ANALYSE 1 PC*1 2024 - 2025

Chapitre 0:

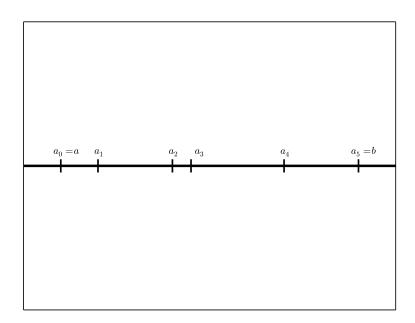
Fonctions continues par morceaux

Fabrice Monfront Lycée du Parc

1 Subdivisions d'un segment

1.1 Définition

Soit $(a,b) \in \mathbb{R}^2$ avec a < b. On appelle subdivision du segment [a,b] toute suite finie de réels $(a_i)_{0 \le i \le n}$ tq $a_0 = a < a_1 < \dots < a_{n-1} < a_n = b$. $\{a_i, 0 \le i \le n\}$ s'appelle l'ensemble des points de la subdivision.

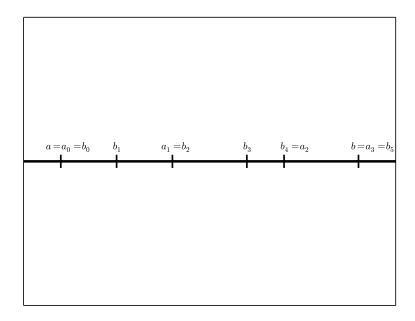


1.2 Comparaison des subdivisions

Soient $(a,b) \in \mathbb{R}^2$ avec a < b et σ , σ' deux subdivisions de [a,b]. On dit que σ' est plus fine que σ si et seulement si l'ensemble des points de σ est inclus dans

l'ensemble des points de σ' . On note $\sigma \subset \sigma'$.

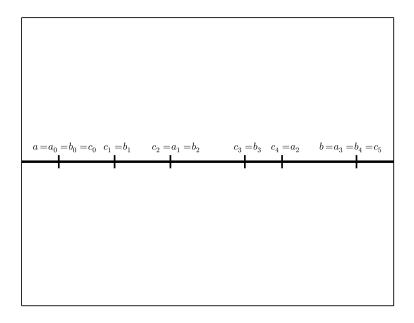
On définit ainsi une relation d'ordre partiel sur l'ensemble des subdivisions de [a, b].



La subdivision $(b_0, b_1, b_2, b_3, b_4, b_5)$ est plus fine que la subdivision (a_0, a_1, a_2, a_3) .

1.3 Réunion de deux subdivisions

Soient $(a,b) \in \mathbb{R}^2$ avec $a < b, \ \sigma = (a_i)_{0 \le i \le n}$ et $\sigma' = (b_j)_{0 \le j \le p}$ deux subdivisions de [a,b]. On appelle réunion de σ et de σ' et on note $\sigma \cup \sigma'$ la subdivision de [a,b] dont l'ensemble des points est $\{a_i, 0 \le i \le n\} \cup \{b_j, 0 \le j \le p\}$. $\sigma \cup \sigma'$ est plus fine que σ et que σ' .



2 Définitions

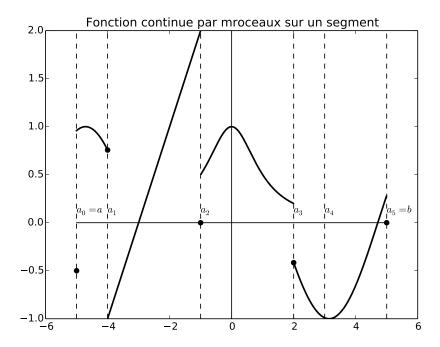
2.1 Fonctions continues par morceaux sur un segment

Soient $(a, b) \in \mathbb{R}^2$ avec a < b et $f : [a, b] \to \mathbb{K}$.

On dit que f est continue par morceaux sur [a,b] si et seulement si il existe une subdivision $(a_i)_{0 \le i \le n}$ de [a,b] to la restriction de f à chacun des intervalles $]a_i,a_{i+1}[$ $(0 \le i \le n-1)$ soit prolongeable en une fonction continue sur $[a_i,a_{i+1}]$.

Une telle subdivision de [a, b] est alors dite subordonnée à f.

Toute subdivision de [a,b] plus fine qu'une subdivision subordonnée à f est encore subordonnée à f.



 $(a_0, a_1, a_2, a_3, a_4, a_5)$ es subordonnée à f, elle n'est pas minimale.

Remarque

Soient $(a, b) \in \mathbb{R}^2$ avec a < b et $f : [a, b] \to \mathbb{K}$.

