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TDE2 : Électrostatique

Savoirs

• Force électrostatique. Champ électrostatique et potentiel électrique. Lignes de champ et surfaces équipotentielles.
• Propriétés d’invariance et symétrie du champ électrique.
• Circulation conservative du champ électrostatique. Opérateur rotationnel. Théorème de Stokes.
• Flux du champ électrique. Opérateur divergence. Théorème d’Ostrogradsky. Théorème de Gauss, équation de
Maxwell-Gauss.
• Condensateur plan infini. Capacité. Densité volumique d’énergie électrostatique.
• Noyau atomique modélisé par une boule uniformément chargée : énergie de constitution de la distribution.
• Analogies formelles entre champ électrostatique et champ gravitationnel.
• Dipôle électrostatique. Moment dipolaire −→p . Potentiel et champ créés dans l’approximation dipolaire.
• Actions subies par un dipôle rigide placé dans un champ électrostatique d’origine extérieure : résultante, moment et
énergie potentielle.
• Approche descriptive des interactions ion-molécule et molécule-molécule. Dipôle induit. Polarisabilité.

Savoir-faire

• Utiliser les relations entre −→
E et V Exos 2, 4. Utiliser le théorème de superposition. Exos 3.2 (thm de Gauss) et 7

(calcul direct).
• Justifier qu’une carte de lignes de champs puisse ou non être celle d’un champ électrostatique ; repérer d’éventuelles
sources du champ et leur signe. Associer l’évolution de la norme de E à l’évasement des tubes de champ loin des
sources. Déduire les lignes équipotentielles d’une carte de champ électrostatique, et réciproquement. Exos 1.1, 1.2,
1.3.
• Utiliser les relations locales div(−→E ) = ρ/ε0 et −→rot(−→E ) = −→0 . Exos 2.2, 2.3.
• Exploiter les propriétés de symétrie des sources pour prévoir des propriétés du champ créé. Exos 1.3, 3.1, 2.1, 3, 4,
5, 7.
• Choisir une surface adaptée et utiliser le théorème de Gauss. Exos 3.1, 2.1, 3, 4, 5.
• Condensateur : Établir l’expression du champ créé. Déterminer la capacité du condensateur. Déterminer l’expression
de la densité volumique d’énergie électrostatique dans le cas du condensateur plan à partir de celle de l’énergie du
condensateur. Exos 4 et 8.
• Noyau atomique : Exprimer l’énergie de constitution d’un noyau en construisant le noyau par adjonction progressive
de charges apportées de l’infini. Exos 5.
• Utiliser les analogies entre les forces électrostatique et gravitationnelle pour déterminer l’expression de champs
gravitationnels. Exos 3.3.
• Démo de cours : calcul de l’expression de V et −→

E d’un dipôle électrostatique dans le cadre de l’approximation
dipolaire. Décrire les conditions de l’approximation dipolaire. Cf cours.
• Comparer la décroissance avec la distance du champ et du potentiel dans le cas d’une charge ponctuelle et dans le
cas d’un dipôle. Tracer l’allure des lignes de champ.Cf cours.
• Utiliser les expressions fournies de l’énergie potentielle Ep (exos 8), de la résultante −→

F (exo 9) et du moment −→
M (exo

8).
• Prévoir qualitativement l’évolution d’un dipôle dans un champ d’origine extérieure. Exos 8 et 9.
• Expliquer qualitativement la solvatation des ions dans un solvant polaire. Cf cours.
• Exprimer la polarisabilité d’un atome en utilisant le modèle de Thomson. Associer la polarisabilité et le volume de
l’atome en ordre de grandeur. Exo 6.

Interro de cours

1. Soit une charge ponctuelle q en O, centre d’un repère sphérique. Donner le champ électrostatique −→
E créé à

distance r et le potentiel. Tracer les lignes de champ et équipotentielles.
2. Donner l’unité du champ électrique. Citer quelques ODG.
3. Donner la relation entre le champ électrostatique −→

E et le potentiel V . Que dire de la circulation sur C fermé et
de la valeur du −→rot dans ce cas ?

4. Que vaut la circulation du champ électrostatique entre deux points A et B ?
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5. Donner le théorème de Gauss et l’équation de Maxwell-Gauss.
6. Donner le théorème de Gauss pour la gravitation.
7. Donner la capacité d’un condensateur plan en fonction de ε0 et de ses mensurations.
8. Donner l’expression de la densité volumique d’énergie électrostatique.
9. Soit un dipôle électrostatique constitué d’une charge q > 0 au point A et d’une charge −q au point B. Exprimer

son moment dipolaire −→p .
10. Tracer l’allure des lignes de champ et des équipotentielles dans l’approximation dipolaire.
11. Qualitativement, qu’arrive-t-il à un dipôle rigide −→p dans un champ extérieur −→

E ?

1 Topographie du champ électrostatique

1.1 Un système à déterminer

Considérons une distribution de charges dont les lignes de champ et les
surfaces équipotentielles sont partiellement indiquées sur les deux figures sui-
vantes.

1. Repérer, en justifiant, quelles lignes correspondent aux lignes de champ et quelles lignes correspondent aux
équipotentielles.

