i < n \\ 0 & \text{si } i < j < n \\ g^{(i)}(t) & \text{si } j = n. \end{cases}$$

Au moyen d'une opération sur les colonnes, prouver la relation $\det(A(t)) = f^{(n)}(t) \times (h(t))^{n+1}$.

- **6.** Tracer les graphes des fonctions $f^{(n)}$ et $d\acute{e}t(A)/h^{n+1}$ sur [0,1].
- 7. Pour tout $n \in \mathbb{N}$, montrer que $\tan^{(n)}(0)$ est un entier.

Exercice 4. (Mines-Ponts PC 2019, Emma Latron)

Une matrice stochastique est une matrice carrée à coefficients réels positifs telle que la somme des coefficients de chacune de ses lignes soit égale à 1.

- 1. Montrer que si A et B sont deux matrices stochastiques de $\mathcal{M}_n(\mathbb{R})$, alors la matrice A × B en est une aussi.
- 2. Soit A une matrice stochastique. Vérifier que 1 est une valeur propre de A et que toute valeur propre complexe de A a un module inférieur ou égal à 1.
- **3.** Trouver toutes les matrices stochastiques A de $\mathcal{M}_n(\mathbb{R})$ inversibles telles que A^{-1} soit stochastique.

Exercice 5. (Mines-Ponts PC 2019, Emma Latron)

Soit f une fonction continue sur [0,1], à valeurs réelles strictement positives. Pour tout a réel positif, on pose

$$I(a) = \int_0^1 f(t)^a dt.$$

- 1. Montrer que la fonction I est dérivable et préciser la valeur de I'(0).
- **2.** Trouver la limite quand a tend vers 0 de $I(a)^{1/a}$.

Exercice 6. (Centrale PC 2019, Hugo da Maia)

Soit A une matrice symétrique de $\mathcal{M}_n(\mathbb{R})$. On suppose que les valeurs propres de A sont strictement positives.

Étant donné un vecteur x de \mathbb{R}^n , on pose $f_{\mathcal{A}}(x) = \mathcal{X}^T \mathcal{A} \mathcal{X}$, où \mathcal{X} désigne le vecteur colonne canoniquement associé à x.

- 1. Montrer que la fonction $L(f_A): p \mapsto \max\{(p|x) f_A(x); x \in \mathbb{R}^n\}$ est bien définie.
- 2. Montrer que la fonction $L(f_A)$ est de la forme f_B pour une matrice B à préciser.

Exercice 7. (Mines-Ponts PC 2019, Lionel Herbuvaux)

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{C})$ telles que AB = 0.

Montrer que A et B ont un vecteur propre en commun.

Exercice 8. (Mines-Ponts PC 2019, Lionel Herbuvaux)

On pose
$$f(x) = \sum_{n=1}^{+\infty} \frac{\arctan(nx)}{n^2}$$
.

- 1. Montrer que la fonction f est définie et continue sur \mathbb{R} .
- **2.** Montrer que la fonction f est de classe C^1 sur $[0, +\infty[$.
- **3.** Trouver un équivalent de f'(x) quand x tend vers $+\infty$.

Exercice 9. (X-ESPCI PC 2019, Arthur Sauder)

Étant donné une matrice
$$A \in \mathcal{M}_3(\mathbb{R})$$
, on pose $e^A = \sum_{n=0}^{+\infty} \frac{A^n}{n!}$.

- 1. Dans cette question, on suppose que A est diagonalisable. Montrer que pour tout $x \in \mathbb{R}^3$, la série $\sum_{n \geq 0} \frac{A^n x}{n!}$ est convergente.
 - 2. Démontrer ce fait dans le cas général.

3. Trouver une matrice
$$B \in \mathcal{M}_3(\mathbb{R})$$
 telle que $e^B = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$.

Exercice 10. (X-ESPCI PC 2019, Arthur Sauder)

On pose
$$I(a) = \int_1^{+\infty} \frac{\ln(a+t^2)}{t^2} dt$$
. Comportement asymptotique quand a tend vers $+\infty$?

Exercice 11. (Mines-Ponts PC 2019, Mehdi Chouta)

Soit f une fonction continue sur $[1, +\infty[$, à valeurs réelles, de carré intégrable.

Montrer que
$$\frac{1}{\sqrt{x}} \int_1^x f(t) dt$$
 tend vers 0 quand x tend vers $+\infty$.

Exercice 12. (Mines-Ponts PC 2019, Mehdi Chouta)

Soient M et N deux matrices de $\mathcal{M}_{2n+1}(\mathbb{R})$. On suppose que MN est nulle et que M + M^T est inversible.

Montrer que $N + N^{T}$ n'est pas inversible.

Indications. Montrer que
$$rg(A + B) \leq rg(A) + rg(B)$$
 et $rg(A) = rg(A^{T})$.

Exercice 13. (Mines-Ponts PC 2019, Mehdi Chouta)

Soit f une fonction définie sur $[0, +\infty[$, à valeurs réelles positives, continue et intégrable.

Montrer qu'il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de $[0,+\infty[$ qui tend vers $+\infty$ telle que la suite $(x_nf(x_n))_{n\in\mathbb{N}}$ converge vers 0.

Exercice 14. (Centrale PC 2019, Mathieu Schaeffer)

On note M la matrice de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients $m_{i,j}$ sont donnés par

$$m_{i,j} = \begin{cases} 1 & \text{si } i = 1 \text{ ou } i = j+1 \\ 0 & \text{sinon.} \end{cases}$$

Déterminer si cette matrice est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$. Même question dans $\mathcal{M}_n(\mathbb{C})$.

Exercice 15. (Centrale PC 2019, Mouhamed Coulibaly)

On considère une matrice $A = (a_{i,j})_{0 \leq i,j \leq n}$ de $\mathcal{M}_{n+1}(\mathbb{R})$ et un vecteur colonne $B = (b_i)_{0 \leq i \leq n}$ de $\mathcal{M}_{n,1}(\mathbb{R})$.

- 1. Trouver une condition nécessaire et suffisante pour que l'équation AX = B, d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{R})$, admette une unique solution.
- 2. On suppose que cette condition est vérifiée et on note $X = (x_i)_{0 \le i \le n}$ l'unique solution de cette équation.