Il résulte immédiatement de la définition :

f est continue par morceaux sur $[a,b] \iff$ il existe une subdivision $(a_i)_{0 \le i \le n}$ de [a,b] et pour tout $i \in [0;n-1]$ une fonction $f_i:[a_i;a_{i+1}] \to \mathbb{K}$ continue telles que :

 $\forall i \in [0; n-1] \ \forall x \in]a_i; a_{i+1}[f(x) = f_i(x)]$

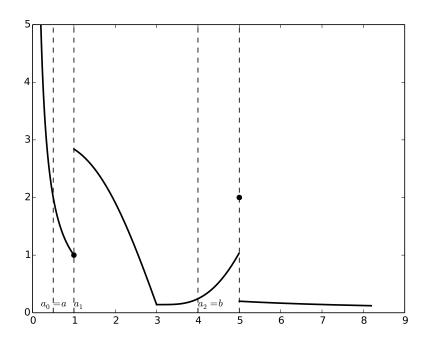
Les subdivisions de [a;b] apparaissant ici sont évidemment les mêmes que dans la définition ie : les subdivisions subordonnées à f.

2.2 Fonctions continues par morceaux sur un intervalle quelconque

Soient I un intervalle non trivial de \mathbb{R} et $f: I \to \mathbb{K}$.

On dit que f est continue par morceaux sur I si et seulement si sa restriction à tout segment (non trivial) inclus dans I est continue par morceaux.

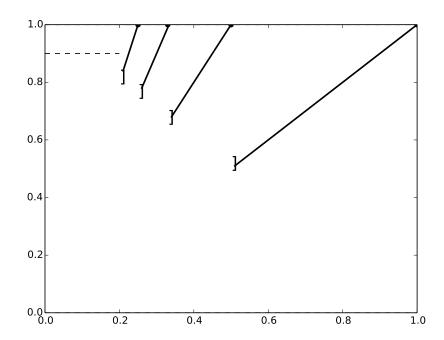
Dans le cas où I est un segment les deux définitions sont compatibles.



La fonction f dessinée est continue par morceaux sur \mathbb{R}_+^* . J'ai dessiné une subdivision de $\left[\frac{1}{2};4\right]$ subordonnée à f.

Exemples

- La fonction partie entière est continue par morceaux sur \mathbb{R} .
- La fonction $f \begin{cases}]0;1] \to \mathbb{R} \\ x \mapsto x \left\lfloor \frac{1}{x} \right\rfloor \end{cases}$ est continue par morceaux sur]0;1].



Soit
$$n \in \mathbb{N}^*$$
.
Pour $x \in \left] \frac{1}{n+1}; \frac{1}{n} \right]$:
 $0 < \frac{1}{n+1} < x \le \frac{1}{n}$
 $n \le \frac{1}{x} < n+1$
 $\left\lfloor \frac{1}{x} \right\rfloor = n$
 $f(x) = nx$

f est continue par morceaux sur]0;1].

La subdivision subordonnée minimale de $[a;b]\subset]0;1]$ est :

$$a_0 = a < \frac{1}{\lfloor 1/a \rfloor \text{ si } 1/a \notin \mathbb{N}} < \dots < \frac{1}{\lfloor 1/b \rfloor + 1 \text{ dans tous les cas}} < b$$

• Soient (Ω, P) un espace probabilisé fini et X une variable aléatoire réelle.

La fonction
$$F_X \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto P(X \le x) \end{cases}$$
 est continue par morceaux sur \mathbb{R} .

$$X(\Omega) = \{x_1; \dots; x_n\} \text{ avec } x_1 < x_2 < \dots < x_n.$$

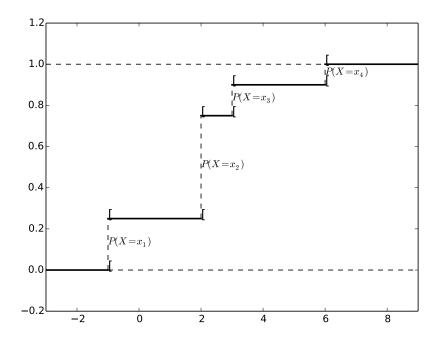
$$\forall x < x_1 \ F_X(x) = P(X \le x) = P(\emptyset) = 0$$

$$\forall x \ge x_n \ F_X(x) = P(X \le x) = P(\Omega) = 1$$

Soit $x \in [x_1; x_n[$.

$$\exists ! k \in [\![1; n-1 [\![\ x_k \le x < x_{k+1}$$

$$P(X \le x) = P((X = x_1) \cup (X = x_2) \cup \dots \cup (X = x_k))$$
$$= \sum_{i=1}^k P(X = x_i) = \sum_{i=1}^k f(x_i) \text{ où } f \text{ est la loi de } X$$
$$= F_X(x_k)$$