2. Repérer les sources des champ, préciser si elles sont de même signe ou de signe opposé.
3. On considère qu’au moins une des deux sources porte une charge positive. Indiquer le sens de −−→grad(V ) sur la

carte des équipotentielles. Orienter les lignes de champ sur la figure associée.

1.2 Possibilité d’un champ électrostatique

Les figures suivantes représentent, dans le plan (O, x, y), quelques cartes
de champs bidimensionnels de la forme : −→

E (x, y, z) = Ex(x, y, z)−→u x +
Ey(x, y, z)−→u y.

Préciser dans chaque cas s’il peut s’agir d’un champ électrostatique. Si oui,
indiquer si des charges sont présentes dans la région représentée et préciser
leur signe.

1.3 Symétrie du champ électrostatique

On considère un cerceau d’axe Oz portant la charge q uniformément ré-
partie. On a déjà tracé le champ électrostatique en M et en P.

1. Justifier que la direction de −→
E (M) est bien suivant −−→±ez. À partir de la

lecture de son sens sur le schéma, en déduire le signe de q.
2. Justifier à quel plan appartient −→

E (P ).
3. Représenter le champ en M’, Q et Q’.
4. Que dire du champ en O ?
5. Dans un plan contenant Oz, tracer l’allure des lignes de champ, ainsi

que quelques surfaces équipotentielles.
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2 Plusieurs manières de calculer un champ et un potentiel
Considérons une distribution de charges à symétrie plane, infinie dans les directions (Oy) et (Oz) définie par la

densité volumique de charges, avec a > 0 :
ρ(x) = 0 pour x < −a
ρ(x) = ρ0 pour −a < x < a
ρ(x) = 0 pour a < x

question préliminaire : À l’aide des invariances et symétrie, déterminer que −→
E (M) = E(x)−→ex avec E(x) impaire, et

que V (M) = V (x) avec V (x) paire.

2.1 Par le théorème de Gauss

1. Rappeler le théorème de Gauss. Quelle surface de Gauss choisir pour le système étudié ici ?
2. Déterminer −→

E (M) dans tout l’espace à l’aide du théorème de Gauss.
3. Comment sont reliés le potentiel V et le champ électrostatique −→

E ? En déduire le potentiel V (x) dans tout
l’espace en fonction de constantes d’intégrations.

4. En utilisant la parité de V (x) et sa continuité, déterminer V (x) à une seule constante près.

2.2 Par équation de Maxwell-Gauss

5. Rappeler l’équation de Maxwell-Gauss. Que devient-elle pour cette géométrie dans les trois domaines de x ?
6. En déduire l’expression de −→

E (M) dans les trois domaines en fonction de constantes d’intégrations.
7. Déterminer les constantes d’intégrations en utilisant : la valeur du champ en x = 0 ainsi que la continuité du

champ dans une répartition volumique de charge.
8. Comment sont reliés le potentiel V et le champ électrostatique −→

E ? En déduire le potentiel V (x) dans tout
l’espace en fonction de constantes d’intégrations.

9. En utilisant la parité de V (x) et sa continuité, déterminer V (x) à une seule constante près.

2.3 Par équation de Poisson

10. Rappeler l’équation de Maxwell-Gauss ainsi que la relation entre le champ électrostatique et le potentiel. En
déduire l’équation de Poisson ∆V + ρ/ε0 = 0.

11. En déduire l’expression de V (x) dans les trois domaines en fonction de constantes d’intégrations.
12. En déduire l’expression du champ dans les trois domaines.

3 Applications du théorème de Gauss

3.1 Boule non uniforme

Déterminer le champ créé par une boule de rayon R de densité de charge ρ(r) = ρ0(1 − r2/R2).

3.2 Champ dans une cavité cylindrique

Considérons un cylindre infini d’axe Oz de densité volumique de charge ρ uniforme. On creuse dans ce cylindre
une cavité cylindrique infinie vide, d’axe O′z parallèle à Oz mais non confondus.

1. Version non guidée : Montrer que le champ électrostatique est uniforme dans la cavité.
2. Version guidée :

(a) À partir du théorème de superposition, décrire le système à l’aide de deux cylindres homogène de densités
de charge opposées.

(b) À l’aide du théorème de Gauss, exprimer le champ créé à l’intérieur d’un cylindre infini seul. Remarquer
que r−→er = −−→

HM où H est le projeté orthogonal de M sur l’axe.
(c) En déduire finalement que le champ dans la cavité vaut −→

E (M) = ρ

2ε0

−−→
OO′.
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3.3 Astre à géométrie sphérique

Un astre de rayon extérieur R est constitué d’un noyau homogène de masse volumique ρn de rayon Rn < R entouré
d’un manteau homogène de masse volumique ρm dans la partie Rn < r < R. On note m la masse totale de l’astre, et
mn la masse du noyau.

1. Exprimer mn et m en fonction de Rn, R, ρn et ρm.
2. À partir des symétries et invariances de la distribution de masses, déterminer que le champ gravitationnel vaut−→

G (M) = G(r)−→er .
3. En déduire le champ dans tout l’espace à l’aide du théorème de Gauss pour la gravitation.
4. Tracer l’allure de G(r).