Montrer alors l'égalité $x_0 = \det(A_0)/\det(A)$, où A_0 est la matrice obtenue en remplaçant la première colonne de A par B.

3. On pose $a_0 = 1$ et $b_0 = 0$. On considère un élément (a_1, \ldots, a_n) de \mathbb{R}^n . On se donne des entiers b_1, \ldots, b_n strictement positifs et tous distincts.

On suppose qu'il existe un polynôme P tel que

$$(1 - X)^n P(X) = \sum_{k=0}^n a_k X^{b_k}.$$

Exprimer P(1) en fonction des b_k .

Exercice 16. (Centrale PC 2019, Célia Fromont)

- 1. Montrer que toute matrice de $\mathcal{M}_p(\mathbb{C})$ est la limite d'une suite de matrices diagonalisables.
- 2. Pour toute matrice A de $\mathcal{M}_p(\mathbb{C})$, prouver l'égalité $\chi_A(A) = 0$.

Commentaire. Cet exercice est non seulement très difficile, mais surtout fortement hors programme dans sa deuxième question.

Exercice 17. (Centrale Python PC, 2019, Célia Fromont)

Étant donné $\alpha > 0$, on pose $I_{\alpha} = \int_{0}^{+\infty} \frac{\sin(t)}{\sqrt{t + t^{\alpha}\cos(t)}} dt$ lorsque cette intégrale existe.

1. Nature de la série $\sum_{k \ge 1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin(t)|}{t} dt$?

En déduire la nature de $\int_{\pi}^{+\infty} \frac{|\sin(t)|}{t} dt$.

- **2.** Pour plusieurs valeurs de α dans]0,1], tracer le graphe de la fonction $x \mapsto \int_0^x \frac{\sin(t)}{\sqrt{t+t^{\alpha}\cos(t)}} dt$.
- 3. Émettre une conjecture sur I_α puis la démontrer.

4. Nature de la série
$$\sum_{k\geqslant 1} \int_{k\pi}^{(k+1)\pi} \frac{\sin(t)}{\sqrt{t+t^{\alpha}\cos(t)}} dt?$$

En déduire une expression de I_{α} sous forme de la somme d'une série alternée.

Exercice 18. (Centrale Python PC 2019, Emma Latron)

Étant donné une matrice A de $\mathcal{M}_n(\mathbb{C})$, pour tout indice $k \in [1, n]$, on pose

$$\rho_k(\mathbf{A}) = |a_{k,k}| - \sum_{\ell \neq k} |a_{k,\ell}|.$$

Dire que la matrice A est une matrice à diagonale dominante signifie que les nombres $\rho_1(A), \ldots, \rho_n(A)$ sont strictement positifs.

- 1. Soit A une matrice de $\mathcal{M}_n(\mathbb{C})$. On suppose que son noyau contient un vecteur X non nul. Montrer alors qu'il existe un indice k_0 dans [1, n] tel que $\rho_{k_0}(A) \leq 0$.
- 2. En déduire que toute matrice à diagonale dominante est inversible.
- 3. Que dire de la réciproque?
- **4.** Écrire une fonction qui prend en entrée une matrice carrée A et qui renvoie le produit des $\rho_k(A)$.

Pour quelques matrices A de $\mathcal{M}_3(\mathbb{C})$, comparer le produit des $\rho_k(A)$ avec $|\det(A)|$.

5. Émettre une conjecture puis la démontrer.

Exercice 19. (Centrale PC 2019, Lionel Herbuvaux)

On considère une matrice A de $\mathcal{M}_n(\mathbb{R})$. Pour tout $k \in \mathbb{N}$, posons $S_k(A) = \sum_{j=0}^k \frac{A^j}{j!}$.

- 1. Montrer que la suite de matrices $(S_k(A))_{k\in\mathbb{N}}$ est convergente. Sa limite est notée $\exp(A)$.
- **2.** Calculer $\exp(A)$ dans le cas $A = \begin{pmatrix} 0 & -\alpha \\ \alpha & 0 \end{pmatrix}$.

Exercice 20. (Mines-Télécom PC 2019, Auriane Delandre)

Pour tout entier $n \in \mathbb{N}^*$, on pose $u_n = \prod_{k=1}^n (2 - 3^{1/k})$.

- **1.** Montrer que la suite $(u_n)_{n\geqslant 1}$ est convergente.
- 2. Déterminer sa limite.
- **3.** Montrer qu'il existe $\alpha > 0$ tel que u_n soit équivalent à $\frac{\alpha}{n^{\ln(3)}}$ quand n tend vers $+\infty$.

Exercice 21. (ENS PC 2019, Mehdi Chouta)

Soit $P \in GL_2(\mathbb{R})$. Existe-t-il une norme N sur $\mathcal{M}_2(\mathbb{R})$ telle que

$$\forall M \in \mathcal{M}_2(\mathbb{R}), \quad N(P^{-1}MP) = N(M)?$$

Exercice 22. (Mines-Ponts PC 2019, Lola Hehn)

On lance cinq dés à six faces. Chaque dé affichant un 6 est écarté. On recommence cela jusqu'à ne plus avoir de dé et on note K la variable aléatoire égale au nombre d'étapes de cette expérience.

Pour tout $n \in \mathbb{N}$, calculer $\mathbb{P}(K \leq n)$. En déduire la loi de K.

Exercice 23. (Mines-Ponts PC 2019, Lola Hehn)

On fixe a et b dans \mathbb{R} . Pour tout $n \in \mathbb{N}^*$, on note $M_n(a, b)$ la matrice de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux valent a et les autres valent b.

Calculer $\det(M_n(a,b))$.

Exercice 24. (Mines-Ponts PC 2019, Hugo da Maia)

Résoudre l'équation différentielle $(1+t^2)y''(t) + 4ty'(t) + 2y(t) = \frac{1}{1+t^2}$.

On commencera par chercher les solutions développables en série entière de l'équation homogène associée.

Exercice 25. (Mines-Ponts PC 2019, Hugo da Maia)

Soit $T \in \mathbb{N}^*$. On note E_T l'ensemble des suites réelles T-périodiques.