Utilisation de limites aux points de subdivision

Soient $(a, b) \in \mathbb{R}^2$ avec a < b et $f : [a, b] \to \mathbb{K}$.

f est continue par morceaux sur $[a,b] \iff$ il existe $\sigma = (a_i)_{0 \le i \le n}$ une subdivision du segment

$$\begin{cases} -\forall i \in \{0, \dots, n-1\} & f_{||a_i, a_{i+1}|} \text{ est continue} \\ -\forall i \in \{0, \dots, n-1\} & \lim_{\substack{x \to a_i \\ x > a_i}} f(x) \text{ existe dans } \mathbb{K} \\ -\forall i \in \{1, \dots, n\} & \lim_{\substack{x \to a_i \\ x < a_i}} f(x) \text{ existe dans } \mathbb{K} \end{cases}$$

Remarque

On a alors:

$$f \text{ continue sur } [a;b] \Longleftrightarrow \begin{cases} \lim_{\substack{x \to a \\ x > a}} f(x) = f(a) \\ \lim_{\substack{x \to b \\ x < b}} f(x) = f(b) \\ \forall i \in \{1, \dots, n-1\} \lim_{\substack{x \to a_i \\ x > a_i}} f(x) = \lim_{\substack{x \to a_i \\ x < a_i}} f(x) = f(a_i) \end{cases}$$

3 Propriétés

Espace vectoriel des fonctions continues par morceaux sur un segment

Proposition

Soit $(a, b) \in \mathbb{R}^2$ avec a < b.

L'ensemble $\mathcal{M}^0([a,b],\mathbb{K})$ des applications de [a,b] dans \mathbb{K} continues par morceaux sur [a,b] est un \mathbb{K} ev.

Démonstration

On va démontrer que $\mathcal{M}^0([a,b],\mathbb{K})$ est un sev de $\mathcal{F}([a,b],\mathbb{K})$.

- $\mathcal{M}^0([a,b], \mathbb{K} \subset \mathcal{F}([a,b], \mathbb{K}) : \text{clair}$ La fonction nulle $\left(\begin{cases} [a;b] \to \mathbb{K} \\ x \mapsto 0 \end{cases}\right)$ est dans $\mathcal{M}^0([a,b], \mathbb{K})$.

• Soient $(f,g) \in \mathcal{M}^0([a,b],\mathbb{K})^2$ et $(\lambda,\mu) \in \mathbb{K}^2$.

Soit σ_1 une subdivision de [a;b] subordonnée à f.

Soit σ_2 une subdivision de [a;b] subordonnée à g.

 $\sigma = \sigma_1 \cup \sigma_2$ est plus fine que σ_1 et que σ_2 , donc elle est subordonnée à la fois à f et à g. Si on note $\sigma = (a_i)_{0 \le i \le n}$, on a donc :

- $\forall i \in \{0; \dots; n-1\} \exists f_i \in \mathcal{C}^0([a_i; a_{i+1}], \mathbb{K}) \text{ tq } \forall x \in]a_i; a_{i+1}[f(x) = f_i(x)]$
- $\forall i \in \{0; \dots; n-1\} \ \exists g_i \in \mathcal{C}^0([a_i; a_{i+1}], \mathbb{K}) \ \text{tq} \ \forall x \in]a_i; a_{i+1}[\ g(x) = g_i(x)]$

On a alors:

- $--\forall i \in \{0; \dots; n-1\} \ \lambda \ f_i + \mu \ g_i \in \mathcal{C}^0([a_i; a_{i+1}], \mathbb{K})$
- $\forall i \in \{0; \dots; n-1\} \, \forall x \in]a_i; a_{i+1}[(\lambda f + \mu g)(x) = \lambda f(x) + \mu g(x) = \lambda f_i(x) + \mu g_i(x) + \mu g_i(x) = \lambda f_i(x) + \mu g_i(x) + \mu g_i(x)$ $(\lambda f_i + \mu g_i)(x)$

Donc $\lambda f + \mu g$ est continue par morceaux sur [a; b], σ étant une subdivision subordonnée à $\lambda f + \mu g$.

3.2Remarques

• On démontre alors facilement que si I est un intervalle non trivial de \mathbb{R} , $\mathcal{M}^0(I,\mathbb{K})$ (l'ensemble des applications $I \to \mathbb{K}$ continue par morceaux) est un sev de $\mathcal{F}(I,\mathbb{K})$ donc un \mathbb{K} ev.

- On démontre de manière similaire que le produit de deux fonctions continues par morceaux est une fonction continue par morceaux.
- Une composée de fonctions continues par morceaux n'est pas forcément continue par morceaux.

