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TDE2 : Electrostatique

Savoirs

e Force électrostatique. Champ électrostatique et potentiel électrique. Lignes de champ et surfaces équipotentielles.
e Propriétés d’invariance et symétrie du champ électrique.

e Circulation conservative du champ électrostatique. Opérateur rotationnel. Théoréme de Stokes.

e Flux du champ électrique. Opérateur divergence. Théoreme d’Ostrogradsky. Théoréeme de Gauss, équation de
Maxwell-Gauss.

e Condensateur plan infini. Capacité. Densité volumique d’énergie électrostatique.

e Noyau atomique modélisé par une boule uniformément chargée : énergie de constitution de la distribution.

e Analogies formelles entre champ électrostatique et champ gravitationnel.

e Dipdle électrostatique. Moment dipolaire ? Potentiel et champ créés dans I'approximation dipolaire.

e Actions subies par un dipoéle rigide placé dans un champ électrostatique d’origine extérieure : résultante, moment et
énergie potentielle.

e Approche descriptive des interactions ion-molécule et molécule-molécule. Dipole induit. Polarisabilité.

Savoir-faire

o Utiliser les relations entre E et V Exos @ . Utiliser le théoréme de superposition. Ezos (thm de Gauss) etlﬂ
(calcul direct).

o Justifier qu’une carte de lignes de champs puisse ou non étre celle d’un champ électrostatique ; repérer d’éventuelles
sources du champ et leur signe. Associer ’évolution de la norme de E & I’évasement des tubes de champ loin des
sources. Déduire les lignes équipotentielles d’une carte de champ électrostatique, et réciproquement. Ezos
3.

e Utiliser les relations locales div(ﬁ) = p/eg et a(ﬁ) — 0. Eros .

e Exploiter les propriétés de symétrie des sources pour prévoir des propriétés du champ créé. Ezos[1.3, 3, [
B0

e Choisir une surface adaptée et utiliser le théoréme de Gauss. Ezos[3.]] [2.1, [3, [{ [3

e Condensateur : Etablir 'expression du champ créé. Déterminer la capacité du condensateur. Déterminer 1’expression
de la densité volumique d’énergie électrostatique dans le cas du condensateur plan a partir de celle de I’énergie du
condensateur. Ezos[{] et[§

e Noyau atomique : Exprimer ’énergie de constitution d’un noyau en construisant le noyau par adjonction progressive
de charges apportées de l'infini. Ezos[5

e Utiliser les analogies entre les forces électrostatique et gravitationnelle pour déterminer I’expression de champs
gravitationnels. Fzos[3.3

e Démo de cours : calcul de I'expression de V et E d’un dipole électrostatique dans le cadre de ’approximation
dipolaire. Décrire les conditions de I'approximation dipolaire. Cf cours.

e Comparer la décroissance avec la distance du champ et du potentiel dans le cas d’une charge ponctuelle et dans le
cas d’un dipdle. Tracer 'allure des lignes de champ. Cf cours.

e Utiliser les expressions fournies de 1’énergie potentielle &, (exos@), de la résultante ? (exo @ et du moment /ﬁ (exo
3.

e Prévoir qualitativement ’évolution d’un dip6le dans un champ d’origine extérieure. Ezos[§ et[9

e Expliquer qualitativement la solvatation des ions dans un solvant polaire. Cf cours.

e Exprimer la polarisabilité d’un atome en utilisant le modeéle de Thomson. Associer la polarisabilité et le volume de
I'atome en ordre de grandeur. Ezo [0

Interro de cours
1. Soit une charge ponctuelle ¢ en O, centre d’un repere sphérique. Donner le champ électrostatique E créé a
distance r et le potentiel. Tracer les lignes de champ et équipotentielles.
2. Donner I'unité du champ électrique. Citer quelques ODG.

3. Donner la relation entre le champ électrostatique ﬁ et le potentiel V. Que dire de la circulation sur C fermé et
de la valeur du rot dans ce cas?

4. Que vaut la circulation du champ électrostatique entre deux points A et B?
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1 Topographie du champ électrostatique

1.1 Un systéme a déterminer

Considérons une distribution de charges dont les lignes de champ et les
surfaces équipotentielles sont partiellement indiquées sur les deux figures sui-

vantes.
1.

