Régularité des fonctions

Exercice 1. (*) On pose f(x,y) = 0 si y = 0 et $f(x,y) = y + x \sin\left(\frac{1}{y}\right)$ sinon.

Montrer que $\lim_{(x,y)\to(0,0)} f(x,y)$ et $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ existent mais pas $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$.

Exercice 2. (*) On pose $f(x,y) = (x^2 - y^2) \ln(x^2 + y^2)$ pour tout $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ et f(0,0) = 0.

Montrer que la fonction f est continue sur \mathbb{R}^2 . Est-elle de classe \mathcal{C}^1 ?

Exercice 3. (*) On pose $f(x,y) = \frac{x^4y}{x^4 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0. La fonction f est-elle de classe C^1 ?

Exercice 4. (**) Pour tout $(x,y) \in \mathbb{R}^2$, on pose $q(x,y) = \frac{1+xy}{\sqrt{(1+x^2)(1+y^2)}}$.

- **a.** Pour tout $(x, y) \in \mathbb{R}^2$, simplifier l'expression $1 q(x, y)^2$.
- **b.** En déduire que la fonction $f:(x,y)\mapsto \operatorname{Arccos}(q(x,y))$ est définie et continue sur \mathbb{R}^2 .
- c. Sur un ensemble \mathcal{D} à préciser, calculer les dérivées partielles d'ordre 1 de la fonction f.
- **d.** En déduire une simplification de l'expression f(x, y). Interpréter géométriquement.

Exercice 5. (**) On considère la fonction dét, définie sur $\mathcal{M}_n(\mathbb{R})$, interprétée comme une fonction de n^2 variables.

- a. Déterminer la différentielle de cette fonction en I_n .
- b. Déterminer la différentielle de cette fonction en une matrice A quelconque.

Extremums

Exercice 6. (*) On définit de \mathbb{R}^2 dans \mathbb{R} la fonction $f:(x,y)\mapsto xy(1-x-y)$.

- a. Représenter l'ensemble $D = \{(x, y) \in (\mathbb{R}_+)^2 ; 1 x y \ge 0\}.$
- **b.** Montrer que f admet sur D un maximum, que l'on déterminera.

Exercice 7. (*) Déterminer les extremums sur \mathbb{R}^2 de la fonction $f:(x,y)\mapsto (x^2-y^2)\exp(-x^2-y^2)$.

Exercice 8. (*) Déterminer les extremums sur $[0,\pi]^2$ de la fonction $f:(x,y)\mapsto\sin(x)+\sin(x)+\sin(x+y)$.

Exercice 9. (*) Trouver les extremums de la fonction $f:(x,y)\mapsto (x-y)^2-xy$ sur l'ensemble D défini par

$$D = \{(x, y) \in \mathbb{R}^2 ; x \ge 0, y \ge 0, x + y \le 1\}.$$

Exercice 10. (**) On définit sur $[0, +\infty[^2 \text{ une fonction } f \text{ en posant } f(0,0) = 0 \text{ et }$

$$f(x,y) = \frac{xy}{(x+y)(1+x)(1+y)}$$
 si $(x,y) \neq (0,0)$.

- a. Montrer que cette fonction est continue.
- **b.** Trouver les points critiques de f dans l'ouvert $(]0, +\infty[)^2$.
- **c.** Pour tout $(x,y) \in ([0,+\infty[)^2 \text{ tel que } x+y \ge 8, \text{ montrer la majoration } f(x,y) < 1/8.$
- **d.** Déterminer les extremums de la fonction f sur $([0, +\infty])^2$.

Exercice 11. (*) On pose $D = [-1, 1] \times \mathbb{R}$ et on définit $f : (x, y) \mapsto x^2 - \sqrt{1 - x^2} \cos(y)$ sur D.

- a. Déterminer les points critiques de f sur une région Δ à préciser.
- **b.** Pour tout $(x,y) \in D$, prouver la minoration $f(x,y) f(\sqrt{3}/2,\pi) \le x^2 + \sqrt{1-x^2} 5/4$.
- c. Étudier les extremums de f sur D.

Exercice 12. (**) Dans cet exercice, on identifie les vecteurs de \mathbb{R}^n à ceux de $\mathcal{M}_{n,1}(\mathbb{R})$. On se donne une matrice A de $\mathcal{S}_n(\mathbb{R})$ et un vecteur B de \mathbb{R}^n . On définit la fonction

$$f: \mathbf{X} \mapsto \frac{1}{2} \mathbf{X}^{\mathrm{T}} \cdot \mathbf{A} \cdot \mathbf{X} - \mathbf{B}^{\mathrm{T}} \cdot \mathbf{X}$$

 $de \mathbb{R}^n dans \mathbb{R}$.

- **a.** Exprimer le gradient de f.
- \mathbf{b} . Si A est symétrique définie positive, montrer que f possède un minimum et qu'il est atteint en un unique point.
- c. (***) Montrer que f possède un minimum si et seulement si la matrice A est symétrique positive et B est dans l'image de A.

Équations aux dérivées partielles

Exercice 13. (**) On note Ω le complémentaire de l'origine dans \mathbb{R}^2 et on considère une fonction $f \in \mathcal{C}^1(\Omega, \mathbb{R})$. On fixe α dans \mathbb{R} .

Dire que la fonction f est positivement homogène de degré α signifie qu'elle vérifie l'identité suivante

$$\forall (x,y) \in \Omega, \quad \forall t \in]0, +\infty[, \qquad f(tx,ty) = t^{\alpha} f(x,y).$$

Montrer que f est positivement homogène de degré α si et seulement si elle vérifie l'identité suivante

$$\forall (x,y) \in \Omega, \qquad x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \alpha f(x,y).$$

Exercice 14. (**) Résoudre sur $(\mathbb{R}_+^*)^2$ l'équation aux dérivées partielles

$$x^2 \frac{\partial^2 f}{\partial x^2} - y^2 \frac{\partial^2 f}{\partial y^2} = 0$$

à l'aide du changement de variables (u, v) = (xy, x/y).

Exercice 15. (**) Déterminer les fonctions f de classe C^2 sur $]0, +\infty[$ telles que la fonction $\hat{f}: (x, y, z) \mapsto f\left(\frac{x}{y+z}\right)$ soit harmonique (c'est-à-dire de laplacien nul) sur $]0, +\infty[^3]$.

Exercice 16. (**) On note U l'ouvert $\mathbb{R}^n \setminus \{(0,\ldots,0)\}$ de \mathbb{R}^n . On se donne une fonction f de classe \mathcal{C}^2 sur $]0,+\infty[$, à valeurs réelles, et on définit sur U la fonction

$$F: (x_1, \dots, x_n) \mapsto f\left(\sqrt{x_1^2 + \dots + x_n^2}\right).$$

- **a.** Pour tout i dans [1, n], exprimer la fonction $\partial^2 F/\partial x_i^2$.
- **b.** En déduire une expression du laplacien de F, défini par $\Delta F = \sum_{i=1}^{n} \frac{\partial^{2} F}{\partial x_{i}^{2}}$.
- \mathbf{c} . Trouver une condition nécessaire et suffisante sur la fonction f pour que la fonction \mathbf{F} soit harmonique (c'est-àdire de laplacien nul).