Exemple

Soit
$$f \begin{cases} [-1;1] \to \mathbb{R} \\ x \mapsto x \sin\left(\frac{1}{x}\right) \text{ si } x \neq 0 \end{cases}$$
.
 $f \text{ est clairement continue sur } [-1;0[\text{ et sur }]0;1].$

$$\forall x \in [-1;1] \setminus \{0\} \ |f(x)| = |x| \left| \sin\left(\frac{1}{x}\right) \right| \leq |x| \xrightarrow[x \neq 0]{} 0$$

$$\forall x \in [-1; 1] \setminus \{0\} \ |f(x)| = |x| \left| \sin\left(\frac{1}{x}\right) \right| \le |x| \xrightarrow[\substack{x \to 0 \\ x \neq 0}]{} 0$$

Donc:
$$f(x) \xrightarrow[x \neq 0]{x \to 0} 0$$

Donc f est continue en 0.

Finalement, f est continue sur [-1;1].

Soit
$$g$$

$$\begin{cases} [-1;1] \to \mathbb{R} \\ x \mapsto 1 \text{ si } x \in]0;1] \\ 0 \mapsto 0 \\ x \mapsto -1 \text{ si } x \in [-1;0[$$

$$\forall x \in [-1; 1] \ f(x) \in [-1; 1]$$

Donc $h = g \circ f$ est bien définie.

h n'est pas continue par morceaux (ni a fortiori continue sur [-1;1]) : elle a une infinité de points de discontinuité (les $\frac{1}{n\pi}$, $n \in \mathbb{Z}^*$ et 0) sur le **segment** [-1;1].

• La fonction $f \begin{cases}]0;1] \to \mathbb{R} \\ x \mapsto x \left\lfloor \frac{1}{x} \right\rfloor \end{cases}$ est continue par morceaux sur]0;1].

De plus f est prolongeable par continuité en 0.

Pourtant son prolongement n'est pas une fonction continue par morceaux sur [0; 1].

En effet:

$$\lim_{0} f = 1:$$

$$\forall x \in]0;1] \quad \left\lfloor \frac{1}{x} \right\rfloor \leq \frac{1}{x} < \left\lfloor \frac{1}{x} \right\rfloor + 1$$

$$\forall x \in]0;1] \quad x \left\lfloor \frac{1}{x} \right\rfloor \leq 1 < x \left\lfloor \frac{1}{x} \right\rfloor + 1$$

$$\forall x \in]0;1] \quad 1 - x < x \left\lfloor \frac{1}{x} \right\rfloor \leq 1$$

On peut donc prolonger f par continuité en 0 en posant f(0) = 1.

La fonction obtenue est continue en 0 mais elle n'est pas continue par morceaux (ni a fortiori continue sur [0;1]): elle a une infinité de points de discontinuité sur [0;1].

3.3 Proposition

Soit $(a, b) \in \mathbb{R}^2$ avec a < b.

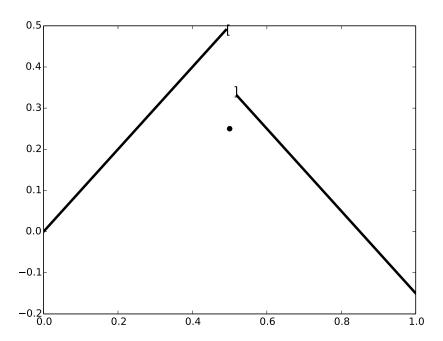
Soit $f:[a;b]\to\mathbb{C}$ continue par morceaux sur [a;b].

Alors f est bornée :

 $\exists M \in \mathbb{R}_+ \text{ tq } \forall x \in [a;b] |f(x)| \leq M$

Toutefois à la différence d'une fonction continue, f n'atteint pas forcément ses bornes : $\sup_{x \in [a;b]} |f(x)|$

est bien défini mais pas $\max_{x \in [a;b]} |f(x)|$.



Démonstration

Soit $\sigma = (a_i)_{0 \le i \le n}$ une subdivision de [a; b] subordonnée à f.

Pour tout $i \in [0, n-1]$, $f_{a_i;a_{i+1}}$ est prolongeable en une fonction f_i continue sur $[a_i;a_{i+1}]$.

 f_i est continue sur le segment $[a_i; a_{i+1}]$ donc elle y est bornée :

 $\forall i \in [0; n-1] \exists M_i \in \mathbb{R}_+^* \text{ tq } \forall x \in [a_i; a_{i+1}] | f_i(x) | \leq M_i$

Soit $M = \max(M_0, ..., M_{n-1}, |f(a_0)|, ..., |f(a_n)|) \in \mathbb{R}_+$.

 $\forall x \in [a;b] |f(x)| \leq M.$

4 Intégrale sur un segment d'une fonction continue par morceaux

4.1 Remarque liminaire

Je cite le programme à propos de l'intégrale sur un segment des fonctions continues par morceaux :

Brève extension des propriétés étudiées en première année. Aucune construction n'est exigible.