Donner le théoreme de Gauss et ’équation de Maxwell-Gauss.

Donner le théoreme de Gauss pour la gravitation.

Donner la capacité d’un condensateur plan en fonction de gy et de ses mensurations.
Donner I'expression de la densité volumique d’énergie électrostatique.

Soit un dipole électrostatique constitué d’une charge ¢ > 0 au point A et d’une charge —q au point B. Exprimer
son moment dipolaire ?

Tracer I'allure des lignes de champ et des équipotentielles dans ’approximation dipolaire.

Qualitativement, qu’arrive-t-il & un dipole rigide ? dans un champ extérieur ﬁ ?

Repérer, en justifiant, quelles lignes correspondent aux lignes de champ et quelles lignes correspondent aux
équipotentielles.

. Repérer les sources des champ, préciser si elles sont de méme signe ou de signe opposé.

. On considére qu’au moins une des deux sources porte une charge positive. Indiquer le sens de grad(V') sur la

carte des équipotentielles. Orienter les lignes de champ sur la figure associée.

1.2 Possibilité d’un champ électrostatique  [IIII777 iy
““““““ 177 ~NN\N
""""" BEEALEE
Les figures suivantes représentent, dans leglan (O,x,y), quelques cartes CTIIIIII [ldaedrd 2
******** NN\ rys/ Yy
de champs bidimensionnels de la forme : E(x,y,2) = Ey(x,y,2)Uy +  E====e== e Baamooer, L———0
(a) (b) c.
Ey(x,y,2) . , y
Préciser dans chaque cas s’il peut s’agir d’un champ électrostatique. Si oui, T AN B INNN N\
- . . . ) ) P St AR SNz
indiquer si des charges sont présentes dans la région représentée et préciser CIIIIIID EITOI=S EE;:%&E
] s s s s o s s S~ /e NN
leur signe. CooToon i ::::\‘ } i ;jj //;‘145“:"\\\\‘
(d) (e) ' ()
1.3 Symétrie du champ électrostatique
. s . , . z
On considére un cerceau d’axe Oz portant la charge ¢ uniformément ré-
. JEBN 3 3 . -
partie. On a déja tracé le champ électrostatique en M et en P. E(M) E(P)
. . . . . — 3 . A
1. Justifier que la direction de E(M ) est bien suivant +e,. A partir de la /
lecture de son sens sur le schéma, en déduire le signe de q. P e M P
2. Justifier a quel plan appartient ﬁ(P)
3. Représenter le champ en M’, Q et Q. I e
4. Que dire du champ en O7? A/ N
{ \
5.

Dans un plan contenant Oz, tracer 'allure des lignes de champ, ainsi o7 /
que quelques surfaces équipotentielles. —_/
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2 Plusieurs maniéres de calculer un champ et un potentiel

Considérons une distribution de charges a symétrie plane, infinie dans les directions (Oy) et (Oz) définie par la
densité volumique de charges, avec a > 0 :

0 pour z< —a
p(r) =pp pour —a<z<a

0 pour a<zx
question préliminaire : A laide des invariances et symétrie, déterminer que E(M ) = E(a:)e_lE avec E(z) impaire, et
que V(M) =V (x) avec V(z) paire.

2.1 Par le théoréme de Gauss

1. Rappeler le théoreme de Gauss. Quelle surface de Gauss choisir pour le systéme étudié ici?
2. Déterminer E(M ) dans tout I’espace a l'aide du théoréme de Gauss.

3. Comment sont reliés le potentiel V' et le champ électrostatique ﬁ? En déduire le potentiel V(x) dans tout
I’espace en fonction de constantes d’intégrations.

4. En utilisant la parité de V(x) et sa continuité, déterminer V(z) a une seule constante pres.

2.2 Par équation de Maxwell-Gauss

5. Rappeler I'équation de Maxwell-Gauss. Que devient-elle pour cette géométrie dans les trois domaines de x 7
6. En déduire I'expression de E(M ) dans les trois domaines en fonction de constantes d’intégrations.

7. Déterminer les constantes d’intégrations en utilisant : la valeur du champ en x = 0 ainsi que la continuité du
champ dans une répartition volumique de charge.

