Régularité des fonctions

Exercice 1. (*) On pose f(x,y) = 0 si y = 0 et $f(x,y) = y + x \sin\left(\frac{1}{y}\right)$ sinon.

Montrer que $\lim_{(x,y)\to(0,0)} f(x,y)$ et $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ existent mais pas $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$.

Solution de l'exercice 1. Pour tout $(x,y) \in \mathbb{R} \times \mathbb{R}^*$, on observe la majoration

$$|f(x,y)| \leqslant |y| + |x|.$$

Cette majoration est également valable si y=0. Elle est donc valable pour tout $(x,y) \in \mathbb{R}^2$. Le majorant a une limite nulle en (0,0). Par le théorème des gendarmes, on en déduit la limite suivante

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

Soit $y \in \mathbb{R}^*$. On trouve

$$\lim_{x \to 0} f(x, y) = y.$$

Cette égalité est valable également si y=0. Elle est donc valable pour tout $y\in\mathbb{R}$, ce qui donne

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) = 0.$$

Prenons maintenant x non nul. On va voir que f(x,y) n'a pas de limite quand y tend vers 0 (en restant non nul). Pour cela, posons pour tout $n \in \mathbb{N}^*$

$$y_n = \frac{1}{n\pi}$$
 et $z_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$.

Les suites $(y_n)_{n\geqslant 1}$ et $(z_n)_{n\geqslant 1}$ convergent vers 0. Pour tout $n\in\mathbb{N}^*$, on trouve

$$f(x, y_n) = y_n$$
 et $f(x, z_n) = z_n + x$.

Les suites $(f(x,y_n))_{n\geqslant 1}$ et $(f(x,z_n))_{n\geqslant 1}$ convergent donc vers 0 et vers x respectivement. Ces deux limites sont distinctes donc f(x,y) n'a pas de limite quand y tend vers 0.

À plus forte raison, la limite double $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ n'existe pas.

Exercice 2. (*) On pose $f(x,y) = (x^2 - y^2) \ln(x^2 + y^2)$ pour tout $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ et f(0,0) = 0.

Montrer que la fonction f est continue sur \mathbb{R}^2 . Est-elle de classe \mathcal{C}^1 ?

Solution de l'exercice 2. La fonction $(x,y) \mapsto x^2 + y^2$ est de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$, à valeurs dans $]0,+\infty[$; la fonction $t \mapsto \ln(t)$ est de classe C^1 sur $]0,+\infty[$.

Par composition, la fonction $(x,y) \mapsto \ln(x^2 + y^2)$ est de classe \mathcal{C}^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$. Le fonction f aussi.

Pour tout (x, y) non nul, on observe la domination

$$|f(x,y)| \le (x^2 + y^2) |\ln(x^2 + y^2)|.$$

On sait que $t \ln(t)$ tend vers 0 quand t tend vers 0 donc $(x^2 + y^2) \ln(x^2 + y^2)$ tend vers 0 quand (x, y) tend vers (0, 0).

Par le théorème des gendarmes, on en déduit que f(x,y) tend vers 0 (c'est-à-dire vers f(0,0)) quand (x,y) tend vers (0,0).

La fonction f est donc continue en (0,0).

On en déduit que la fonction f est continue sur \mathbb{R}^2 .

Existence des dérivées partielles en l'origine. On définit la fonction partielle

$$f_1: x \mapsto f(x,0)$$

de \mathbb{R} dans \mathbb{R} et on étudie sa dérivabilité en 0.

$$\forall x \in \mathbb{R}^*, \quad \frac{f_1(x) - f_1(0)}{x - 0} = x \ln(x^2) = 2x \ln(|x|).$$

Ce taux d'accroissement tend vers 0 quand x tend vers 0. La fonction f_1 est donc dérivable en 0 avec $f'_1(0) = 0$.

On a prouvé que $\frac{\partial f}{\partial x}(0,0)$ existe est vaut 0. Idem pour $\frac{\partial f}{\partial y}(0,0)$.