On note σ l'endomorphisme $(u_n)_{n\in\mathbb{N}} \mapsto (u_{n+1})_{n\in\mathbb{N}}$ de E_T .

Cet endomorphisme est-il diagonalisable?

Exercice 26. (Mines-Ponts PC 2019, Mouhamed Coulibaly)

Pour tout $n \in \mathbb{N}^*$, on définit la fonction $f_n : x \mapsto n\left(\left(x + \frac{1}{n}\right)^3 - x^3\right)$.

- 1. Étudier la convergence simple de la suite de fonctions $(f_n)_{n\geqslant 1}$ ainsi que sa convergence uniforme.
- **2.** Soit g une fonction de classe C^2 sur \mathbb{R} . On suppose que la fonction f'' est bornée. Pour tout $n \in \mathbb{N}^*$, on définit alors la fonction

$$g_n: x \mapsto n\left(f\left(x + \frac{1}{n}\right) - f(x)\right).$$

Étudier la convergence simple de la suite de fonctions $(f_n)_{n\geqslant 1}$ ainsi que sa convergence uniforme.

Exercice 27. (Mines-Ponts PC 2019, Mathieu Schaeffer)

On considère une suite complexe $(a_n)_{n\geqslant 1}$ telle que $a_2\neq 0$. Pour tout $n\in\mathbb{N}^*$, on introduit la matrice

$$\mathbf{A}_n = \begin{pmatrix} a_1 & a_2 & \cdots & \cdots & a_n \\ a_2 & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ a_n & 0 & \cdots & \cdots & 0 \end{pmatrix}$$

et son polynôme caractéristique est noté χ_n .

- 1. Déterminer χ_2 et χ_3 .
- **2.** Montrer que χ_n est divisible par X^{n-2} .
- 3. On pose $b_n = \sum_{k=2}^n a_k^2$. Montrer alors que $\chi_n = X^{n-2}(X^2 a_1X b_n)$.

4. Selon que b_n est nul ou non, étudier la diagonalisabilité de A_n .

Exercice 28. (Mines-Ponts PC 2019, Mathieu Schaeffer)

- 1. Montrer que la fonction cosinus admet un unique point fixe dans \mathbb{R} .
- 2. Montrer qu'il n'existe pas de fonction $f: \mathbb{R} \to \mathbb{R}$ dérivable telle que $f \circ f = \cos$.

Exercice 29. (CCP PC 2019, Lola Hehn)

Pour tout $(x, y) \in \mathbb{R}^2$, on pose $f(x, y) = \operatorname{ch}(2x) - \cos(2y)$.

On considère les ensembles

$$D = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 \le 1\}$$
 et $D' = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 < 1\}.$

- 1. Pour tout t positif, montrer les inégalités $\sin(t) \leq t$ et $\operatorname{sh}(t) \geq t$.
- **2.** Montrer que f admet un minimum nul sur \mathbb{R}^2 .
- 3. Montrer que D est fermé et borné. En déduire que f admet un maximum sur D.
- 4. Montrer que D' est un ouvert et déterminer les points critiques de f dans D'.
- **5.** En déduire qu'il existe $t_0 \in [0, \pi/2]$ tel que le maximum de f sur D soit égal à $f(\cos(t_0), \sin(t_0))$.
- **6.** Étudier les variations sur $[0, \pi/2]$ de la fonction $g: \theta \mapsto f(\cos(\theta), \sin(\theta))$. Conclure.

Exercice 30. (CCP PC 2019, Léo André)

Pour tout t > 0, on pose $\varphi(t) = \frac{1}{t} e^{-1/t}$.

- 1. Montrer que $\varphi(t)$ tend vers 0 quand t tend vers 0 par valeurs strictement positives.
- **2.** En déduire que pour tout x > 0, l'intégrale $\int_0^x \varphi(t) dt$ existe. On la note h(x).
- **3.** Montrer que les solutions de $x^2y'(x) + y(x) = x$ sur $]0, +\infty[$ sont les fonctions de la forme $x \mapsto e^{1/x}(h(x) + k)$, où k est une constante réelle.
 - **4.** Pour tout x > 0, montrer l'égalité $e^{1/x}h(x) = x \int_0^{+\infty} \frac{e^{-u}}{1+xu} du$.

On pourra considérer le changement de variable $t = \frac{x}{1+xu}$.

- **5.** Montrer que la fonction $f: x \mapsto \int_0^{+\infty} \frac{e^{-u}}{1+xu} du$ est définie et continue sur $[0, +\infty[$.
- **6.** Montrer que $g: x \mapsto xf(x)$ est solution de $x^2y'(x) + y(x) = x$ sur $[0, +\infty[$ et que c'est la seule.
- 7. Montrer que g est de classe \mathcal{C}^{∞} sur $[0, +\infty[$.
- **8.** Trouver la limite de g en $+\infty$.

Exercice 31. (CCP PC 2019, Léo André)

On note u le vecteur (1,0,-3) de \mathbb{R}^3 , que l'on munit de son produit scalaire canonique. On note p le projecteur orthogonal sur la droite $\operatorname{Vect}(u)$ et q le projecteur orthogonal sur l'orthogonal de cette droite.

8

- 1. Déterminer la matrice représentative de p dans la base canonique de \mathbb{R}^3 .
- **2.** Déterminer une relation entre p et q.
- **3.** En déduire la matrice représentative de q dans la base canonique de \mathbb{R}^3 .

Exercice 32. (CCP PC 2019, Hugo da Maia)

Soit E un \mathbb{C} -espace vectoriel de dimension finie. Soient u et v deux endomorphismes de E.

1. Montrer que si 0 est une valeur propre de $u \circ v$, alors c'est aussi une valeur propre de $v \circ u$.

Dans les questions 2 et 3 (seulement), on suppose que u et v sont bijectifs.

- **2.** Soit $\alpha \in \mathbb{R}$.
- **2.a.** Exprimer $\det(\alpha v v \circ u \circ v)$ en fonction $\det(v)$ et $\det(x)$ et $\det(x)$. Exprimer ce même nombre en fonction $\det(v)$ et $\det(x)$ et \det

En déduire que $u \circ v$ et $v \circ u$ ont les mêmes valeurs propres.