8. Comment sont reliés le potentiel V et le champ électrostatique ﬁ? En déduire le potentiel V(z) dans tout
I’espace en fonction de constantes d’intégrations.

9. En utilisant la parité de V(x) et sa continuité, déterminer V' (z) a une seule constante pres.

2.3 Par équation de Poisson

10. Rappeler I’équation de Maxwell-Gauss ainsi que la relation entre le champ électrostatique et le potentiel. En
déduire ’équation de Poisson AV + p/egop = 0.

11. En déduire l'expression de V(x) dans les trois domaines en fonction de constantes d’intégrations.

12. En déduire I'expression du champ dans les trois domaines.

3 Applications du théoréeme de Gauss

3.1 Boule non uniforme

Déterminer le champ créé par une boule de rayon R de densité de charge p(r) = po(1 — 72/ R?).

3.2 Champ dans une cavité cylindrique

Considérons un cylindre infini d’axe Oz de densité volumique de charge p uniforme. On creuse dans ce cylindre
une cavité cylindrique infinie vide, d’axe O’z paralléle & Oz mais non confondus.

1. Version non guidée : Montrer que le champ électrostatique est uniforme dans la cavité.

2. Version guidée :
(a) A partir du théoréme de superposition, décrire le systéme & 'aide de deux cylindres homogene de densités
de charge opposées.
(b) A Daide du théoréme de Gauss, exprimer le champ créé a lintérieur d'un cylindre infini seul. Remarquer
que re; = HM o H est le projeté orthogonal de M sur 'axe.

, . ., B p —)/
(c) En déduire finalement que le champ dans la cavité vaut E (M) = 2—00 .
€0
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3.3 Astre a géométrie sphérique

Un astre de rayon extérieur R est constitué d’un noyau homogene de masse volumique p,, de rayon R,, < R entouré
d’un manteau homogeéne de masse volumique p,, dans la partie R, < r < R. On note m la masse totale de ’astre, et
my, la masse du noyau.

1. Exprimer m, et m en fonction de R,, R, pn €t pm-

2. A partir des symétries et invariances de la distribution de masses, déterminer que le champ gravitationnel vaut
G (M) =G(r)e.

3. En déduire le champ dans tout I'espace a l'aide du théoréme de Gauss pour la gravitation.

4. Tracer l'allure de G(r).

4 Condensateur plan et sphérique

1. Calculer la capacité d’un condensateur plan dont les armatures de surface S sont séparées d’une distance e.

2. Calculer la capacité d’un condensateur sphérique de rayon intérieur R; chargé ) et de rayon extérieur Ro
chargé —@Q. Que retrouve-t-on dans la limite ou e = Ry — Ry devient tres faible devant R; 7

5 Energie de constitution d’un noyau atomique

On modélise le noyau comme une boule de rayon R chargée uniformément de densité volumique de charge p. On
note la charge totale Q = p.4wR3/3.

1. A Taide du théoréme de Gauss, déterminer le champ électrique créé par la sphére. En déduire le potentiel
électrique dans tout ’espace. Commenter ’expression du champ en dehors de la boule.

2. Définir ’énergie électrostatique de constitution d’un noyau atomique. Justifier son signe.

3. Par analyse dimensionnelle, déterminer 1’énergie £ nécessaire pour former un noyau de charge () de rayon R.
en déduire un ordre de grandeur.

4. Exprimer &£ par ajout progressif de charges provenant de 'infini.

6 Modele de Thomson de la polarisabilité

Le modeéle atomique de Thomson (dit aussi modele de plum pudding) fut proposé par J.J. Thomson, qui découvrit
I’électron en 1898. Il fut proposé en 1904 avant la découverte du noyau atomique. Dans ce modele, I'atome est
composé d’électrons (que J.J. Thomson continuait & appeler « corpuscules », bien que George Stoney eut proposé la
dénomination d’électrons en 1894), plongés dans une « soupe » de charge positive pour équilibrer la charge négative
des électrons. Les électrons (comme nous les connaissons aujourd’hui) étaient considérés comme dispersés au sein de
I’atome. On applique ce modeéle au cas de ’atome d’hydrogéne en prenant un rayon a = 25 pm.