Continuité des dérivées partielles en l'origine. Pour tout $(x,y) \neq (0,0)$, le calcul formel donne

$$\frac{\partial f}{\partial x}(x,y) = 2x \ln(x^2 + y^2) + \frac{2x(x^2 - y^2)}{x^2 + y^2}.$$

On utilise alors la majoration

$$\left| \frac{\partial f}{\partial x}(x,y) \right| \leqslant 2\sqrt{x^2 + y^2} \left| \ln(x^2 + y^2) \right| + 2|x|.$$

Le majorant tant vers 0 quand (x, y) tend vers (0, 0). On en déduit que $\partial f/\partial x$ admet une limite nulle en l'origine. Cette fonction est donc continue en l'origine.

Idem pour $\partial f/\partial y$.

La fonction f admet en tout point de \mathbb{R}^2 des dérivées partielles d'ordre 1. De plus, ses deux dérivées partielles sont continues sur \mathbb{R}^2 . La fonction f est donc de classe \mathcal{C}^1 sur \mathbb{R}^2 .

Exercice 3. (*) On pose $f(x,y) = \frac{x^4y}{x^4 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0. La fonction f est-elle de classe C^1 ?

Solution de l'exercice 3. Par les théorèmes de stabilité, la fonction f est de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$.

Existence des dérivées partielles en l'origine. On considère la fonction partielle $f_1: x \mapsto f(x,0)$ et on étudie sa dérivabilité en 0.

Cette fonction est la fonction nulle donc elle est dérivable en 0 avec $f'_1(0) = 0$.

On en déduit que $\frac{\partial f}{\partial x}(0,0)$ existe et vaut 0. Idem pour $\frac{\partial f}{\partial y}(0,0)$.

Continuité des dérivées partielles en l'origine.

Pour tout $(x, y) \neq (0, 0)$, le calcul formel donne

$$\frac{\partial f}{\partial x}(x,y) = y \times \frac{4x^3(x^4+y^2) - x^4 \times 4x^3}{(x^4+y^2)^2} = \frac{4x^3y^3}{(x^4+y^2)^2} \quad \text{et} \quad \frac{\partial f}{\partial y}(x,y) = x^4 \times \frac{(x^4+y^2) - y \times 2y}{(x^4+y^2)^2} = \frac{x^4(x^4-y^2)}{(x^4+y^2)^2}.$$

Pour tout $x \neq 0$, on trouve $\frac{\partial f}{\partial y}(x,0) = 1$, ce qui ne tend pas vers 0 quand x tend vers 0.

La fonction $\frac{\partial f}{\partial u}$ n'est donc pas continue en (0,0). La fonction f n'est donc pas de classe \mathcal{C}^1 sur \mathbb{R}^2 .

Bonus. La fonction $\frac{\partial f}{\partial x}$ est continue en (0,0) mais c'est assez difficile à voir.

Prenons $(x,y) \in \mathbb{R}^2$ et supposons x non nul. Afin d'homogénéiser les rôles de x et de y, posons $\lambda = y/x^2$. On obtient alors

$$\frac{\partial f}{\partial x}(x,y) = \frac{4x^3(\lambda^3 x^6)}{(x^4 + (\lambda x^2)^2)^2} = \frac{\lambda^3}{(1+\lambda^2)^2} x.$$

Une simple étude de la fonction $u: t \mapsto \frac{t^3}{(1+t^2)^2}$ montre alors que cette fonction est bornée : sa valeur absolue admet un maximum en $\sqrt{3}$, lequel est égal à $3\sqrt{3}/16$ (constante notée C dans la suite).

Ainsi, si x n'est pas nul, on obtient

$$\left| \frac{\partial f}{\partial x}(x,y) \right| \leqslant \mathcal{C} \times |x|.$$

Cette inégalité est vraie aussi si x est nul (la dérivée partielle est nulle dans ce cas). Par le théorème des gendarmes, on en déduit que cette dérivée partielle nulle a une limite nulle en (0,0).

La fonction $\frac{\partial f}{\partial x}$ est donc continue en (0,0).

Exercice 4. (**) Pour tout $(x,y) \in \mathbb{R}^2$, on pose $q(x,y) = \frac{1+xy}{\sqrt{(1+x^2)(1+y^2)}}$.

- **a.** Pour tout $(x,y) \in \mathbb{R}^2$, simplifier l'expression $1 q(x,y)^2$.
- **b.** En déduire que la fonction $f:(x,y)\mapsto \operatorname{Arccos}(q(x,y))$ est définie et continue sur \mathbb{R}^2 .
- c. Sur un ensemble \mathcal{D} à préciser, calculer les dérivées partielles d'ordre 1 de la fonction f.
- **d.** En déduire une simplification de l'expression f(x,y). Interpréter géométriquement.