2.b. Soit λ une valeur propre de $u \circ v$ (et de $v \circ u$, d'après 2.a). On note E_{λ} l'espace propre de $u \circ v$ relativement à cette valeur propre et E'_{λ} l'espace propre de $v \circ u$ relativement à cette valeur propre.

Montrer l'inclusion $v(E_{\lambda}) \subset E'_{\lambda}$. On admet l'inclusion $u(E'_{\lambda}) \subset E_{\lambda}$.

- 3. Montrer que \mathcal{E}_{λ} et \mathcal{E}'_{λ} ont la même dimension. En déduire que la diagonalisabilité de $u \circ v$ implique celle de $v \circ u$.
- 4. On revient au cas général et on suppose qu'il existe $\beta \in \mathbb{C}^*$ tel que $\beta \mathrm{Id}_{\mathrm{E}} u \circ v$ soit bijectif. On note alors w sa bijection réciproque.

Montrer l'égalité $(\beta \operatorname{Id}_{E} - v \circ u) \circ (\operatorname{Id}_{E} + v \circ w \circ u) = \beta \operatorname{Id}_{E}$ et en déduire que $\beta \operatorname{Id}_{E} - v \circ u$ est bijectif.

5. Montrer finalement que $u \circ v$ et $v \circ u$ ont les mêmes valeurs propres.

Exercice 33. (CCP PC 2019, Hugo da Maia)

On pose
$$f(x) = \int_x^{2x} \frac{e^{-t}}{t} dt$$
.

- **1.** Montrer que f est définie et dérivable sur $]0, +\infty[$.
- ${\bf 2.}$ Montrer que f est prolongeable par continuité en 0.

Exercice 34. (Mines-Télécom PC 2019, Smaïl Drissi Kaitouni)

Soit E un espace euclidien. Soit f un endomorphisme de E. On fait l'hypothèse

$$\forall x \in E, \quad (x|f(x)) = 0.$$

- 1. Pour tout couple (x, y) de vecteurs de E, montrer l'égalité (x|f(y)) = -(y|f(x)).
- 2. Montrer l'égalité $\operatorname{Ker}(f) = \operatorname{Im}(f)^{\perp}$.
- **3.** Montrer que le spectre de f est inclus dans $\{0\}$.
- 4. L'endomorphisme f est-il diagonalisable?

Exercice 35. (Mines-Télécom PC 2019, Smaïl Drissi Kaitouni)

Soit X une variable aléatoire de loi $\mathcal{P}(\lambda)$. Calculer $\mathbb{E}\left(\frac{1}{X+1}\right)$.

Exercice 36. (CC INP PC 2019, Mathieu Schaeffer)

Déterminer le rayon de convergence et la somme de la série entière $\sum_{n\geqslant 1} (-1)^n \frac{x^{2n-1}}{2n}$.

Exercice 37. (X-ESPCI PC 2019, Mehdi Chouta)

Soit $f \in \mathcal{C}^2(\mathbb{R}^n, \mathbb{R})$. On note B la boule unité ouverte de \mathbb{R}^n pour la norme euclidienne et S la sphère unité.

 ${\bf 1.}$ On suppose que le la placien de f est strictement positif. Pour tout vecteur x de B, montrer l'inégalité

$$f(x) < ||f||_{\infty,S}$$
.

 ${f 2.}$ On suppose que le laplacien de f est nul. Pour tout vecteur x de B, montrer l'encadrement

$$\min_{\mathbf{S}} f \leqslant f(x) \leqslant \max_{\mathbf{S}} f.$$

3. Donner un exemple de fonction dont le laplacien est strictement positif.

Exercice 38. (X-ESPCI PC 2019, Mehdi Chouta)

On considère l'endomorphisme $\varphi : M \mapsto M^T$ de $\mathcal{M}_n(\mathbb{R})$. Calculer le déterminant de φ .

Exercice 39. (X-ESPCI PC 2019, Mehdi Chouta)

Soient a et b deux éléments de $]0, +\infty[$ tels que a+b=1. On considère la matrice

$$\mathbf{M} = \begin{pmatrix} a & b & 0 \\ 0 & a & b \\ b & 0 & a \end{pmatrix}.$$

Trouver une condition nécessaire et suffisante pour que la suite $(M^n)_{n\in\mathbb{N}}$ possède une limite et déterminer cette limite.

Exercice 40. (Centrale PC 2019, Lucas Venner et Arthur Sauder)

Soient f et g deux endomorphismes d'un espace vectoriel E de dimension finie. On fait les hypothèses suivantes

$$f^2 = \mathrm{Id}_{\mathrm{E}}, \quad g^2 = \mathrm{Id}_{\mathrm{E}}, \quad f \circ g = g \circ f.$$

Montrer que f et g admettent une base commune de diagonalisation.

Exercice 41. (CC INP PC 2019, Lucas Venner)

On pose
$$S(x) = \sum_{n=0}^{+\infty} {2n \choose n} x^n$$
.

- 1. Rayon de convergence? On le note R.
- **2.** Pour tout x dans]-R, R[, prouver la relation S'(x)(1-4x)-2S(x)=0.
- **3.** En déduire une expression de S(x).

Exercice 42. (CC INP PC 2019, Lucas Venner)

On pose
$$A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$.

- a. Montrer que A et B sont diagonalisables.
- **b.** Montrer que A + B n'est pas diagonalisable.
- c. On note T l'ensemble des matrices triangulaires inférieures strictes de $\mathcal{M}_n(\mathbb{R})$. Montrer que T est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ et donner sa dimension.
 - d. Quelles sont les matrices de T qui sont diagonalisables?
- e. Trouver un sous-espace vectoriel non trivial de $\mathcal{M}_n(\mathbb{R})$ dont tous les éléments sont des matrices diagonalisables.
- **f.** Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ dont tous les éléments sont des matrices diagonalisables. Déterminer l'intersection $F \cap T$. En déduire l'inégalité

$$\dim(\mathbf{F}) \leqslant \frac{n(n+1)}{2}.$$

- g. Prouver que le cas d'égalité peut être réalisé.
- **h.** Montrer que toute matrice diagonalisable appartient à un sous-espace vectoriel de dimension n(n+1)/2.

