MF0: Statique des fluides en référentiel non galiléen

1 Approche expérimentale

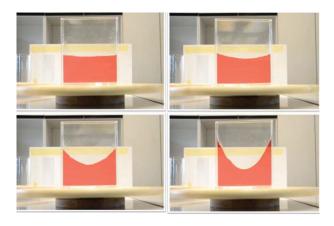


FIGURE 1 – Récipient contenant du jus de canneberge sur un plateau tournant à vitesse angulaire croissante. Souce : ULB

FIGURE 2 – The Liquid Mirror Telescope, operated by the NASA Orbital Debris Program Office at the NASA Orbital Debris Observatory in Cloudcroft, New Mexico from 1996 to 2000. Source: wiki.

- * Si un récipient contenant un liquide freine ou accélère, la surface du liquide à l'équilibre n'est plus horizontale!

 → Risque de renversement : camion-citerne, serveur de café, etc.
- ★ Si un récipient contenant un liquide est en rotation, la surface du liquide suit une forme parabolique.
 - → Application par exemple au miroir liquide (mercure) de forme parabolique.

2 Rappel de PCSI : pression et contrainte normale

2.1 Notion de particule de fluide

- \bullet échelle microscopique : la matière est discontinue à l'échelle atomique. ODG $L\simeq 10^{-10}$ m.
- <u>échelle macroscopique</u> : la matière semble continue. ODG $L \simeq 1$ m. Les grandeurs intensives (température T, masse volumique μ , etc) peuvent être inhomogènes.
- <u>échelle mésoscopique</u> : échelle suffisamment petite pour pouvoir considérer les grandeurs intensives homogènes, mais suffisamment grande pour contenir un grand nombre d'atomes et pouvoir définir les grandeurs thermodynamiques p, T, μ , etc. ODG $L \simeq 1~\mu \text{m}$.

<u>def</u> : On appelle « **particule de fluide** » une portion mésoscopique fermée de fluide suffisamment petite pour que les grandeurs intensives y soient uniformes. On peut donc par exemple parler de « masse volumique d'une particule de fluide ».

2.2 Force de pression

 $\underline{\operatorname{def}}$: La **pression** p(M) en un point M à la surface dS d'une particule de fluide est définie par la force extérieure normale en M :

$$|\overrightarrow{dF}_{\text{ext}\to \text{int}} = p(M).\overrightarrow{dS}_{\text{ext}\to \text{int}}| \tag{1}$$

interprétation : Une pression est une force par unité de surface.

 $\overline{\underline{\text{unit\'e}}}$: Unit\'e équivalente SI: pascal Pa = N.m⁻² = kg.m⁻¹.s⁻². Unit\'e courante: 1 bar = 10^5 Pa.

 $\overline{\mathrm{ODG}}^{\,1}$:

Système	Vide	Vide d'une	Seuil de douleur	Augmentation de p en
	interstellaire	pompe rotative	de surpression acoustique	plongeant de 1 m sous l'eau
Pression (Pa)	$10^{-15} - 10^{-8}$	10^{-1}	10^{2}	10^{4}

Pression atmosphérique	Pression atmosphérique	Bouteille de	Pour former	Pression au
à 4000 m d'altitude	au niveau de la mer	champagne	un diamant	cœur du Soleil
$0,62.10^5$	$1,013.10^5$	5.10^{5}	10^{10}	$3, 5.10^{16}$

2.3 Résultante des forces de pression

 $\underline{\operatorname{def}}$: La résultante $\overrightarrow{F_p}$ des forces de pression sur un système Σ fermé de surface S est $\boxed{\overrightarrow{F_p} = - \oiint_{M \in S} p(M).d\overrightarrow{S}}$ où le

cercle sur le symbole intégrale indique que S est une surface fermée, et par convention \overrightarrow{dS} est orienté vers l'extérieur (d'où le signe négatif).

 $\underline{\text{prop}}$: Cas particulier 1: si la $\underline{\text{pression est uniforme}}$, les forces de pressions se compensent: $\underbrace{\iiint_{M \in S} p(M).d\overrightarrow{S} = \overrightarrow{0}}$

2.4 Poussée d'Archimède

 $\underline{\text{prop}}$: Cas particulier 2 : pour un objet de volume V immergé dans un fluide incompressible (masse volumique μ) au repos dans \overrightarrow{g} homogène, la résultante des forces de pression est la $\underline{\text{poussée}}$ d'Archimède $|\overrightarrow{F_p} = -\mu V \overrightarrow{g}|$.

 \underline{rq} : Pour un solide de masse volumique μ_s immergé dans un fluide de masse volumique μ_f , la résultante du poids \overrightarrow{P} et de la poussée d'Archimède $\overrightarrow{\Pi}$ s'écrit, avec z vers le haut :

$$\overrightarrow{P} + \overrightarrow{\Pi} = (\mu_f - \mu_s) V g \overrightarrow{u_z}$$

- \star Donc il suffit de comparer μ_f et μ_e (ou leurs densités) pour savoir si le solide va flotter ou couler.
- \star Pour une phase condensée dans l'air, quasiment toujours $\mu_f \ll \mu_s$. Donc la poussée d'Archimède est souvent négligeable dans l'air.
- * Pour une phase condensée dans l'eau, on peut rarement négliger un des termes. Donc la poussée d'Archimède est quasiment toujours à prendre en compte dans l'eau!

2.5 Densité volumique des forces de pression

 \overrightarrow{prop} : La densité volumique de forces de pression $\overrightarrow{f_p} = d\overrightarrow{F}/dV$ s'écrit :

$$\overrightarrow{f_p} = -\overrightarrow{\text{grad}}(p)$$
 (2)

<u>interprétation</u>: Les hautes pressions poussent les particules de fluide vers les basses pressions. Donc force dirigée vers <u>les basses pressions</u>, donc opposée au gradient de pression.