Exercice 5. (**) On considère la fonction dét, définie sur $\mathcal{M}_n(\mathbb{R})$, interprétée comme une fonction de n^2 variables.

- a. Déterminer la différentielle de cette fonction en I_n .
- b. Déterminer la différentielle de cette fonction en une matrice A quelconque.

Extremums

Exercice 6. (*) On définit de \mathbb{R}^2 dans \mathbb{R} la fonction $f:(x,y)\mapsto xy(1-x-y)$.

- **a.** Représenter l'ensemble $D = \{(x,y) \in (\mathbb{R}_+)^2 ; 1-x-y \ge 0\}.$
- **b.** Montrer que f admet sur D un maximum, que l'on déterminera.

Exercice 7. (*) Déterminer les extremums sur \mathbb{R}^2 de la fonction $f:(x,y)\mapsto (x^2-y^2)\exp(-x^2-y^2)$.

Exercice 8. (*) Déterminer les extremums sur $[0,\pi]^2$ de la fonction $f:(x,y)\mapsto \sin(x)+\sin(y)+\sin(x+y)$.

Solution de l'exercice 8. Le carré $[0,\pi]^2$ est fermé et borné (c'est une boule fermée pour la norme infinie). La fonction f est continue sur ce fermé borné donc elle y possède un maximum et un minimum.

Recherche des points critiques. Introduisons le carré ouvert $D =]0, \pi[^2]$. C'est une boule ouverte pour la norme infinie donc c'est un ouvert de \mathbb{R}^2 . La fonction f est de classe \mathcal{C}^1 et ses dérivées partielles d'ordre 1 sont données par

$$\frac{\partial f}{\partial x}(x,y) = \cos(x) + \cos(x+y) \qquad \text{et} \qquad \frac{\partial f}{\partial y}(x,y) = \cos(y) + \cos(x+y).$$

Résolvons l'équation $\nabla f(x,y) = (0,0)$ par équivalences. On prend $(x,y) \in (]0,1[)^2$.

$$\nabla f(x,y) = (0,0) \iff \left\{ \begin{array}{lll} \cos(x) + \cos(x+y) & = & 0 \\ \cos(y) + \cos(x+y) & = & 0 \end{array} \right. \iff \left\{ \begin{array}{lll} \cos(x+y) & = & -\cos(x) \\ \cos(y) & = & \cos(x) \end{array} \right.$$

La fonction cosinus est strictement décroissante sur $]0,\pi[$ donc décroissante sur cet intervalle.

$$\nabla f(x,y) = (0,0) \iff \left\{ \begin{array}{ccc} \cos(x+y) & = & -\cos(x) \\ y & = & x \end{array} \right. \iff \left\{ \begin{array}{ccc} \cos(2x) & = & -\cos(x) \\ y & = & x \end{array} \right.$$

L'équation $\cos(2x) = -\cos(x)$ se réécrit $2\cos^2(x) + \cos(x) - 1 = 0$. Elle équivaut à

$$\cos(x) = -1$$
 ou $\cos(x) = \frac{1}{2}$.

On a pris x dans $]0, \pi[$ donc l'égalité $\cos(x) = -1$ est impossible et l'égalité $\cos(x) = 1/2$ équivaut à $x = \pi/3$. On obtient finalement l'équivalence

$$\nabla f(x,y) = (0,0) \iff (x,y) = \left(\frac{\pi}{3}, \frac{\pi}{3}\right).$$

Dans l'ouvert $(]0,\pi[)^2$, si f admet un extremum local, c'est forcément en un point critique. Les extremums de f sur $[0,\pi]^2$ sont donc atteints en des éléments de $([0,\pi]^2\setminus]0,\pi[^2)\cup\{(\pi/3,\pi/3)\}$.

Étude des valeurs prises par f sur la partie restante. Sur la face sud du carré, on trouve

$$\forall x \in [0, \pi], \quad f(x, 0) = 2\sin(x).$$

Les valeurs prises par f sur ce côté du carré sont les éléments de [0,2]. Idem sur la face ouest.