Exercice 43. (Mines-Télécom PC 2019, Joachim Stavciuc)

On définit $f: \mathbb{R} \to \mathbb{R}$ par f(0) = 0 et $f(x) = x^3 \sin(1/x)$ si $x \neq 0$.

Déterminer un développement limité de f en 0 à un ordre aussi grand que possible.

Exercice 44. (Mines-Télécom PC 2019, Joachim Stavciuc)

Soient E et F deux espaces vectoriels de dimension finie. Soit W un sous-espace vectoriel de E.

On pose
$$\mathcal{A} = \{ u \in \mathcal{L}(E, F) ; W \subset Ker(u) \}.$$

- 1. Montrer que \mathcal{A} est un sous-espace vectoriel de $\mathcal{L}(E,F)$.
- 2. Exprimer la dimension de \mathcal{A} en fonction des dimensions de E, F, W.

Exercice 45. (CC INP PC 2019, Auriane Delandre)

Soit $\alpha \in \mathbb{R}$. Étudier la nature de la série de terme général $a_n = \ln\left(1 + \frac{1}{n^{\alpha}}\right)$.

Étudier la nature de la série de terme général $b_n = \ln\left(\frac{\sinh(1/n)}{\sin(1/n)}\right)$.

Exercice 46. (Mines-Télécom PC 2019, Enzo Rigoni)

- **1.** À l'aide de l'équivalent de Stirling, montrer que $\ln(n!)$ est équivalent à $n \ln(n)$ quand n tend vers $+\infty$.
 - **2.** On pose $u_n = \frac{1}{\ln(n!)} \sum_{k=1}^n \frac{1}{k}$. Nature de la série de terme général u_n ?

Exercice 47. (Mines-Télécom PC 2019, Julie Paysant)

Ensemble de définition de la fonction $S: x \mapsto \sum_{n=2}^{+\infty} x^n \sin\left(\frac{1}{(-1)^n + \sqrt{n}}\right)$.

Exercice 48. (Mines-Télécom PC 2019, Julie Paysant)

Soit un entier $n \ge 2$. Pour tout polynôme P de $\mathbb{R}_n[X]$, on pose $f(P) = (X^2 - 1)P'(X) - nXP(X)$.

- 1. Montrer que f est un endomorphisme de $\mathbb{R}_n[X]$.
- **2.** Montrer que f est un automorphisme de $\mathbb{R}_n[X]$.

Exercice 49. (CC INP PC 2019, Auriane Delandre, Hugo Pisaroni)

Soit A une matrice symétrique de $\mathcal{M}_n(\mathbb{R})$. On définit l'application

$$f_{\rm A}:{\rm M}\mapsto{\rm AM}-{\rm MA}$$

de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que f_A est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 2. Soient λ et μ deux valeurs propres de A, ainsi que des vecteurs propres X et Y associés respectivement à ces deux valeurs propres.

Montrer que $X \cdot Y^T$ est un vecteur propre de f_A et préciser la valeur propre associée.

- **3.** Montrer qu'il existe une base (X_1, \ldots, X_n) de $\mathcal{M}_{n,1}(\mathbb{R})$ constituée de vecteurs propres de A telles que pour tout couple (i,j) d'indices distincts entre 1 et n, on ait $X_i^T \cdot X_j = 0$.
 - **4.** Montrer que $\dim(\operatorname{Ker}(f_{\mathbf{A}}))$ vaut au moins n.
 - **5.** Montrer que $f_{\rm A}$ est diagonalisable.
- **6.** Dans cette question, la matrice A a tous ses coefficients égaux à 1. Déterminer ses éléments propres.

Exercice 50. (CC INP PC 2019, Hugo Pisaroni)

On considère l'équation différentielle (E) suivante sur]-1,1[

$$(1 - x2)y''(x) + xy'(x) + 4y(x) = x.$$

Étant donné une fonction y de classe C^2 sur] -1,1[, on définit sur]0, π [la fonction

$$z: y \mapsto y(\sin(t)).$$

- 1. Exprimer z' et z''.
- 2. Montrer que y est solution de (E) sur] -1,1[si et seulement si z est solution sur] $0,\pi[$ de l'équation différentielle (F) suivante

$$z''(t) + 4z(t) = \sin(t).$$

3. Résoudre (F) puis (E).

Exercice 51. (CC INP PC 2019, Smaïl Drissi Kaitouni)

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 ((1-t)e^t)^n dt$.

Pour tout $n \in \mathbb{N}$, on introduit la fonction $P_n : \lambda \mapsto e^{-\lambda} \sum_{k=0}^n \frac{\lambda^k}{k!}$.

- 1. Montrer que l'intégrale $\int_0^{+\infty} e^{-t^2} dt$ converge. On admet qu'elle vaut $\sqrt{\pi}/2$.
- **2.** Montrer que la fonction $t \mapsto \ln(1-t) + t + \frac{t^2}{2}$ est développable en série entière au voisinage de 0 et préciser son développement.
 - **3.** En déduire l'inégalité $\ln(1-t) + t \leqslant -\frac{t^2}{2}$ pour tout t dans [0,1[.
 - **4.** Pour tout $n \in \mathbb{N}^*$, en déduire l'inégalité $I_n \leqslant \int_0^1 e^{-nt^2/2} dt$ puis $I_n \leqslant \sqrt{\frac{\pi}{2n}}$.
- 5. À l'aide de la formule de Taylor avec reste intégral, prouver pour tout $n \in \mathbb{N}$ l'égalité $1-P_n(n) = \frac{n^{n+1}}{n!} e^{-n} I_n$.
- **6.** Pour tout $n \in \mathbb{N}^*$, on se donne une variable aléatoire X_n suivant la loi de Poisson $\mathcal{P}(n)$. Obtenir une majoration de $\mathbb{P}(X_n < n)$ puis trouver la limite de ce majorant quand n tend vers $+\infty$.

Exercice 52. (Centrale Python PC 2019, Mehdi Chouta)

On donne la valeur $\int_0^{+\infty} e^{-u^2} du = \sqrt{\pi}/2$.

