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TDE4 : Équations de Maxwell

Savoirs

• Force de Lorentz. Équations locales de Maxwell. Formes intégrales. Cas statique. Compatibilité avec conservation
de la charge.
• Vecteur de Poynting. Densité volumique d’énergie électromagnétique. Équation locale de Poynting.
• Équations de propagation des champs −→

E et −→
B dans le vide. Caractère non instantané des interactions électroma-

gnétiques. Relation ε0µ0c2 = 1.
• ARQS « magnétique » : loi des nœuds et théorème d’Ampère.

Savoir-faire

• Utiliser les équations de Maxwell sous forme locale ou intégrale (exos 2, 3, 4, 5).
⋆ démo de cours : Démontrer l’équation de conservation de la charge à partir des équations de Maxwell. On rappelle

la propriété à connaître div
(−→rot−→A

)
= 0 pour tout champ vectoriel −→

A .

• Utiliser les grandeurs énergétiques pour faire des bilans d’énergie électromagnétique. Tous les exos.
⋆ démo de cours : En effectuant un bilan sur une tranche dx d’un système à géométrie unidimensionnelle carté-

sienne, démontrer l’équation de conservation de l’énergie électromagnétique ∂jem/∂x + ∂uem/∂t = −−→
j .

−→
E .

⋆ démo de cours : Utiliser les équations de Maxwell pour obtenir une équation de bilan local. On utilisera la relation
div

(−→
A ∧

−→
B

)
= −→

B .
−→rot−→A −

−→
A.

−→rot−→B .

• Associer le vecteur de Poynting et l’intensité lumineuse utilisée en optique.
⋆ ex : Par conservation du flux de −→

R , justifier que l’intensité lumineuse d’une onde sphérique s’atténue en r−2. Que
dire de l’atténuation avec la distance pour un système de chauffage, parfois utilisé dans des lieux publics, consistant
en un cylindre chaud émettant principalement dans l’infra-rouge ?

• Établir les équations de propagation. Interpréter c.
⋆ démo de cours : Établir les équations de propagation de −→

E et −→
B dans le vide. On rappelle la relation −→rot

(−→rot
(−→

A
))

=
−−→grad

(
div(−→A )

)
− ∆−→

A .

• Discuter la légitimité du régime quasistationnaire.
⋆ ex : Pour un signal de fréquence 1 MHz, quelle est l’ODG de la taille maximale d’un circuit électrique pour que

l’ARQS soit valide ?

• Dans le cadre de l’ARQS magnétique, simplifier les équations de Maxwell et l’équation de conservation de la charge,
utiliser les formes simplifiées (exos 2, 4).

Interro de cours

1. Donner les équations de Maxwell sous forme locale et sous forme intégrale.
2. Soit un champ scalaire f , que vaut −→rot

(−−→grad (f)
)

? Soit un champ vectoriel −→
A , que vaut div

(−→rot
(−→

A
))

?
3. Donner l’expression de la puissance volumique cédée par le champ aux charges.
4. Donner la densité volumique d’énergie du champ électromagnétique.
5. Donner l’expression du vecteur de Poynting et l’équation de conservation de l’énergie du champ.
6. Donner l’équation de propagation du champ électrique −→

E dans le vide. Et pour −→
B ? Quel est le nom de ce type

d’équation ?
7. Donner une expression qui relie la célérité c des ondes électromagnétiques dans le vide aux grandeurs ε0 et µ0.
8. Donner l’équation de conservation de la charge dans le cadre de l’ARQS magnétique.
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1 Bilan d’énergie dans un câble en régime permanent

Considérons un câble cylindrique de rayon a d’axe z parcouru par une densité de courant −→
j = j−→ez uniforme et

constante. Le matériau est de conductivité électrique σ. L’objectif de l’exercice est d’interpréter la puissance reçue par
le matériau en terme de bilan d’énergie électromagnétique.

1. Exprimer l’intensité I en fonction des données.
2. Exprimer le champ −→

E dans tout l’espace.
3. Exprimer le champ −→

B au bord du câble en r = a.
4. Exprimer le vecteur de Poynting puis calculer le flux d’énergie électromagnétique entrant dans un câble de

longueur h.
5. Interpréter ce résultat en reconnaissant la résistance du câble.
6. Exprimer le champ −→

B dans le câble. En déduire l’énergie électromagnétique totale contenue dans un câble de
longueur h.

2 Bilan d’énergie dans un solénoïde
Un solénoïde de longueur ℓ et d’axe Oz comprend N = nℓ spires circulaires de rayon a parcourues par un courant

d’intensité I(t). On se place dans le cadre de l’ARQS magnétique et pour ℓ ≫ a.

1. Dans le cadre d’un courant statique, on montre que −→
B = µ0nI−→ez par le théorème d’Ampère. Cette relation

est-elle toujours valable ? Est-elle valable dans le cadre de cet exercice ?
2. À partir d’invariance et de symétrie, déterminer que le champ électrique est de la forme −→

E = Eθ(r)−→eθ .

3. Rappeler la loi de Faraday sous la forme avec circulation de −→
E . Chercher le champ électrique en choisissant un

contour judicieux.
4. Variante de la question précédente : calculer le champ électrique par une équation de Maxwell sous forme locale.