Sur la face nord du carré, on trouve

$$\forall x \in [0, \pi], \quad f(x, \pi) = 0.$$

Idem sur la face est. On trouve enfin

$$f\left(\frac{\pi}{3}, \frac{\pi}{3}\right) = 3\sin\left(\frac{\pi}{3}\right) = \frac{3\sqrt{3}}{2} = \frac{\sqrt{27}}{2} > \frac{5}{2} > 2.$$

Finalement, le maximum de f sur $[0,\pi]^2$ vaut $3\sqrt{3}/2$ et son minimum est 0.

Exercice 9. (*) Trouver les extremums de la fonction $f:(x,y)\mapsto (x-y)^2-xy$ sur l'ensemble D défini par

$$D = \{(x, y) \in \mathbb{R}^2 ; x \ge 0, y \ge 0, x + y \le 1\}.$$

Solution de l'exercice 9. L'ensemble D est un fermé de \mathbb{R}^2 (par exemple, par caractérisation séquentielle). La fonction f est continue sur D donc elle admet un maximum et un minimum sur cet ensemble.

Considérons l'ensemble

$$\Delta = \{(x,y) \in \mathbb{R}^2 ; x > 0, y > 0, x + y < 1\}.$$

Cet ensemble est un ouvert de \mathbb{R}^2 (intersection de trois demi-plans ouverts) et la fonction f est de classe \mathcal{C}^1 donc les éventuels extremums locaux de f sur Δ sont atteints en des points critiques de f.

Le calcul donne

$$\forall (x,y) \in \mathbb{R}^2, \quad \nabla f(x,y) = (2x - 3y, 2y - 3x).$$

On observe que l'unique point critique de f sur \mathbb{R}^2 est (0,0), si bien que f n'a aucun extremum local dans Δ . Les extremums globaux de f sur D sont donc atteints en des points de D \ Δ .

Étude sur les faces sud et ouest. Pour tout $x \in [0,1]$, on a $f(x,0) = x^2$. Les valeurs prises par f sur le côté sud sont les éléments de [0,1].

Idem sur le côté est.

Étude sur l'hypoténuse. L'hypoténuse du triangle étudié est paramétrée par

$$\{(t, 1-t) ; t \in [0,1]\}.$$

Pour tout $t \in [0, 1]$, on a

$$f(t, 1 - t) = (2t - 1)^{2} - t(1 - t) = 5t^{2} - 5t + 1 = 5\left(t - \frac{1}{2}\right)^{2} - \frac{1}{4}.$$

Les valeurs prises par f(t, 1-t) quand t décrit [0,1] sont donc les éléments de [-1/4,1].

Finalement, le maximum de f sur D est 1 et le minimum est -1/4.

Exercice 10. (**) On définit sur $[0, +\infty[^2$ une fonction f en posant f(0,0) = 0 et

$$f(x,y) = \frac{xy}{(x+y)(1+x)(1+y)}$$
 si $(x,y) \neq (0,0)$.

- a. Montrer que cette fonction est continue.
- **b.** Trouver les points critiques de f dans l'ouvert $([0, +\infty)]^2$.
- **c.** Pour tout $(x,y) \in ([0,+\infty[)^2 \text{ tel que } x+y \geqslant 8, \text{ montrer la majoration } f(x,y) < 1/8.$
- **d.** Déterminer les extremums de la fonction f sur $([0, +\infty])^2$.

Exercice 11. (*) On pose $D = [-1, 1] \times \mathbb{R}$ et on définit $f: (x, y) \mapsto x^2 - \sqrt{1 - x^2} \cos(y)$ sur D.

- a. Déterminer les points critiques de f sur une région Δ à préciser.
- **b.** Pour tout $(x,y) \in D$, prouver la minoration $f(x,y) f(\sqrt{3}/2,\pi) \le x^2 + \sqrt{1-x^2} 5/4$.
- \mathbf{c} . Étudier les extremums de f sur \mathbf{D} .

Solution de l'exercice 11. a. On considère l'ensemble

$$\Delta =]-1,1[\times \mathbb{R}.$$

Cet ensemble s'écrit $\{(x,y) \in \mathbb{R}^2 : |x| < 1\}$. La valeur absolue est continue donc Δ est un ouvert de \mathbb{R}^2 . La fonction f est de classe C^1 sur Δ , avec

$$\forall (x,y) \in \Delta, \nabla f(x,y) = \left(2x + \frac{x}{\sqrt{1-x^2}}\cos(y), \sqrt{1-x^2}\sin(y)\right).$$

L'équation $\frac{\partial f}{\partial y}(x,y)=0$ équivaut à $\sin(y)=0$, ce qui équivaut à l'existence d'un entier k tel que $y=k\pi$.