4.2 Définition

Soient $(a, b) \in \mathbb{R}^2$ avec a < b et $f : [a, b] \to \mathbb{K}$ continue par morceaux.

Soit $(a_i)_{0 \le i \le n}$ une subdivision de [a, b] subordonnée à f.

Pour tour $i \in \{0; ...; n-1\}$ il existe une fonction $f_i : [a_i; a_{i+1}] \to \mathbb{K}$ continue telles que : $\forall x \in]a_i; a_{i+1}[f(x) = f_i(x).$

 $\int_{a_i}^{a_{i+1}} f_i(t) dt$ est bien définie : c'est l'intégrale sur un segment d'une fonction continue sur un segment, notion introduite dans le cours de première année.

On prend comme définition de l'intégrale de f sur [a;b]:

$$\int_{[a;b]} f = \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} f_i(t) dt$$

4.3 Remarque

Pour être valable la définition précédente doit être indépendante du choix de la subdivision subordonnée à f^{1} .

C'est bien le cas et cela se démontre ainsi :

- Avec la relation de Chasles ², on montre que la somme ne change pas lorsqu'on ajoute un point à une subdivision.
- On en déduit par récurrence que la somme ne change pas lorsqu'on ajoute un nombre fini de points à une subdivision.

Dit autrement cela signifie que pour deux subdivisions dont l'une est plus fine que l'autre, la somme est la même.

• On en déduit que la somme est la même pour deux subdivisions quelconques en passant par l'intermédiaire de la réunion qui est plus fine que les deux premières.

4.4 Exemple

$$\int_{[1/4;1]} x \left[\frac{1}{x} \right] \, \mathrm{d}x$$

$$\int_{[1/4;1]} x \left\lfloor \frac{1}{x} \right\rfloor dx = \int_{1/4}^{1/3} 3x dx + \int_{1/3}^{1/2} 2x dx + \int_{1/2}^{1} x dx$$

$$= \frac{3}{2} \left(\frac{1}{9} - \frac{1}{16} \right) + \frac{1}{4} - \frac{1}{9} + \frac{1}{2} + \frac{1}{8}$$

$$= \frac{21}{2 \times 9 \times 16 = 288} + \frac{72 - 32 + 144 - 36}{288}$$

$$= \frac{169}{288}$$

^{1.} prendre la subdivision minimale suffirait si on ne devait considérer qu'une seule fonction mais lorsque doit en envisager plusieurs cela pose de gros problème. Cf la linéarité de l'intégrale.

^{2.} pour l'intégrale des fonctions continues, ce qui a été vu en première année

Partie réelle et partie imaginaire de l'intégrale d'une fonction à valeurs complexes

Soient $(a,b) \in \mathbb{R}^2$ avec a < b et $f : [a,b] \to \mathbb{C}$ continue par morceaux.

$$\bullet \int_{[a;b]} \Re e \, f = \Re e \left(\int_{[a;b]} f \right)$$

•
$$\int_{[a;b]} \Im m \, f = \Im m \left(\int_{[a;b]} f \right)$$

$$\bullet \ \int_{[a;b]} \overline{f} = \int_{[a;b]} f$$

(La fonction \overline{f} étant, bien sûr, continue par morceaux)

4.6 Linéarité de l'intégrale

Soit $(a, b) \in \mathbb{R}^2$ avec a < b.

•
$$\forall (f,g) \in \mathcal{M}^0([a;b],\mathbb{K})^2 \int_{[a;b]} f + g = \int_{[a;b]} f + \int_{[a;b]} g$$

•
$$\forall f \in \mathcal{M}^0([a;b], \mathbb{K}) \ \forall \lambda \in \mathbb{K} \ \int_{[a;b]} \lambda f = \lambda \int_{[a;b]} f$$

• $\forall f \in \mathcal{M}^0([a;b], \mathbb{K}) \ \forall \lambda \in \mathbb{K} \ \int_{[a;b]} \lambda f = \lambda \int_{[a;b]} f$ En d'autres termes l'application $\begin{cases} \mathcal{M}^0([a;b], \mathbb{K}) \to \mathbb{K} \\ f \mapsto \int_{[a;b]} f \end{cases}$ est linéaire.

Démonstration

Soient f et $g \in \mathcal{M}^0([a;b], \mathbb{K})$.

Il existe $\sigma = (a_i)_{0 \le i \le n}$ une subdivision de [a; b] subordonnée à la fois à f et à g (cf A.3.1).

Pour tout $i \in [0; n-1]$, $f_{]a_i;a_{i+1}[}$ est prolongeable en une fonction f_i continue sur $[a_i;a_{i+1}]$.

