ALGEBRE LINEAIRE

TD 2024-2025 Chapitre 6

941

Produits scalaires : révisions de première année 1

Exercice 1

Soient $a, b \in \mathbb{R}$ et $f : [a, b] \to \mathbb{R}$ continue telle que :

 $\forall x \in [a, b] \ f(x) > 0$

Montrer que : $\int_{[a,b]} f \cdot \int_{[a,b]} \frac{1}{f} \ge (b-a)^2$

Montrer qu'il y a égalité si et seulement si f est constante.

Exercice 2 (X 2015)

Soit E un espace euclidien et F,G deux sev de E tels que dim $F + \dim G > \dim E$. Montrer qu'il existe $x \in E$ tel que ||x|| = 1 et $x \in F \cap G$.

Exercice 3

Soient E un ev euclidien et E_1, E_2 2 sev de E. Montrer que $(E_1 + E_2)^{\perp} = E_1^{\perp} \cap E_2^{\perp}$ et $(E_1 \cap E_2)^{\perp} = E_1^{\perp} + E_2^{\perp}$.

Exercice 4

Soient
$$E$$
 un ev euclidien de dimension $n \in \mathbb{N}^*$ et $\mathcal{B} = (e_1, \dots, e_n)$ une BON de E .
Soit $H = \{x = \sum_{i=1}^n x_i e_i \in E \text{ tq } x_1 + \dots + x_n = 0\}$.
Donner une BON de H .

Exercice 5 (Mines 2014)

On considère \mathbb{R}^n muni de sa structure euclidienne canonique. Soit $A \in \mathcal{M}_n(\mathbb{R})$.

1. Soit $Y \in \mathbb{R}^n$.

Montrer qu'il existe un unique $X \in (\operatorname{Ker} A)^{\perp}$ et un unique $X' \in (\operatorname{Im} A)^{\perp}$ tels que Y =AX + X'.

2. Soit
$$G \begin{cases} \mathbb{R}^n \to (\operatorname{Ker} A)^{\perp} \\ Y \mapsto X \end{cases}$$
.

On admet que G est linéaire.

Déterminer $\operatorname{Ker} G$ et $\operatorname{Im} G$.

Exercice 6 (Centrale 2006)

On se place dans \mathbb{R}^4 muni de sa structure euclidienne canonique.

Soient u(1, 1, 1, 0) et v(1, 1, 0, 1).

Trouver la matrice dans la base canonique de la projection orthogonale sur Vect(u, v).

Exercice 7 (Centrale 2018)

Soient
$$E = \mathbb{R}_4[X]$$
 et, pour $P, Q \in E, \langle P, Q \rangle = \int_{-2}^2 PQ$.

- 1. Vérifier que $\langle \ , \ \rangle$ est un produit scalaire.
- 2. Montrer que le sous-espace constitué des polynômes pairs de E et le sous-espace constitué des polynômes impairs de E sont supplémentaires orthogonaux.
- 3. Déterminer une base orthonormée de E.
- 4. Soit $f: P \in E \mapsto 2XP' + (X^2 4)P''$. Montrer que f est un endomorphisme symétrique de E.

Exercice 8

Soit
$$F \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (a,b) \mapsto \int_0^{\pi} (a\sin t + b\cos t - t)^2 dt \end{cases}$$
.

Prouver que F possède un minimum et donner sa valeur.

Exercice 9 (Mines 2015. L'examinatrice n'a pas demandé de mener les calculs jusqu'au bout.)

Soit
$$\varphi$$

$$\begin{cases} \mathbb{R}_{2n}[X] \times \mathbb{R}_{2n}[X] \to \mathbb{R} \\ (P,Q) \mapsto \sum_{k=-n}^{n} P(k)Q(k) \end{cases}$$
.

- 1. Montrer que φ est un produit scalaire.
- 2. Trouver une base orthonormée de Vect(1, X).
- 3. Donner deux méthodes de calcul de $\min_{(a,b)\in\mathbb{R}^2} \|X^2 aX b\|^2$.

Exercice 10 (Centrale)

Soient E un espace préhilbertien réel et (e_1, \ldots, e_n) une famille de vecteurs unitaires de E telle que :

$$\forall x \in E \ ||x||^2 = \sum_{i=1}^n (e_i|x)^2$$

Montrer que (e_1, \ldots, e_n) est une BON de E.

Exercice 11 (Mines 2021)

On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire défini par :

$$\langle A, B \rangle = \sum_{i=1} \sum_{j=1} a_{i,j} b_{i,j}$$
Soit $U = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots \\ 0 & 0 & 0 & 1 & 0 \\ \vdots & & & \ddots & 1 \\ 1 & 0 & \dots & & 0 \end{pmatrix}$

1. Montrer que (U, U^2, \dots, U^{n-1}) est une base de $F = \text{Vect}(U, U^2, \dots, U^{n-1})$.

2. Soit
$$A = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$
.

Donner le projeté orthogonal de A sur F.

