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TDMF2 : Actions mécaniques dans un fluide en mouvement

Savoirs

• Forces de pression. Équivalent volumique.
• Contraintes tangentielles dans écoulement −→v = vx(y)−→ux, viscosité. Équivalent volumique dans écoulement incom-
pressible.
• Nombre de Reynolds. Traînée d’une sphère solide en mouvement rectiligne uniforme dans fluide newtonien. Coefficient
Cx, évolution avec Re. Écoulement laminaire et turbulent.

Savoir-faire

• Pression : utiliser
−→
dF = −p

−→
dS et

−→
f = −

−−→grad(p).
Cf PCSI pour la statique des fluides, cf MF0 pour statique des fluides en référentiel galiléen, cf chapitre suivant

pour la dynamique des fluides.
démo de cours : Démontrer l’expression des forces volumiques de pression en base cartésienne par calcul de résul-

tante sur un volume mésoscopique cubique.

• Viscosité : utiliser
−→
dF = η∂vx/∂ydS−→ux fournie pour un écoulement −→v = vx(y)−→ux. Utiliser

−→
f = η∆−→v . Exo 3.

démo de cours : Établir
−→
f = η∆−→v sur l’exemple d’écoulement précédent.

• Évaluer un nombre de Reynolds pour choisir un modèle de traînée linéaire ou un modèle de traînée quadratique.
Exos 1.1, 1.2, 2.1, 2.2.

Interro de cours

1. Donner l’expression de la densité volumique des forces de pression.
2. Donner l’expression de la densité volumique des forces de viscosité.
3. Soit un champ de vecteur −→v de composantes (vx, vy, vz) en base cartésienne. Donner l’expression de ∆−→v en

fonction de vx, vy et vz.
4. Donner l’expression du nombre de Reynolds.
5. Dans la limite Re ≪ 1, l’écoulement est-il laminaire ou turbulent ? Même question pour Re ≫ 1.
6. Considérons une force de traînée F = −α.vk. Dans les limites Re ≪ 1 et Re ≫ 1, donner la valeur de k.

1 Jouer avec le nombre de Reynolds

1.1 Écoulements similaires

1. Considérons un écoulement d’eau (η1 = 10−3 Pa.s, µ1) dans une conduite de 5 cm de diamètre à une vitesse
moyenne de 0,2 m/s. Calculer le nombre de Reynolds de l’écoulement.

2. Un écoulement d’huile (η2 = 5.10−2 Pa.s, µ2 = 0, 9µ1) est similaire au précédent (il a le même nombre de
Reynolds) dans une conduite de 30 cm de diamètre. Calculer la vitesse moyenne puis le débit volumique
d’huile.

1.2 Traînée

Une bille de masse m = 0, 2 g et de rayon r = 3 mm tombe dans une colonne d’eau, de masse volumique µ et
de viscosité dynamique η = 10−3 Pl, suivant la verticale descendante portée par le vecteur −→uz. La force de traînée
exercée par le fluide sur la bille se met sous la forme : −→

F = −Cx
2 µπr2v2−→uz où Cx est un coefficient de traînée qui peut

dépendre de la valeur du nombre de Reynolds et donc de v, r et ν = η/µ.
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1. Justifier à l’aide de la figure que dans le cas des faibles nombres de Reynolds (préciser la limite), la force de
traînée peut se mettre sous la forme : −→

F = −6πηrv−→uz (formule de Stokes).
2. Dans quel domaine de valeurs du nombre de Reynolds peut-on supposer que le coefficient de traînée est

constant ? Quelle est sa valeur approchée ?
3. En déduire la vitesse limite atteinte par la bille dans la colonne d’eau.

2 Exos de méca avec différents frottements

2.1 Chute d’une gouttelette : frottements linéaires

Quand une gouttelette du brouillard de Reims tombe dans l’air sans vent, celui-ci exerce sur la gouttelette, supposée
sphérique, une force modélisée par la formule de Stokes : −→

F = −6π.η.r.−→v où η = 1, 8.10−5 Pa.s est la viscosité de l’air,
r le rayon de la sphère et −→v la vitesse de la gouttelette par rapport à l’air. L’étude expérimentale montre que la goutte
atteint le sol avec une vitesse limite vl = 1, 2 mm.s−1. Le but de l’exercice est d’en déduire une mesure du rayon r
de cette goutte. Données : Masse volumique de l’eau ρeau = 103 kg.m−3, masse volumique de l’air ρair = 1, 3 kg.m−3,
g = 10 m.s−2.

1. Évaluer le nombre de Reynolds pour valider le choix de modèle de force de frottements.
2. Calculer le rapport entre la norme Π de la poussée d’Archimède sur la gouttelette et son poids P .