Pour tout $i \in [0; n-1]$, $g_{|a_i;a_{i+1}|}$ est prolongeable en une fonction g_i continue sur $[a_i; a_{i+1}]$.

 $\forall i \in [0; n-1] \ \forall x \in]a_i; a_{i+1}[\ (f+g)(x) = f(x) + g(x) = f_i(x) + g_i(x) = (f_i+g_i)(x) \text{ avec}$ $f_i + g_i \in \mathcal{C}^0([a_i; a_{i+1}])$

Donc:

$$\int_{[a;b]} f + g = \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} (f_i(t) + g_i(t)) dt$$

$$= \sum_{i=0}^{n-1} \left(\int_{a_i}^{a_{i+1}} f_i(t) dt + \int_{a_i}^{a_{i+1}} g_i(t) dt \right) \text{ linéarité de l'intégrale des fonctions continues}$$

$$= \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} f_i(t) dt + \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} g_i(t) dt$$

$$= \int_{[a;b]} f + \int_{[a;b]} g$$

Idem pour $\int_{[a:b]} (\lambda f)$.

4.7 Positivité de l'intégrale

Soient $(a,b) \in \mathbb{R}^2$ avec a < b et $f: [a,b] \to \mathbb{R}$ continue par morceaux. On suppose : $\forall x \in [a;b] \ f(x) \ge 0$

Alors:
$$\int_{[a;b]} f \ge 0$$

Démonstration

Soit $\sigma = (a_i)_{0 \le i \le n}$ une subdivision de [a; b] subordonnée à f.

Pour tout $i \in [0, n-1]$, $f_{a_i;a_{i+1}}$ est prolongeable en une fonction f_i continue sur $[a_i;a_{i+1}]$. f étant positive, par continuité les f_i le sont aussi.

$$\int_{[a;b]} f = \sum_{i=0}^{n-1} \left(\int_{a_i}^{a_{i+1}} f_i(t) \, \mathrm{d}t \ge 0 \right) \ge 0$$

Remarque

Contrairement aux fonctions continues, si f est continue par morceaux, positive et d'intégrale nulle alors f n'est pas forcément la fonction nulle.

Par exemple, soit
$$f \begin{cases} [a;b] \to \mathbb{R} \\ a \mapsto 1 \\ x \mapsto 0 \text{ si } x \neq a \end{cases}$$
.

$$\int_{[a;b]} f = 0$$
 bien que f soit positive non nulle.

On a en fait:

Soient $(a, b) \in \mathbb{R}^2$ avec a < b et $f : [a, b] \to \mathbb{R}$ continue par morceaux positive.

$$\int_{[a;b]} f = 0 \iff f \text{ est nulle en tout point où elle est continue}$$

$$\iff \{x \in [a;b] \text{ tq } f(x) \neq 0\} \text{ est fini}$$

4.8 Croissance de l'intégrale

Soient $(a,b) \in \mathbb{R}^2$ avec a < b et f et $g: [a;b] \to \mathbb{R}$ continues par morceaux.

On suppose:

$$\forall x \in [a; b] \ f(x) \le g(x)$$

Alors:
$$\int_{[a; b]} f \le \int_{[a; b]} g$$

4.9 Inégalité de la moyenne

Définition

Soient $(a,b) \in \mathbb{R}^2$ avec a < b et $f : [a;b] \to \mathbb{K}$ continue par morceaux. Le nombre $\frac{1}{b-a} \int_{[a;b]} f$ s'appelle valeur moyenne de f sur [a;b].

• Théorème

Soient $(a,b) \in \mathbb{R}^2$ avec a < b et $f : [a;b] \to \mathbb{K}$ continue par morceaux.

Alors l'application |f| $\begin{cases} [a;b] \to \mathbb{R} \\ x \mapsto |f(x)| \end{cases}$ est continue par morceaux et on a :

$$\left| \int_{[a;b]} f \right| \le \int_{[a;b]} |f| \le (b-a) \sup_{[a;b]} |f|$$

(Une fonction continue par morceaux sur un segment est bornée sur ce segment mais elle n'atteint pas forcément ses bornes)

On peut réécrire ces inégalités sous la forme : $\left| \frac{1}{b-a} \int_{[a;b]} f \right| \le \frac{1}{b-a} \int_{[a;b]} |f| \le \sup_{[a;b]} |f|$

ie : la valeur absolue de la valeur moyenne de f est plus petite que la valeur moyenne de |f| elle même plus petite que sup |f|.

Démonstration

On montre d'abord que |f| est continue par morceaux.

