TD 2024-2025

Analyse 2

Chapitre 2

Limites dans un espace vectoriel normé

941

Normes équivalentes 1

Exercice 1 (Centrale 2001)

$$E = \{ f \in \mathcal{C}^1 ([0;1], \mathbb{R}) \text{ tq } f(0) = 0 \}.$$
 On note N_{∞} la norme sur $\mathcal{C} ([0;1], \mathbb{R})$ définie par : $\forall f \in \mathcal{C}([0;1], \mathbb{R}) \ N_{\infty}(f) = \max_{x \in [0;1]} |f(x)|$

$$\forall f \in \mathcal{C}([0;1], \mathbb{R}) \ N_{\infty}(f) = \max_{x \in [0;1]} |f(x)|$$

- 1. Montrer qu'on peut définir deux normes N et N' sur E par : $N(f) = N_{\infty}(f) + N_{\infty}(f')$ et $N'(f) = N_{\infty}(f + f')$
- 2. Montrer leur équivalence.

Indication

On pourra montrer:

$$\forall f \in E \ \forall x \in [0; 1] \ f(x) = e^{-x} \int_0^x (f(t) + f'(t)) e^t dt$$

2 Suites d'un espace vectoriel de dimension finie

Exercice 2

Soit E un \mathbb{K} -espace vectoriel de dimension $d \in \mathbb{N}^*$.

Soit
$$u \in \mathcal{L}(E)$$
 to $6u^2 - 5u + id_E = 0$.

On se propose de montrer que $u^n \xrightarrow[n \to +\infty]{} 0$.

1. Première méthode

- (a) Montrer que u est diagonalisable.
- (b) Montrer qu'il existe deux projecteurs p_1 et p_2 de E tels que u^n soit combinaison linéaire de p_1 et de p_2 .

En calculant les deux coefficients de cette combinaison linéaire montrer que $u^n \xrightarrow[n \to +\infty]{}$ 0.

2. Deuxième méthode

- (a) Effectuer la division euclidienne de X^n par $6X^2 5X + 1$.
- (b) En déduire $u^n \xrightarrow[n \to +\infty]{} 0$.

Exercice 3

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Soit λ et $\mu \in \mathbb{K}$ tq $|\lambda|$ et $|\mu| < 1$.

Soit $u \in \mathcal{L}(E)$ tq $(u - \lambda i d_E)^2 \circ (u - \mu i d_E) = 0$. Montrer que $u^n \xrightarrow[n \to +\infty]{} 0$.

Exercice 4 (Mines 2015)

$$\begin{cases} z_0 = \frac{i}{2} \\ z_{n+1} = \frac{6z_n + 1}{z_n + 6} \end{cases}$$

Exercice 5 (Centrale 99)

$$f(x) = \tan x - \frac{x^2}{1+x}.$$

- 1. Montrer que pour tout $n \in \mathbb{N}^*$ f(x) = 0 admet une unique solution dans $I_n = \left[n\pi \frac{\pi}{2}; n\pi + \frac{\pi}{2} \right]$
- 2. Montrer que $\alpha_n = n\pi + a + \frac{b}{n} + \frac{c}{n^2} + o\left(\frac{1}{n^2}\right)$ en déterminant a, b, c trois réels.

3 Point adhérent à une partie et adhérence

Exercice 6

Soit E un espace vectoriel de dimension finie.

Soit C une partie convexe de E.

Montrer que l'adhérence de C est une partie convexe de E.

Limite et continuité en un point 4

Exercice 7

Soit
$$f \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto \frac{x+y}{\sin(x+y)} \text{ si } \sin(x+y) \neq 0 \\ (x,y) \mapsto 1 \text{ sinon} \end{cases}$$
.

Quels sont les points où f est continue?