Soit $k \in \mathbb{Z}$. Pour tout $x \in]-1,1[$, on trouve

$$\frac{\partial f}{\partial x}(x, k\pi) = 2x + \frac{x}{\sqrt{1 - x^2}}(-1)^k.$$

Si k est pair, cette équation équivaut à x = 0.

Si k est impair, cette équation équivaut à

$$(x = 0)$$
 ou $(\sqrt{1 - x^2} = \frac{1}{2}),$

c'est-à-dire x = 0 ou $x = \sqrt{3}/2$ ou $x = -\sqrt{3}/2$.

Les points critiques de f sont donc les points de la forme $(0, k\pi)$ où k décrit \mathbb{Z} et les points de la forme $(\pm\sqrt{3}/2, (2p+1)\pi)$ où p décrit \mathbb{Z} .

b. Un premier calcul donne

$$f(\sqrt{3}/2,\pi) = \frac{3}{4} - \frac{1}{2} \times (-1) = \frac{5}{4}.$$

Soit $(x,y) \in D$. La minoration $\cos(y) \geqslant -1$ donne alors

$$f(x,y) \le x^2 + \sqrt{1-x^2}$$
 donc $f(x,y) - f(\sqrt{3}/2,\pi) \le x^2 + \sqrt{1-x^2} - 5/4$.

c. Considérons la fonction $\varphi: x \mapsto x^2 + \sqrt{1-x^2}$. Cette fonction est définie et continue sur [-1,1], de classe \mathcal{C}^1 sur]-1,1[. D'autre part, elle est paire. Il suffit donc d'étudier ses variations sur [0,1] pour connaître les valeurs qu'elle prend.

Sa dérivée est donnée par

$$\forall x \in]-1,1[, \quad \varphi'(x) = 2x - \frac{x}{\sqrt{1-x^2}} = \frac{x(2\sqrt{1-x^2}-1)}{\sqrt{1-x^2}}.$$

On observe que φ' est positive sur $[0, \sqrt{3}/2]$ et négative sur $[\sqrt{3}/2, 1]$.

La fonction φ est donc croissante sur $[0, \sqrt{3}/2]$ et décroissante sur $[\sqrt{3}/2, 1]$ (en utilisant la continuité en 1). Elle est donc maximale en $\sqrt{3}/2$, où elle vaut 5/4.

La majoration de la question précédente donne donc

$$\forall (x, y) \in D, \quad f(x, y) - f(\sqrt{3}/2, \pi) \leq 0.$$

La fonction f admet donc la valeur 5/4 comme maximum.

De l'autre côté, pour tout $y \in \mathbb{R}$, on connaît la majoration $\cos(y) \leq 1$, ce qui donne

$$\forall (x,y) \in D, \quad f(x,y) \ge x^2 - \sqrt{1-x^2} \ge -1 = f(0,0).$$

La fonction f admet donc la valeur -1 comme minimum.

Remarque. Au bout du compte, la recherche des points critiques n'a servi à rien. Il y avait juste à encadrer $\cos(y)$ entre -1 et 1 puis à étudier les variations de φ et de $x \mapsto x^2 - \sqrt{1 - x^2}$, ces dernières étant immédiates.

Exercice 12. (**) Dans cet exercice, on identifie les vecteurs de \mathbb{R}^n à ceux de $\mathcal{M}_{n,1}(\mathbb{R})$. On se donne une matrice A de $\mathcal{S}_n(\mathbb{R})$ et un vecteur B de \mathbb{R}^n . On définit la fonction

$$f: \mathbf{X} \mapsto \frac{1}{2}\mathbf{X}^{\mathrm{T}} \cdot \mathbf{A} \cdot \mathbf{X} - \mathbf{B}^{\mathrm{T}} \cdot \mathbf{X}$$

 $de \mathbb{R}^n dans \mathbb{R}$.

- **a.** Exprimer le gradient de f.
- \mathbf{b} . Si A est symétrique définie positive, montrer que f possède un minimum et qu'il est atteint en un unique point.
- c. (***) Montrer que f possède un minimum si et seulement si la matrice A est symétrique positive et B est dans l'image de A.

