# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt

# donnees du pb
Lambda = 0.037
cp = 1500
rho = 1.325
L = 1          # epaisseur isolant
t_max = 20000  # temps de fin d'integration en secondes
N_t = 100      # nombres d'intervalles ds le tps
N_x = 5        # nombres d'intervalles ds l'espace
T_int = 20
T_ext = 5
K = [Instruction 1]  # diffusivite thermique

# discretisation de l'espace et du tps
dx = [Instruction 2.1]
dt = [Instruction 2.2]
Temp = np.zeros((N_t + 1, N_x + 1))

# initialisation de la temperature
# conditions initiales
Temp[0,0] = [Instruction 3.1]

for i in range (1,N_x + 1):
    [Instruction 3.2]

# conditions aux limites
for n in range (1,N_t + 1):
    [Instruction 3.3]
    [Instruction 3.4]

# calcul des temperatures aux differents instants
for n in [Instruction 4.1]):
    for i in range [Instruction 4.2]:      # ni le 1er ni le dernier point
        [Instructions 4.3]