4 Condensateur plan et sphérique
1. Calculer la capacité d’un condensateur plan dont les armatures de surface S sont séparées d’une distance e.
2. Calculer la capacité d’un condensateur sphérique de rayon intérieur R1 chargé Q et de rayon extérieur R2

chargé −Q. Que retrouve-t-on dans la limite où e = R2 − R1 devient très faible devant R1 ?

5 Énergie de constitution d’un noyau atomique
On modélise le noyau comme une boule de rayon R chargée uniformément de densité volumique de charge ρ. On

note la charge totale Q = ρ.4πR3/3.

1. À l’aide du théorème de Gauss, déterminer le champ électrique créé par la sphère. En déduire le potentiel
électrique dans tout l’espace. Commenter l’expression du champ en dehors de la boule.

2. Définir l’énergie électrostatique de constitution d’un noyau atomique. Justifier son signe.
3. Par analyse dimensionnelle, déterminer l’énergie E nécessaire pour former un noyau de charge Q de rayon R.

en déduire un ordre de grandeur.
4. Exprimer E par ajout progressif de charges provenant de l’infini.

6 Modèle de Thomson de la polarisabilité
Le modèle atomique de Thomson (dit aussi modèle de plum pudding) fut proposé par J.J. Thomson, qui découvrit

l’électron en 1898. Il fut proposé en 1904 avant la découverte du noyau atomique. Dans ce modèle, l’atome est
composé d’électrons (que J.J. Thomson continuait à appeler « corpuscules », bien que George Stoney eut proposé la
dénomination d’électrons en 1894), plongés dans une « soupe » de charge positive pour équilibrer la charge négative
des électrons. Les électrons (comme nous les connaissons aujourd’hui) étaient considérés comme dispersés au sein de
l’atome. On applique ce modèle au cas de l’atome d’hydrogène en prenant un rayon a = 25 pm.

1. En précisant la méthode, déterminer l’expression de la force exercée par le noyau sur un électron se trouvant
à une distance r du centre de l’atome.

2. Quelle est alors la position d’équilibre pour l’électron ?
3. Cet atome est placé dans une zone de champ extérieur −→

E0 = E0
−→ex. Déterminer la nouvelle position d’équilibre

pour l’électron.
4. Montrer qu’on peut associer à l’atome un moment dipolaire induit −−→pind qu’on exprimera en fonction de a.
5. En déduire la polarisabilité de l’atome α telle que −−→pind = αε0

−→
E0. Relier cette polarisabilité au volume de l’atome.

6. Comment est modélisé l’électron désormais ?
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7 Positions d’équilibre

8 Dipôle dans un condensateur
Un condensateur plan est constitué de deux armatures métalliques très fines, de surface S, situées en x = 0 et en

x = e. L’isolant entre les deux armatures a une permittivité ϵ0. On néglige les effets de bord. Les densités surfaciques
de charges portées par les deux armatures sont uniformes et opposées.
Pour un dipôle rigide −→p placé dans un champ électrique extérieur −→

E , l’énergie potentielle est Ep = −−→p .
−→
E et le couple

subi par ce dipôle est −→Γ = −→p ∧
−→
E .

1. Déterminer le champ électrostatique à l’intérieur du condensateur en utilisant le champ créé par un plan infini.
2. On place à l’intérieur du condensateur un dipôle électrostatique de moment d’inertie J en un point O d’abscisse

x = e/2. Il peut tourner autour de l’axe Oz mais pas se déplacer. Déterminer par deux méthodes les positions
d’équilibre.

3. Étudier par deux méthodes la stabilité de l’équilibre.
4. Établir par deux méthodes l’équation différentielle en θ liée à la rotation du dipôle autour de l’axe Oz. Déter-

miner la période des petits mouvements autour de la position d’équilibre stable.

9 Forces entre une charge et un dipôle
Un charge ponctuelle q est en O. Un dipôle −→p est en M à une distance r de O. La force subie par un dipôle −→p dans

un champ extérieur −→
E est −→

F =
(−→p .

−−→grad
) −→

E . En coordonnées cartésiennes, on donne
(−→p .

−−→grad
)

= px
∂

∂x
+py

∂

∂y
+pz

∂

∂z

à appliquer à chaque composante de −→
E pour obtenir −→

F .

1. Si le dipôle est libre de tourner sur lui-même, comment s’oriente-t-il par rapport à la charge ?
2. On suppose désormais que le dipôle s’est orienté dans la position stable de la question précédente. Pour

simplifier, on orientera l’axe Ox selon cette direction. Démontrer que la force subie par le dipôle dans le
champ de la charge vaut −→

F c→d = − 2pq

4πε0x3
−→ex. Commenter sa direction.

3. Le dipôle −→p placé en M créé en O le champ électrique :

−→
Ed = 1

4πε0

3
(−→p .

−−→
MO

) −−→
MO − OM2−→p

OM5

En déduire l’expression de la force −→
F d→c du dipôle sur la charge. Commenter sa direction.

4. Comparer ces deux forces et conclure.
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