On négligera dans la suite la poussée d’Archimède. On oriente l’axe (Oz) vers le bas.

3. À l’aide du principe fondamental de la dynamique, déterminer l’équation différentielle sur la vitesse v = dz

dt
de

la gouttelette.
4. Sans la résoudre, en déduire l’expression de la vitesse limite vl et du temps caractéristique τ du régime transi-

toire.
5. Déduire alors des mesures la valeur du rayon r d’une gouttelette de brouillard.
6. Résoudre l’équation différentielle sur v(t) dans le cas d’une vitesse initiale nulle.
7. On pose z(0) = 0. En déduire l’expression de z(t) en fonction du temps.

2.2 Tir aquatique : frottements quadratiques

Attaquons nous à un problème physique de la plus haute importance : quelle est la portée de tir d’un fusil classique
... utilisé sous l’eau ? L’interaction entre la balle de fusil et l’eau est complexe, mais proposons le modèle simplifié
suivant. On considère un fusil éjectant une balle de masse m = 2 g de diamètre d = 5 mm à la vitesse v0 = 500 m.s−1.
On modélise la force de trainée d’un fluide sur la balle par −→

F = −α.v.−→v où −→v est la vitesse de la balle, v est sa
norme, et α une constante positive donnée par :

α = 1
2ρ.S.Cx (1)

avec ρ la masse volumique du fluide, S la section de la balle, et Cx = 0, 3. Dans cet exercice, on ne prendra en compte
qu’une seule force : celle des frottements.

1. Évaluer le nombre de Reynolds pour valider le choix de modèle de force de frottements. On donne ηair =
1, 8.10−5 Pa.s et ηeau = 10−3 Pa.s.
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2. Déterminer que l’équation différentielle vérifiée par la vitesse est du type :

dv

dt
+ kv2 = 0 (2)

où k est une grandeur qu’on exprimera en fonction de α et m et dont on justifiera la dimension.
3. Sans la résoudre, déduire de cette équation une longueur caractéristique du problème qu’on assimilera alors à

un ordre de grandeur de la portée du tir. Faire l’application numérique dans le cas du tir sous l’eau et du tir
dans l’air. Commenter.

4. On cherche maintenant à estimer l’évolution de la vitesse v(t). Bien que l’équation différentielle sur v soit
non-linéaire, mettre en œuvre une démarche permettant la détermination de v(t).

5. Déduire de l’expression de v(t) la durée t1/2 que met la balle à perdre la moitié de sa vitesse initiale dans l’eau
et dans l’air.

3 Viscosimètre de Couette
Un viscosimètre de Couette est représenté sur la figure ci-dessous. Cet instrument, constitué de deux cylindres de

même axe Oz, permet de mesurer la viscosité d’un fluide. Le cylindre extérieur tourne à vitesse angulaire ω = ω0
constante. Le cylindre intérieur de rayon R = 2, 65 cm subit ainsi des forces visqueuses. Il est maintenu fixe en lui
exerçant une force (opposée aux forces visqueuses), qui est mesurée à l’aide d’un dynamomètre.

Entre les deux cylindres, on place ici une couche d’épaisseur e = 2 mm d’huile de paraffine sur une hauteur H. On
suppose que la vitesse du fluide est de la forme −→v = vθ(r)−→uθ et que le champ de pression est de la forme p(r, z) dans
le champ de pesanteur −g−→uz uniforme.
Les effets de bords sur le fond en z = 0 et à l’interface fluide air z = H sont négligés, ce qui revient à supposer que
l’écoulement est invariant suivant z. Dans ce système de coordonnées cylindriques, la force de viscosité subie par une
particule de fluide en r sous l’action du fluide plus à l’extérieur est :

d
−→
F = ηr

∂

∂r

(
vθ

r

)
dS−→uθ

1. Calculer le moment par rapport à l’axe Oz de la force d
−→
F exercée sur une surface dS−→ur par la partie du fluide

plus éloignée de l’axe.
2. En déduire que le moment associé aux forces surfaciques de viscosité due à la partie du fluide plus éloignée de

l’axe qui s’exercent à une distance r de l’axe par rapport à Oz est Γ(r) = 2πηr3H
∂

∂r

(
vθ

r

)
.

3. Le système est en régime stationnaire. En appliquant le théorème du moment cinétique à la couche de fluide
d’épaisseur dr comprise entre r et r + dr, montrer que Γ(r) est indépendant de r, noté Γ0.

4. Déterminer alors l’expression de vθ(r) en fonction de Γ0 et d’une constante d’intégration.
5. Écrire les deux conditions aux limites. En déduire l’expression de vθ(r) et Γ0 en fonction des données du

problème.
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