1. En précisant la méthode, déterminer I'expression de la force exercée par le noyau sur un électron se trouvant
a une distance r du centre de ’atome.

2. Quelle est alors la position d’équilibre pour 1’électron ?

H
3. Cet atome est placé dans une zone de champ extérieur Ey = Eye,. Déterminer la nouvelle position d’équilibre
pour ’électron.

4. Montrer qu’on peut associer a I’atome un moment dipolaire induit p—in_d> qu’on exprimera en fonction de a.
%
5. En déduire la polarisabilité de 'atome « telle que m = aeg k. Relier cette polarisabilité au volume de ’atome.

6. Comment est modélisé 1’électron désormais ?
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7 Positions d’équilibre

Une charge Q > 0 est uniformément répartie sur un cercle de rayon a, d’axe (Oz) vertical ascendant et de
centre 0. On note A la densité linéique de charge associée.

Montrer que le champ électrostatique est de la forme ?{ M)=E,(r,z)u, +E,(r,z)u.. Que peut-on 2
ajouter lorsque le point M se trouve sur ['axe (0z)?
Calculer le champ électrostatique F enun point M de I'axe (Oz) et tracer le graphe de E,(z). On

donne le graphe de la fonetion f @ u— u/(u” + 1) (figure 12.16). '

Figure 12.15. Cercle d'axe (0z) uniformément chargé.

A flu)

particule de masse m et de charge g > 0 est astreinte a se déplacer sur I'axe (Oz). Déterminer
sitions d'équilibre éventuelles. On posera:

4ne,a’
qQ

sarticule est écartée de sa position d’équilibre et abandonnée sans vitesse initiale. Déterminer la
marure et les caractéristiques de son mouvement. Conclure surla stabilité des positions d'équilibre.

k=mg

Figure 12.16. Graphe de la fonction [ u— w/{u® + 172

8 Dipdle dans un condensateur

Un condensateur plan est constitué de deux armatures métalliques tres fines, de surface S, situées en x = 0 et en
x = e. Lisolant entre les deux armatures a une permittivité €y. On néglige les effets de bord. Les densités surfaciques
de charges portées par les deux armatures sont uniformes et opposées.
Pour un dipole rigide ? placé dans un champ électrique extérieur ﬁ, I’énergie potentielle est &£, = —?ﬁ et le couple

subi par ce dipéle est ? = ? A ﬁ
1. Déterminer le champ électrostatique a l'intérieur du condensateur en utilisant le champ créé par un plan infini.

2. On place a I'intérieur du condensateur un dipodle électrostatique de moment d’inertie J en un point O d’abscisse
x = e/2. Il peut tourner autour de ’axe Oz mais pas se déplacer. Déterminer par deux méthodes les positions
d’équilibre.

3. Etudier par deux méthodes la stabilité de équilibre.

4. Etablir par deux méthodes D'équation différentielle en 6 liée & la rotation du dipole autour de 'axe Oz. Déter-
miner la période des petits mouvements autour de la position d’équilibre stable.

9 Forces entre une charge et un dipole

Un charge ponctuelle ¢ est en O. Un dipole ? est en M a une distance r de O. La force subie par un dipdle ? dans

un champ extérieur E est ? = (?gﬁ}i) ﬁ En coordonnées cartésiennes, on donne (?@) = pzag +pya2 +pz8g
x Y z

a appliquer a chaque composante de E pour obtenir ?
1. Si le dipole est libre de tourner sur lui-méme, comment s’oriente-t-il par rapport a la charge?

2. On suppose désormais que le dipdle s’est orienté dans la position stable de la question précédente. Pour

simplifier, on orientera ’axe Oz selon cette direction. Démontrer que la force subie par le dipdle dans le

2pq

champ de la charge vaut ?C_Hi = — er. Commenter sa direction.
dmegxd

3. Le dipdle ? placé en M créé en O le champ électrique :

1 3 (?W) m — oM%Yy

_>
E =
d 471'60 OM5

En déduire I'expression de la force ?d—w du dipole sur la charge. Commenter sa direction.

4. Comparer ces deux forces et conclure.
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