Équations aux dérivées partielles

Exercice 13. (**) On note Ω le complémentaire de l'origine dans \mathbb{R}^2 et on considère une fonction $f \in \mathcal{C}^1(\Omega, \mathbb{R})$. On fixe α dans \mathbb{R} .

Dire que la fonction f est positivement homogène de degré α signifie qu'elle vérifie l'identité suivante

$$\forall (x,y) \in \Omega, \quad \forall t \in]0, +\infty[, \qquad f(tx,ty) = t^{\alpha} f(x,y).$$

Montrer que f est positivement homogène de degré α si et seulement si elle vérifie l'identité suivante

$$\forall (x,y) \in \Omega, \qquad x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \alpha f(x,y).$$

Exercice 14. (**) Résoudre sur $(\mathbb{R}_+^*)^2$ l'équation aux dérivées partielles

$$x^2 \frac{\partial^2 f}{\partial x^2} - y^2 \frac{\partial^2 f}{\partial y^2} = 0$$

à l'aide du changement de variables (u, v) = (xy, x/y).

Exercice 15. (**) Déterminer les fonctions f de classe C^2 sur $]0, +\infty[$ telles que la fonction $\hat{f}: (x, y, z) \mapsto f\left(\frac{x}{y+z}\right)$ soit harmonique (c'est-à-dire de laplacien nul) sur $]0, +\infty[^3]$.

Exercice 16. (**) On note U l'ouvert $\mathbb{R}^n \setminus \{(0,\ldots,0)\}$ de \mathbb{R}^n . On se donne une fonction f de classe \mathcal{C}^2 sur $]0,+\infty[$, à valeurs réelles, et on définit sur U la fonction

$$F: (x_1, \dots, x_n) \mapsto f\left(\sqrt{x_1^2 + \dots + x_n^2}\right).$$

- **a.** Pour tout i dans [1, n], exprimer la fonction $\partial^2 F/\partial x_i^2$.
- **b.** En déduire une expression du laplacien de F, défini par $\Delta F = \sum_{i=1}^{n} \frac{\partial^2 F}{\partial x_i^2}$.
- \mathbf{c} . Trouver une condition nécessaire et suffisante sur la fonction f pour que la fonction \mathbf{F} soit harmonique (c'est-àdire de laplacien nul).

Solution de l'exercice 16. a. Pour tout $i \in [1, n]$, on trouve

$$\forall x \in \mathcal{U}, \quad \frac{\partial \mathcal{F}}{\partial x_i}(x) = \frac{x_i}{\sqrt{x_1^2 + \dots + x_n^2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right).$$

Une nouvelle dérivation donne pour tout $x \in U$ la relation

$$\frac{\partial^2 \mathbf{F}}{\partial x_i^2}(x) = \frac{1}{\sqrt{x_1^2 + \dots + x_n^2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) - \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{x_1^2 + \dots + x_n^2} f''\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_i^2}{(x_1^2 + \dots$$

b. Soit $x \in \mathcal{U}$. En sommant les quantités trouvées ci-dessus, on obtient

$$\Delta F(x) = \frac{n-1}{\sqrt{x_1^2 + \dots + x_n^2}} f'\left(\sqrt{x_1^2 + \dots + x_n^2}\right) + f''\left(\sqrt{x_1^2 + \dots + x_n^2}\right).$$

c. Quand x parcourt U, la quantité $\sqrt{x_1^2 + \cdots + x_n^2}$ décrit l'intervalle $]0, +\infty[$. On en déduit l'équivalence

$$\Delta F = 0 \iff \forall r > 0, \quad \frac{n-1}{r} f'(r) + f''(r) = 0.$$

Cette condition peut être interprétée comme une équation différentielle en f'. Elle équivaut à

$$\exists c \in \mathbb{R}, \quad \forall r > 0, \quad f'(r) = c \times r^{-n+1}.$$

Si n=2, cette condition équivaut à

$$\exists (c,d) \in \mathbb{R}^2, \quad \forall r > 0, \quad f(r) = c \ln(r) + d.$$

Si $n \neq 2$, cette condition équivaut à

$$\exists (c,d) \in \mathbb{R}^2, \quad \forall r > 0, \quad f(r) = \frac{c}{2-n}r^{-n+2} + d.$$