- 1. Calculer l'intégrale $\int_0^{+\infty} u^2 e^{-u^2} du$.
- **2.** Soient X et Y deux variables aléatoires indépendantes suivant la loi $\mathcal{P}(\lambda)$. Exprimer $\mathbb{P}(X = Y)$ sous forme d'une somme. La valeur de cette somme est notée p_{λ} .
- 3. Écrire une fonction d'en-tête proba(lam) qui simule 10^4 fois les variables aléatoires X et Y et renvoie une estimation de p_{λ} .
- **4.** On définit la fonction $\varphi: \lambda \mapsto \sqrt{\pi \lambda} p_{\lambda}$. Tracer le graphe de cette fonction sur [0.05, 10] puis conjecturer un équivalent de p_{λ} lorsque λ tend vers $+\infty$.
 - 5. Pour tout $k \in \mathbb{N}$, on introduit l'intégrale $\int_0^1 \frac{t^{2k}}{\sqrt{1-t^2}} \, \mathrm{d}t$.

Écrire une fonction d'en-tête $\mathbf{w}(\mathbf{k})$ qui renvoie la valeur de \mathbf{W}_k puis superposer les valeurs de $((2k+1)(\mathbf{W}_k-\mathbf{W}_{k+1}))_{0\leqslant k\leqslant 20}$ et de $(\mathbf{W}_{k+1})_{0\leqslant k\leqslant 20}$.

Émettre une conjecture puis la prouver.

- **6.** Pour tout x réel, on pose $I(x) = \int_0^1 \frac{\operatorname{ch}(xt)}{\sqrt{1-t^2}} dt$. Démontrer l'identité $I(x) = \sum_{k=0}^{+\infty} \frac{x^{2k}}{(2k)!} W_k$.
- 7. Exprimer p_{λ} à l'aide de la fonction I.
- 8. Trouver un équivalent de $\int_0^1 \frac{e^{-xu}}{\sqrt{u}} du$ quand x tend vers $+\infty$.

Exercice 53. (Mines-Ponts PC 2019, Célia Fromont)

On note I la valeur de l'intégrale $\int_1^{+\infty} \frac{\ln(t)}{t^2} dt$.

- 1. Montrer l'existence de I et et calculer sa valeur.
- 2. En déduire la nature de la série $\sum_{n\geqslant 1} \frac{\ln(n)}{n^2}$.
- **3.** On pose $f(x) = \sum_{n=2}^{+\infty} \frac{\sqrt{x} \ln(n)}{1 + xn^2}$.
 - **3.a.** Montrer que la fonction f est définie sur $]0, +\infty[$.
 - **3.b.** Trouver la limite de f(x) quand x tend vers $+\infty$ puis un équivalent.
 - **3.c.** Montrer que $\int_1^{+\infty} \frac{\ln(t)\sqrt{x}}{1+xt^2} dt$ est équivalent à $-\frac{\pi}{4}\ln(x)$ quand x tend vers 0.
 - **3.d.** En déduire un équivalent de f(x) quand x tend vers 0.

Exercice 54. (Mines-Ponts PC 2019, Célia Fromont)

On considère la matrice
$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
.

- 1. Déterminer le spectre de la matrice J. Cette matrice est-elle diagonalisable?
- **2.** On considère quatre suites réelles $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ et $(d_n)_{n\in\mathbb{N}}$ vérifiant les relations de récurrence

$$a_{n+1} = \frac{a_n + 3b_n}{4}, \quad b_{n+1} = \frac{b_n + 3c_n}{4}, \quad c_{n+1} = \frac{c_n + 3d_n}{4}, \quad d_{n+1} = \frac{d_n + 3a_n}{4}.$$

Ces suites convergent-elles? Si oui, préciser leur limite.

Exercice 55. (CC INP PC 2019, Smaïl Drissi Kaitouni)

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On fait les hypothèses

$$A^2 = A$$
 et $A^T = A$.

- 1. Montrer que rg(A) = tr(A).
- 2. Montrer que $\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{i,j}| \leq n \sqrt{\operatorname{rg}(A)}$.

Exercice 56. (Mines-Ponts PC 2019, Arthur Sauder)

On considère une suite réelle $(u_n)_{n\in\mathbb{N}}$ telle que $u_0=1$ et

$$\forall n \in \mathbb{N}^*, \quad u_n \in]0,1[.$$

Pour tout
$$n \in \mathbb{N}$$
, on pose $p_n = \prod_{k=0}^n u_k$.

- **1.** Montrer que la suite $(p_n)_{n\in\mathbb{N}}$ converge et que sa limite, notée ℓ , est dans [0,1[.
- **2.** On suppose qu'il existe $n_0 \in \mathbb{N}$ et $k \in [0, 1]$ tels que

$$\forall n \geqslant n_0, \quad u_n \leqslant k.$$

- **a.** Montrer que $\ell = 0$.
- **b.** Que dire de la suite $(p_n)_{n\in\mathbb{N}}$ si la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante?
- **3.** Trouver un exemple de suite $(u_n)_{n\in\mathbb{N}}$ tel que $\ell>0$.
- **4.** On considère une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On suppose que X_0 est constante, égale à 1 et que X_1 suit la loi de Bernoulli $\mathcal{B}(u_1)$. Pour tout entier $n \geq 2$, on suppose que la variable aléatoire X_n est une variable de Bernoulli telle que

$$\mathbb{P}(X_n = 1 | X_{n-1} = 0) = 0$$
 et $\mathbb{P}(X_n = 1 | X_{n-1} = 1) = u_n$.

- **a.** Déterminer la loi de X_n .
- **b.** Les X_n sont-elles indépendantes?
- **c.** On pose $A = \bigcap_{n \in \mathbb{N}} [X_n = 1]$. Calculer la probabilité de A.
- **5.** Pour tout $\omega \in \Omega$, on pose $Y(\omega) = \max\{n \in \mathbb{N}; X_n(\omega) = 1\}$ si un tel maximum existe et $Y(\omega) = -1$ sinon.

Comparer Y et $\sum_{n=0}^{+\infty} X_n$. Calculer $\mathbb{E}(Y)$ si elle existe.