 \rightarrow On peut interpréter p comme une énergie potentielle volumique associée aux forces de pression.

prop : Effet nul si le champ de pression est homogène.

$$\overline{\text{unit}\acute{e}}: f_p \text{ en Pa.m}^{-1} = \text{N.m}^{-3} = \text{kg.m}^{-2}.\text{s}^{-2}.$$

 $\frac{\text{démo exigible en base cartésienne}}{\text{cubique}}$: Idée: Exprimer la résultante des forces de pression sur un volume mésoscopique

^{1.} Beaucoup d'autres intéressants sur https://fr.wikipedia.org/wiki/Ordres_de_grandeur_de_pression.

3 Rappel PCSI: statique des fluides en référentiel galiléen

3.1 Densité volumique de force de pesanteur

 $\underline{\text{prop}}$: La densité volumique de forces de pesanteur dans un fluide de masse volumique μ homogène dans le champ de $\underline{\overrightarrow{g}} = -g \overrightarrow{u_z}$ homogène :

 $\overrightarrow{f_g} = \mu . \overrightarrow{g} = -\overrightarrow{\operatorname{grad}}(\mu . g.z)$

 $\underline{\underline{\text{interprétation}}}$: La pesanteur attire les particules vers la direction de \overline{g} , donc z décroissant, donc opposé au gradient de z.

 \rightarrow On peut interpréter μgz comme une énergie potentielle volumique de pesanteur.

 $\underline{\rm ODG}$: Proche de la surface terrestre : $f_g \simeq 10~{\rm N.m^{-3}}$ dans l'air, $f_g \simeq 10^4~{\rm N.m^{-3}}$ dans l'eau.

| démo : Exprimer le poids d'un volume mésoscopique de fluide.

3.2 Relation fondamentale de la statique des fluides en référentiel galiléen

Soit un fluide de masse volumique μ à l'équilibre dans le champ de pesanteur \overrightarrow{g} . Dans un référentiel galiléen, la relation de la statique des fluides s'écrit :

$$-\overrightarrow{\operatorname{grad}}(p) + \mu.\overrightarrow{g} = \overrightarrow{0}$$

En choisissant un repère tel que $\overrightarrow{g} = -g\overrightarrow{u}_z$, cette relation devient : $\boxed{\frac{dp}{dz} + \mu \cdot g = 0}$

<u>démo</u> : Appliquer le PFD à un volume mésoscopique de fluide à l'équilibre.

<u>exo de cours 1</u>: Dans l'hypothèse d'un fluide peu compressible dans le champ de pesanteur homogène, quelle est la pression quand on plonge sous l'eau à une profondeur d?

exo de cours 2 : Dans l'hypothèse de l'atmosphère isotherme de masse molaire moyenne M, déterminer l'expression du champ de pression p(z) en fonction de l'altitude z.

4 Statique des fluides en référentiel non galiléen

4.1 Densité volumique de forces d'inertie

 $\underline{\text{prop}}$: La densité volumique des forces d'inertie d'entrainement est 2: $\overline{\overrightarrow{f_{ie}}} = -\mu.\overrightarrow{a_e}$ rq: Équivalent à l'effet d'une pesanteur en prenant $-\overrightarrow{a_e}$ à la place de $\overline{\overrightarrow{g}}$.

| <u>démo</u> : Exprimer la force d'inertie d'entrainement sur un volume mésoscopique de fluide.

 \star Cas de référentiels en translation rectiligne uniformément accélérée : $\overrightarrow{a_e}=a_0.\overrightarrow{u_x}$ donne

$$\overrightarrow{f_{ie}} = -\mu.\overrightarrow{a_e} = -\mu.a_0.\overrightarrow{u_x} = -\overrightarrow{\text{grad}}(\mu.a_0.x)$$

 \star Cas de référentiels en rotation uniforme : $\overrightarrow{a_e} = -r\omega^2.\overrightarrow{e_r}$ donne

$$\overrightarrow{f_{ie}} = -\mu.\overrightarrow{a_e} = \mu.r\omega^2.\overrightarrow{e_r} = \overrightarrow{\text{grad}}(\mu.\omega^2.r^2/2)$$

4.2 Relation fondamentale

Soit un fluide de masse volumique μ à l'équilibre dans le champ de pesanteur \overrightarrow{g} . Dans un référentiel non galiléen, la **relation de la statique des fluides** s'écrit :

$$-\overrightarrow{\operatorname{grad}}(p) + \mu.\overrightarrow{g} - \mu.\overrightarrow{a_e} = \overrightarrow{0}$$

| démo : Appliquer le PFD à un volume mésoscopique de fluide à l'équilibre dans un référentiel non galiléen.

prop : Tout se passe comme si le fluide subissait le champ de pesanteur apparent $\overrightarrow{g}_{app} = \overrightarrow{g} - \overrightarrow{a_e}$.

4.3 Cas d'une translation accélérée

Considérons un camion accélérant à $\overrightarrow{a_0} = a_0.\overrightarrow{u_x}$ constante. Il porte une citerne rectangulaire contenant un liquide de masse volumique μ . À l'interface entre le liquide et l'air, la pression est égale à p_0 . Déterminer l'allure de la surface libre du fluide.

4.4 Cas d'une rotation uniforme

Considérons un bécher cylindrique en rotation autour de son axe à ω constante. Il contient un liquide de masse volumique μ . À l'interface entre le liquide et l'air, la pression est égale à p_0 . Déterminer l'allure de la surface libre du fluide.