Chapitre 15 — espaces euclidiens (bis)

1 Isométries vectorielles

1.1 Définition et caractérisation

Une isométrie vectorielle d'un espace euclidien est un endomorphisme qui préserve la norme. On parle aussi d'automorphisme orthogonal.

Caractérisation : ça équivaut à préserver le produit scalaire ; ça équivaut à envoyer une base orthonormale sur une base orthonormale. Stabilité par composition, par passage à l'inverse.

Groupe orthogonal O(E). Exemple: les symétries orthogonales.

Si un sous-espace vectoriel F est stable par une isométrie vectorielle, alors F^{\perp} est stable également.

1.2 Matrices orthogonales

Ce sont les matrices de $\mathcal{M}_n(\mathbb{R})$ canoniquement associées aux isométries vectorielles de $\mathcal{M}_{n,1}(\mathbb{R})$.

Caractérisation : ce sont les matrices de passage entre deux bases orthonormales de $\mathcal{M}_{n,1}(\mathbb{R})$ (ou de n'importe quel espace euclidien de dimension n); ce sont les matrices dont les colonnes forment une base orthonormale

Caractérisation : ce sont les matrices M de $\mathcal{M}_n(\mathbb{R})$ vérifiant la relation $M \times M^T = I_n$ (ou, de manière équivalente, la relation $M^T \times M = I_n$. Groupe orthogonal O(n), également noté $O_n(\mathbb{R})$.

Caractérisation matricielle des automorphismes orthogonaux.

Déterminant des matrices orthogonales. Groupe spécial orthogonal SO(n), également noté $SO_n(\mathbb{R})$.

Orientation d'un espace vectoriel.

1.3 Isométries vectorielles d'un plan euclidien

Matrices de $O_2(\mathbb{R})$, de $SO_2(\mathbb{R})$. Commutativité de $SO_2(\mathbb{R})$. Classification des isométries vectorielles de \mathbb{R}^2 . Mesure de l'angle d'une rotation d'un plan euclidien orienté. Écriture complexe d'une rotation.

1.4 Folklore

Inégalités $|a_{i,j}| \leq 1$ et $\left| \sum_{1 \leq i,j \leq n} a_{i,j} \right| \leq 1$. Les valeurs propres complexes sont de module 1. L'ensemble $O_n(\mathbb{R})$ est fermé et borné dans $\mathcal{M}_n(\mathbb{R})$.

2 Endomorphismes symétriques

2.1 Définition et caractérisation

Définition d'un endomorphisme symétrique. Caractérisation par la représentation matricielle dans une base orthonormale.

Projections orthogonales. Symétries orthogonales.

Si un sous-espace vectoriel F est stable par un endomorphisme symétrique, alors F^{\perp} l'est aussi.

2.2 Réduction des matrices symétriques

Les espaces propres d'un endomorphisme symétrique sont deux à deux orthogonaux.

Les valeurs propres complexes d'une matrice symétrique réelle sont réelles.

Le polynôme caractéristique d'un endomorphisme symétrique est scindé sur \mathbb{R} .

Théorème spectral : tout endomorphisme symétrique d'un espace euclidien admet une base orthonormale de vecteurs propres.

Traduction matricielle : pour toute matrice symétrique réelle A, il existe une matrice orthogonale P telle que la matrice $P^{-1}AP$ soit diagonale.

3 Compléments

3.1 Théorème de Courant-Fischer

Expression des valeurs propres d'un endomorphisme symétrique au moyen du produit scalaire. Expression de (x|f(x)) au moyen d'une base orthonormale de diagonalisation. Variante $X^T \cdot A \cdot X$. Principe du minimax.

3.2 Matrices symétriques positives

Définition d'un endomorphisme symétrique positif. Caractérisation par les valeurs propres.

Variante matricielle.

Racine carrée d'une matrice symétrique positive.

Matrice symétrique définie positive.

3.3 Décomposition polaire

Pour toute matrice $A \in GL_n(\mathbb{R})$, il existe un unique couple $(S, O) \in \mathcal{S}_n^{++}(\mathbb{R}) \times O_n(\mathbb{R})$ tel que A = SO.

Programme de colles nº 10 (vendredis 6 et 13 mars 2020)

Tout ce chapitre et révisions sur le chapitre 2 (bref, tout ce qui a trait aux produits scalaires). Il est possible aussi d'évoquer le chapitre 5 (espaces vectoriels normés).

Questions de cours

- 1. Montrer que les valeurs propres d'une matrice symétrique réelle sont réelles.
- 2. Montrer que les espaces propres d'un endomorphisme symétrique sont deux à deux orthogonaux.
- 3. Montrer que les valeurs propres complexes d'une matrice orthogonale sont de module 1.
- 4. Montrer que les projecteurs orthogonaux sont exactement les projecteurs qui sont des endomorphismes symétriques.
- 5. Montrer que $O_n(\mathbb{R})$ est fermé et borné dans $\mathcal{M}_n(\mathbb{R})$.