(La dernière question me paraît bizarre. Il faut que j'y réfléchisse.

Exercice 57. (Mines-Ponts PC 2019, Arthur Sauder)

On fixe un entier $n \geq 2$. On considère des matrices A, B, N de $\mathcal{M}_n(\mathbb{C})$.

- 1. On suppose que A et B commutent. Factoriser $A^n B^n$.
- 2. On suppose que N est nilpotente (l'une de ses puissances est nulle). Montrer que la matrice $I_n N$ est inversible.
- 3. On suppose que N est nilpotente et qu'elle commute avec A. Montrer que A N est inversible si et seulement si A est inversible.

Exercice 58. (CC INP PC 2019, Aurélie Lambreschi)

On note (E) l'équation différentielle $2(x-x^2)y'' + (x-2)y' - y = 0$.

1. Montrer que la fonction $y_0: x \mapsto x-2$ est solution de (E) sur \mathbb{R} .

Dans les questions 2 et 3, la lettre I désigne indifféremment l'intervalle]1,2[ou $]2,+\infty[$.

2. Soit y une fonction deux fois dérivable sur I. Pour tout x dans I, on pose

$$z(x) = \frac{y(x)}{x - 2}.$$

Montrer que y est solution de (E) sur I si, et seulement si, la fonction z' est solution sur I d'une équation différentielle linéaire d'ordre 1 à déterminer.

- **3.** On définit la fonction $\phi: x \mapsto \frac{(x-1)^{1/2}}{x-2}$ sur l'intervalle I.
- **3.a.** Montrer que ϕ est dérivable sur I et calculer sa dérivée.

3.b. Résoudre (E) sur I. On pourra utiliser le calcul suivant

$$\frac{4-3x^2}{x(x-1)(x-2)} = \frac{2}{x} - \frac{1}{x-2} - \frac{4}{x-2}.$$

- **4.** Résoudre (E) sur $]1, +\infty[$.
- 5. Résoudre (E) sur]0,1[puis sur $]0,+\infty[$.

Exercice 59. (CC INP PC 2019, Aurélie Lambreschi)

Soit u un endomorphisme d'un espace vectoriel E de dimension finie. On suppose que $u^3 = u$.

- **a.** Montrer que $E = Ker(u) \oplus Im(u)$.
- **b.** On note v l'endomorphisme de Im(u) induit par u. Montrer que v est une symétrie.
- \mathbf{c} . En déduire que u est diagonalisable.

Exercice 60. (CC INP PC 2019, Julie Paysant)

On pose
$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- 1. Montrer que B n'est pas diagonalisable.
- **2.** Trouver $a \in \mathbb{R}$ tel que la matrice $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ a & 0 & 1 \end{pmatrix}$ soit diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- **3.** On se donne une matrice $A \in M_n(\mathbb{C})$ et on pose $B = \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix}$.
 - a. Montrer que si A est inversible, alors B l'est aussi.
 - b. Montrer que si A est diagonalisable, alors B l'est aussi.
- **4.** Justifier que toute matrice de $\mathcal{M}_2(\mathbb{C})$ est semblable à une matrice de la forme $\begin{pmatrix} \alpha & \beta \\ 0 & \gamma \end{pmatrix}$.

(À compléter.)

Exercice 61. (Centrale PC 2019, Julie Paysant)

Soit a > 0. On considère une fonction f de classe \mathcal{C}^{∞} sur]-a,a[et on suppose que pour tout $n \in \mathbb{N}$, la fonction $f^{(n)}$ est positive sur [0,a[.

- 1. Montrer que la série de Taylor de f converge simplement sur [0, a[(majorer les sommes partielles) puis sur]-a, a[.
 - **2.** On pose $R_n(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$.
 - a. Soient x et y dans [0, a[tels que x < y. Pour tout $n \in \mathbb{N}$, prouver l'inégalité

$$R_n(x) \leqslant \left(\frac{x}{y}\right)^n R_n(y).$$

- **b.** En déduire que la fonction f est développable en série entière sur [0, a[.
- 3. Montrer que la fonction tangente est développable en série entière sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$.

Exercice 62. (CC INP PC 2019, Mehdi Chouta)

On note F le sous-ensemble de $\mathcal{M}_2(\mathbb{R})$ constitué des matrices triangulaires supérieures.

- 1. Montrer que F est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ stable par produit.
- **2.** Dans cette question et les suivantes, on note F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ de dimension $n^2 1$ stable par produit qui ne contient pas I_n .
 - **a.** Montrer la relation $E_{i,j}E_{j,\ell}=E_{i,\ell}$. Que vaut $E_{i,j}E_{k,\ell}$ si $j\neq k$?
 - **b.** Montrer que F est $\text{Vect}(I_n)$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$.
- **3.** On note p la projection sur F parallèlement à $Vect(I_n)$.
 - **a.** Montrer l'identité p(MN) = p(M)p(N).
 - **b.** Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M^2 \in F$. Montrer que M appartient à F.
- 4. Montrer que les $\mathbf{E}_{i,j}$ sont dans F. En déduire une contradiction. Qu'a-t-on démontré ?
- **5.** On note F l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ de traces nulles.
 - a. Montrer que F est un sous-espace de $\mathcal{M}_n(\mathbb{R})$ et calculer sa dimension.
 - b. Montrer de deux manières que F n'est pas stable par produit.

Exercice 63. (CC INP PC 2019, Mehdi Chouta)

Pour tout $n \in \mathbb{N}$ et tout x > 0, on pose $f_n(x) = \frac{\sin(nx)}{nx + x\sqrt{x}}$.

- 1. Montrer que les f_n sont intégrables sur $]0, +\infty[$.
- **2.** Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{+\infty} f_n(x) dx$. Étudier la convergence de la suite $(I_n)_{n \in \mathbb{N}}$.

Exercice 64. (CC INP 2019, Mehdi Chouta)

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{C})$ telles que AB = A + B. Montrer que A et B commutent.

Exercice 65. (Centrale PC 2019, Mehdi Chouta)

On fixe a dans]0,1[. On note E l'espace vectoriel des fonctions continues sur [-a,a], à valeurs réelles, et on le munit de sa norme infinie, notée N_{∞} . On note F le sous-espace vectoriel de E constitué des fonctions polynomiales.