On donne −→rot(E−→uθ) = (−∂E/∂z)−→ur + ((1/r)∂(rE)/∂r)−→uz.
5. En déduire la puissance électromagnétique entrante Pem dans le solénoïde.
6. Exprimer l’énergie magnétique Um du solénoïde. Comparer dUm/dt à Pem et commenter.

3 Bilan de puissance dans un condensateur
On considère un condensateur plan formé de deux disques de rayon a distants de e ≪ a, donc on négligera les effets

de bords. Il est soumis à une tension variable U(t). Dans ce cadre, on admet que le champ électrique est uniforme
entre les plaques et vaut −→

E = −(U/e)−→uz avec −→uz dans le même sens que la tension U(t).

1. Justifier que −→
B (M) = B(r, z)−→uθ entre les armatures du condensateur.

2. Démontrer que sur le bord du condensateur (r = a), le champ magnétique vaut : −→
B = − ε0µ0a

2e
dU
dt

−→uθ.
3. Calculer le vecteur de Poynting et interpréter sons sens.
4. Calculer la puissance totale entrante et interpréter.

4 Câble coaxial
Un câble coaxial est constitué de deux cylindres métalliques creux, de même axe Oz, de rayons R1 et R2. Ailleurs

que sur les deux conducteurs, on considère que le milieu a les propriétés magnétiques du vide. Les cylindres sont
parcourus par des courants répartis de façon uniforme sur sur leur surface et en sens inverse l’un de l’autre : I(t, z) =
I0 cos (ωt − kz). Il existe alors dans tout l’espace un champ électromagnétique de la forme suivante :

−→
B = B(r, θ, z, t)−→eθ et −→

E = E(r, θ, z, t)−→er
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1. Justifier les vecteurs directeurs des champs.
2. En utilisant le théorème d’Ampère, déterminer l’expression du champ magnétique dans les trois régions de

l’espace. Pour cette question, on se placera dans l’approximation des régimes quasi-permanents (ARQP).

3. En utilisant l’équation de Maxwell-Faraday, trouver une relation entre ∂B

∂t
et ∂E

∂z
. En déduire l’expression du

champ électrique.
4. Montrer que la relation de Maxwell-Ampère est vérifiée si k et ω vérifient une relation simple à déterminer.
5. Déterminer le vecteur de Poynting et en déduire la direction de propagation de l’énergie. Calculer le flux du

vecteur de Poynting à travers une section droite du câble.
6. Déterminer la densité volumique d’énergie et en déduire la vitesse de propagation de l’énergie.

Données :
−→rot (−→v (M)) =

(1
r

∂vz

∂θ
− ∂vθ

∂z

)
−→er +

(
∂vr

∂z
− ∂vz

∂r

)
−→eθ +

(1
r

∂(rvθ)
∂r

− 1
r

∂vr

∂θ

)
−→ez

5 Courants de Foucault et feuilletage
Un flux magnétique variable à travers une masse de matériau conducteur y génère des courants, appelés courants

de Foucault, qui dissipent alors de l’énergie par effet Joule. Le chauffage par induction fait partie des applications
où on tire profit de ce phénomène. Au contraire, les courants de Foucault génèrent des pertes dans les dispositifs
conducteurs soumis à des champs magnétiques variables (comme par exemple les matériaux ferromagnétiques au cœur
des transformateurs).

Considérons une plaque infinie entre les plans z = z0 − a et z = z0 + a constituée d’un matériau de conductivité σ.
Elles est soumise à un champ magnétique extérieur uniforme −→

B = B0 cos(ωt)−→ux devant lequel on négligera le champ
induit généré par les courants de Foucault. On admet que le champ électrique est de la forme −→

E = E(z)−→uy et qu’il est
nul dans le plan z = z0.

1. Déterminer E(z) à l’aide de l’équation de Maxwell-Faraday.
2. En déduire la densité de courant induite −→

j .
3. Montrer que la valeur moyenne de la puissance volumique transmise au matériau par le champ vaut < Pv >=

σB2
0ω2(z − z0)2/2.

4. En déduire la puissance totale dissipée dans un bloc de métal d’épaisseur 2a suivant z, de largeur b ≫ a suivant
x, et de longueur L ≫ a suivant y. On trouve P ∝ a3.

5. On feuillette le matériau en le coupant en N tranches d’épaisseur 2a/N séparées par une très mince couche
d’isolant. Expliquer l’intérêt de ce feuilletage.

6 Rayonnement d’une particule radioactive
Une petite bille de césium radioactive assimilée à un point et initialement neutre, émet à compter de t = 0, des

électrons de manière isotrope (équiprobable dans toutes les directions de l’espace) avec une vitesse −→v = v0
−→ur avec v0

constante. Le nombre d’électrons émis par unité de temps (supposé constant) est noté α. On néglige toute force subie
par les électrons après leur émission.

1. Montrer que la densité de charge volumique s’écrit : ρ(r > v0t, t) = 0, ρ(r < v0t, t) = − αe
4πr2v0

.
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2. Montrer que la densité de courant volumique s’écrit : −→
j (r > v0t, t) = 0, −→

j (r < v0t, t) = − αe
4πr2

−→ur.
3. Déterminer l’expression des champs électrique et magnétique en étudiant d’abord leurs symétrie/invariance.
4. Calculer ∂u/∂t et comparer à la puissance volumique cédée aux charges.
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