Il existe $\sigma = (a_i)_{0 \le i \le n}$ une subdivision de [a; b] telle que :

i
$$\forall i \in \{0; \dots; n-1\}$$
 $f_{|]a_i, a_{i+1}[}$ est continue

ii
$$\forall i \in \{0; \dots; n-1\} \lim_{\substack{x \to a_i \\ x > a_i}} f(x)$$
 existe dans \mathbb{K}

iii
$$\forall i \in \{1; \dots; n\} \lim_{\substack{x \to a_i \\ x < a_i}} f(x)$$
 existe dans \mathbb{K}

L'application
$$\begin{cases} \mathbb{K} \to \mathbb{R} \\ y \mapsto |y| \end{cases}$$
 étant continue, on a :

i
$$\forall i \in \{0; \dots; n-1\}$$
 $|f|_{]]a_i, a_{i+1}[}$ est continue

ii
$$\forall i \in \{0; \dots; n-1\}$$
 $\lim_{\substack{x \to a_i \\ x > a_i}} |f(x)|$ existe dans \mathbb{R}

iii
$$\forall i \in \{1; \dots; n\} \lim_{\substack{x \to a_i \\ x < a_i}} |f(x)|$$
 existe dans $\mathbb R$

Donc |f| est bien continue par morceaux.

$$\forall x \in [a; b] \ |f(x)| \le \sup_{[a; b]} |f|$$

donc, d'après 4.8 :

$$\int_{[a;b]} |f| \le \int_{[a;b]} \sup_{[a;b]} |f| = (b-a) \sup_{[a;b]} |f|$$

Passons à
$$\left| \int_{[a;b]} f \right| \le \int_{[a;b]} |f|$$
.

$$\left| \int_{[a;b]} f \right| = \left| \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} f_i(t) dt \right|$$

$$\leq \sum_{i=0}^{n-1} \left| \int_{a_i}^{a_{i+1}} f_i(t) dt \right|$$

$$\leq \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} |f_i(t)| dt = \int_{[a;b]} |f|$$

car
$$|f_i| \in C^0([a_i; a_{i+1}])$$
 et :
 $\forall i \in [0; n-1] \ \forall x \in]a_i; a_{i+1}[|f(x)||f_i|(x)]$

Notation $\int_{a}^{b} f(x) dx$ 4.10

Dans ce paragraphe on ne suppose plus a < b.

• 4.10.1 Définition

Soient I un intervalle non trivial de \mathbb{R} et $f:I\to\mathbb{K}$ continue par morceaux. Soient a et b deux éléments de I.

On définit $\int_a^b f(x) dx$, qu'on peut aussi noter $\int_a^b f$, par :

$$\int_{a}^{b} f(x) dx = \int_{[a;b]} f \operatorname{si} a < b$$

$$\int_{a}^{b} f(x) dx = 0 \operatorname{si} a = b \operatorname{ie} \int_{a}^{a} f(x) dx = 0$$

$$\int_{a}^{b} f(x) dx = -\int_{[b;a]} f \operatorname{si} a > b$$

On a donc:

$$\forall (a,b) \in I^2 \int_a^b f(x) \, \mathrm{d}x = -\int_b^a f(x) \, \mathrm{d}x$$

• Linéarité

Soient I un intervalle non trivial de $\mathbb R$ et a et b deux éléments de I.

$$\mathbf{i} \ \forall (f,g) \in \mathcal{M}^0(I,\mathbb{K})^2 \ \int_a^b (f+g)(x) \, \mathrm{d}x = \int_a^b (f(x)+g(x)) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x + \int_a^b g(x) \, \mathrm{d}x$$
$$\mathbf{ii} \ \forall f \in \mathcal{M}^0(I,\mathbb{K}) \ \forall \lambda \in \mathbb{K} \ \int_a^b (\lambda f)(x) \, \mathrm{d}x = \int_a^b \lambda f(x) \, \mathrm{d}x = \lambda \int_a^b f(x) \, \mathrm{d}x$$

En d'autres termes l'application $\begin{cases} \mathcal{M}^0(I,\mathbb{K}) \to \mathbb{K} \\ f \mapsto \int_a^b f(x) \, \mathrm{d}x \end{cases}$ est linéaire. $\bullet \text{ Les résultats sur la positivité et la croissance ainsi que l'inégalité de la moyenne ne s'appliquent qu'aux intégrales <math display="block">\int_a^b f(x) \, \mathrm{d}x \text{ avec } a < b.$

4.11 Relation de Chasles

Soient I un intervalle non trivial de \mathbb{R} et $f:I\to\mathbb{K}$ continue par morceaux. Soient a, b et c trois éléments de I.

Alors:

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

4.12 Changement de variable

Soient I un intervalle non trivial de \mathbb{R} et $f:I\to\mathbb{K}$ continue par morceaux.

Soient $(\alpha, \beta) \in \mathbb{R}^2$ avec $\alpha < \beta$ et $\varphi : [\alpha; \beta] \to \mathbb{R}$ tq $\varphi([\alpha; \beta]) \subset I$.