Pour tout x dans [-a, a], on pose $f(x) = \frac{1}{1-x}$ et

$$\forall n \in \mathbb{N}, \quad f_n(x) = \sum_{k=0}^n x^k.$$

1. Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge vers f pour la norme N_{∞} .

- 2. Le sous-espace vectoriel F est-il fermé dans E pour cette norme?
- 3. Soit $f \in E$. On suppose que f est de classe \mathcal{C}^{∞} et qu'il existe une constante M telle que

$$\forall n \in \mathbb{N}, \quad \forall x \in [-a, a], \quad |f^{(n)}(x)| \leq M.$$

Montrer que f est un point adhérent à F.

4. Soit $p \in \mathbb{N}$. Soit $(g_n)_{n \in \mathbb{N}}$ une suite de fonctions polynomiales de degré au plus p. On suppose que cette suite converge vers un élément g de E pour la norme N_{∞} .

Montrer alors que g est une fonction polynomiale.

5. (Ajout.) Même question avec seulement de la convergence simple.

Exercice 66. (CC INP PC 2019, Joséphine Prud'homme)

Soit E un espace euclidien. Soit a un vecteur unitaire de E. Pour tout x de E, on pose

$$f(x) = x - (a|x)a.$$

- **1.** Déterminer Ker(f Id) et Ker(f + Id).
- **2.** Reconnaître f.

Exercice 67. (TPE/EIVP PC 2019, Joséphine Prud'homme)

Montrer l'égalité

$$\int_0^{+\infty} \frac{x}{e^x - 1} \, dx = \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

après avoir justifié l'existence de ces nombres.

Exercice 68. (TPE/EIVP PC 2019, Joséphine Prud'homme)

Soit un entier $n \ge 2$.

- 1. Pour tout couple (A, B) de matrices de $\mathcal{M}_n(\mathbb{R})$, prouver l'égalité $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- **2.** Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que l'égalité $\operatorname{tr}(A^T \cdot A) = 0$ équivaut à A = 0.
- 3. Montrer qu'il n'existe pas de matrices A et B de $\mathcal{M}_n(\mathbb{R})$ telles que $AB BA = I_n$.
- **4.** Soient A et B dans $\mathcal{M}_n(\mathbb{R})$ telles que AB BA = A. Montrer que A n'est pas inversible.

Exercice 69. (Centrale PC 2019, Bilal Ounejjar)

On définit la fonction $f:(x,y)\mapsto x^4+y^4-2(x-y)^2$ de \mathbb{R}^2 dans \mathbb{R} .

- 1. Étudier les éventuels extremums de f sur \mathbb{R}^2 .
- 2. Étudier les extremums de f sur la boule unité fermée de \mathbb{R}^2 .

Exercice 70. (X-ESPCI PC 2019, Bilal Ounejjar)

On note E l'espace des endomorphismes de $\mathcal{M}_n(\mathbb{R})$ qui commutent avec la transposition.

Déterminer la dimension de E.

Exercice 71. (CC INP PC 2019, Marion Pavaux)

Pour tout t réel, on pose

$$x(t) = \int_0^t \frac{du}{\sqrt{1 + u + u^3}}$$
 et $y(t) = \int_0^t \frac{du}{\sqrt{1 + u^3}}$.

On note C la courbe paramétrée par x et y.

1. Pour tout élément (a, b, c, d) de \mathbb{R}^4 , prouver l'inégalité

$$ac + bd \leq \sqrt{a^2 + b^2} \times \sqrt{c^2 + d^2}$$
.

- **2.** Montrer que les fonctions x et y sont de classe \mathcal{C}^{∞} sur \mathbb{R} .
- 3. Exprimer les dérivées de x et de y. En déduire que \mathcal{C} est une courbe régulière.
- 4. Montrer que x et y ont des limites finies en $+\infty$. Elles sont notées respectivement a et b.
- 5. Déterminer une équation de la tangente à $\mathcal C$ en l'origine.
- **6.** Trouver la limite de y'/x' en $+\infty$. Cette limite est notée ℓ .
- 7. Trouver une équation de la droite de pente ℓ passant par le point (a,b).
- 8. Étudier la position de \mathcal{C} par rapport aux deux droites précédentes.

Exercice 72. (CC INP PC 2019, Marion Pavaux)

On note j le nombre complexe $e^{i2\pi/3}$. Soit $A \in \mathcal{M}_2(\mathbb{C})$.

On suppose que A et j A sont semblables.

- 1. Pour toute valeur propre λ de A, montrer que j λ est aussi une valeur propre de A.
- **2.** En déduire l'égalité $Sp(A) = \{0\}.$
- **3.** Montrer que A^2 est la matrice nulle.

Question subsidiaire 1. Montrer que si A² est la matrice nulle, alors A est semblable à j A.

Question subsidiaire 2. Ces déductions sont-elles encore vraies dans $\mathcal{M}_3(\mathbb{C})$?

Exercice 73. (Centrale PC 2019, Marion Pavaux)

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{C})$ telles que AB – BA = A.

- **1.** Pour tout $k \in \mathbb{N}$, montrer l'égalité $A^kB BA^k = kA^k$.
- **2.** On définit l'endomorphisme $\varphi: M \mapsto MB BM$ de $\mathcal{M}_n(\mathbb{C})$.

En considérant les éléments propres de φ , montrer que A est nilpotente et en déduire son spectre.

Question subsidiaire. Les matrices nilpotentes forment-elles un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$?

Exercice 74. (Mines-Ponts PC 2019, BEOS 4901-1)

Soit $n \in \mathbb{N}^*$. On note D la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ de coefficients diagonaux $1, 2, \ldots, n$.

Trouver toutes les matrices qui commutent avec D.

Exercice 75. (Mines-Ponts PC 2019, BEOS 4901-2)

Étudier la nature de l'intégrale $\int_0^{+\infty} \frac{\sin(t)}{\sqrt{t} + \sin(t)} dt$.

Exercice 76. (X-ESPCI PC 2019, BEOS 4842)

Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que $P(X+1) - P(X) \in Vect(X^n)$.