On suppose φ de classe \mathcal{C}^1 sur $[\alpha;\beta]$ strictement monotone : cela revient à supposer que φ est une bijection de classe \mathcal{C}^1 de $[\alpha; \beta]$ sur $[\varphi(\alpha); \varphi(\beta)]$ lorsque φ est croissante, sur $[\varphi(\beta); \varphi(\alpha)]$ lorsque φ est décroissante.

Alors la fonction $\begin{cases} [\alpha; \beta] \to \mathbb{K} \\ u \mapsto f(\varphi(u)) \varphi'(u) \end{cases}$ est continue par morceaux sur $[\alpha; \beta]$ et on a :

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(x)) \varphi'(x) dx$$

Démonstration

 φ est continue (car de classe \mathcal{C}^1), strictement monotone sur $[\alpha; \beta]$ donc φ réalise une bijection de $[\alpha; \beta]$ sur le segment $J = [\min(\varphi(\alpha), \varphi(\beta)), \max(\varphi(\alpha), \varphi(\beta))].$

f est continue par morceaux sur I donc sur J.

Soit $\sigma = (a_i)_{0 \le i \le n}$ une subdivision de J subordonnée à f.

Pour tout $i \in \{0; ...; n\}$, on pose $\alpha_i = \varphi^{-1}(a_i)$ si φ est strictement croissante ou $\alpha_i = \varphi^{-1}(a_{n-i})$ si φ est strictement décroissante.

 $\sigma' = (\alpha_i)_{0 \le i \le n}$ est alors une subdivision de $[\alpha; \beta]$.

Pour tout $i \in \{0; ...; n-1\}$ il existe une fonction $f_i : [a_i; a_{i+1}] \to \mathbb{K}$ continue telles que : $\forall t \in]a_i; a_{i+1}[f(t) = f_i(t).$

Pour tout $i \in \{0; ...; n-1\}$, on pose $g_i = f_i \circ \varphi \varphi'$ si φ est croissante, $f_{n-1-i} \circ \varphi \varphi'$ si φ est décroissante.

Pour tout $i \in \{0; \ldots; n-1\}$, g_i est une fonction continue sur $[\alpha_i; \alpha_{i+1}]$ vérifiant :

 $\forall i \in \{0; \dots; n-1\} \ \forall x \in]\alpha_i; \alpha_{i+1}[\ f(\varphi(x))\ \varphi'(x) = g_i(x)$

Donc $f \circ \varphi \varphi'$ est bien continue par morceaux et :

Dans le cas où φ est croissante :

$$\begin{split} \int_{\alpha}^{\beta} f(\varphi(x)) \, \varphi'(x) \, \mathrm{d}x &= \sum_{i=0}^{n-1} \int_{\alpha_i}^{\alpha_{i+1}} g_i(x) \, \mathrm{d}x \text{ avec la définition vue en A.4.2} \\ &= \sum_{i=0}^{n-1} \int_{\alpha_i}^{\alpha_{i+1}} f_i(\varphi(x)) \, \varphi'(x) \, \mathrm{d}x \\ &= \sum_{i=0}^{n-1} \int_{\varphi(\alpha_i)}^{\varphi(\alpha_{i+1})} f_i(t) \, \mathrm{d}t \text{ avec la formule vue en Sup pour les fonctions continues} \\ &= \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} f_i(t) \, \mathrm{d}t \\ &= \int_a^b f(t) \, \mathrm{d}t \text{ avec la définition vue en A.4.2} \\ &= \int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) \, \mathrm{d}t \end{split}$$

et dans le cas où φ est décroissante :

$$\int_{\alpha}^{\beta} f(\varphi(x)) \varphi'(x) dx = \sum_{i=0}^{n-1} \int_{\alpha_i}^{\alpha_{i+1}} g_i(x) dx$$

$$= \sum_{i=0}^{n-1} \int_{\alpha_i}^{\alpha_{i+1}} f_{n-1-i}(\varphi(x)) \varphi'(x) dx$$

$$= \sum_{i=0}^{n-1} \int_{\varphi(\alpha_i)}^{\varphi(\alpha_{i+1})} f_{n-1-i}(t) dt$$

$$= \sum_{i=0}^{n-1} \int_{a_{n-i}}^{a_{n-i-1}} f_{n-1-i}(t) dt$$

$$= \sum_{j=0}^{n-1} \int_{a_{j+1}}^{a_j} f_j(t) dt (j = n - 1 - i)$$

$$= -\sum_{j=0}^{n-1} \int_{a_j}^{a_{j+1}} f_j(t) dt$$

$$= -\int_{a_0}^{a_n} f(t) dt = -\int_{\varphi(\beta)}^{\varphi(\alpha)} f(t) dt$$

$$= \int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt$$