Exercice 12 (Mines 2022)

On munit $E = \mathcal{M}_n(\mathbb{R})$ du produit scalaire défini par $\varphi(M) = \operatorname{tr}(M^T N)$. Soit $G = \{\alpha I_n, \alpha \in \mathbb{R}\}$.

1. Trouver l'orthogonal de G pour φ .

2. Soit $A \in \mathcal{M}_n(\mathbb{R})$.

Donner une expression de ses projetés orthogonaux sur G et sur G^{\perp} .

3. Montrer que $S_n(\mathbb{R})$ (le sev de E formé par les matrices symétriques) et $A_n(\mathbb{R})$ (le sev de E formé par les matrices antisymétriques) sont supplémentaires.

4. Montrer que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont orthogonaux pour φ .

5. Soit $A \in \mathcal{M}_n(\mathbb{R})$.

(a) Déterminer
$$\inf_{M \in \mathcal{S}_n(\mathbb{R})} \left(\sum_{1 \leq i,j \leq n} (a_{i,j} - m_{i,j})^2 \right)$$
.

(b) Déterminer
$$\inf_{M \in \mathcal{A}_n(\mathbb{R})} \left(\sum_{1 \le i,j \le n} (a_{i,j} - m_{i,j})^2 \right).$$

Exercice 13 (Mines 2021)

Soient E un espace préhilbertien réel et $a,b\in E\setminus\{0\}$.

Soit
$$\varphi \begin{cases} E \setminus \{0\} \to \mathbb{R} \\ x \mapsto \frac{(x|a).(x|b)}{\|x\|^2} \end{cases}$$
.

Déterminer inf φ et sup φ .

2 Endomorphismes d'un espace euclidien

2.1 Isométries vectorielles et matrices orthogonales

Exercice 14 (Mines 2021)

Trouver la matrice dans la base canonique de \mathbb{R}^n de la symétrie orthogonale par rapport à l'hyperplan d'équation $x_1 - x_2 + x_3 - x_4 + \cdots - x_{n-2} + x_{n-1} - x_n$.

Remarques

- Un hyperplan d'un espace vectoriel de dimension n est un sous-espace vectoriel de dimension n-1.
- \bullet Il semblerait que n soit supposé pair, mais cela a peu d'incidence sur la résolution de l'exercice.

Exercice 15 (Mines 2019)

Soit E un espace euclidien et a un vecteur unitaire fixé de E.

Pour tout $\alpha \in \mathbb{R}$, soit $f_{\alpha} \begin{cases} E \to E \\ x \mapsto x + \alpha(a|x)a \end{cases}$

- 1. Montrer que $\{f_{\alpha}, \alpha \in \mathbb{R}\}$ est stable par produit de composition. Montrer que pour tout $(\alpha, \beta) \in \mathbb{R}^2$, f_{α} et f_{β} commutent.
- 2. Montrer : $f_{\alpha} \in GL(E) \Longleftrightarrow \alpha \neq -1.$ Quel est le rang de f_{-1} ?
- 3. Montrer : $f_{\alpha} \in O(E) \iff \alpha = 0 \text{ ou } -2$
- 4. Quels sont les sous-espaces propres de f_{α} ?

Exercice 16

Soit E un plan vectoriel euclidien orienté.

- 1. Montrer que toute rotation de E peut s'écrire comme la composée de deux réflexions.
- 2. Est-ce que toute réflexion de E peut s'écrire comme la composée de deux rotations?

Exercice 17 (Mines 2016)

Soit u un automorphisme orthogonal de l'espace euclidien E. Soit λ une valeur propre de u.

Montrer que dim $(E_{\lambda}(u)) = mult(\lambda)$.

Exercice 18 (X 2009, Mines 2015)

Calculer $\sup_{A \in O(n)} \left(\sum_{(i,j) \in [|1,n|]^2} a_{ij} \right).$

Exercice 19 (Centrale 2018)

Soient A et $B \in \mathcal{M}_n(\mathbb{R})$.

On veut montrer:

$$A^T A = B^T B \iff \exists U \in O(n) \text{ tq } B = U A$$

- 1. (a) On suppose B inversible. Montrer le résultat.
 - (b) Application

Résoudre l'équation
$$X^TX = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 d'inconnue $X \in \mathcal{M}_2(\mathbb{R})$.

- 2. On suppose que $A^TA = B^TB$ et que B n'est pas inversible.
 - (a) Montrer que Ker(A) = Ker(B).
 - (b) La suite de l'exercice ne m'étant pas parvenue, voici une possibilité : Montrer que rg(A) = rg(B). On note r ce nombre.
 - (c) Montrer que les valeurs propres de $A^TA = B^TB$ sont positives. On les note $\lambda_1 \ge \cdots \ge \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0$.
 - (d) Montrer qu'il existe $(\epsilon_1, \dots, \epsilon_n)$ une BON de \mathbb{R}^n telle que : $\forall i \in [1; n]$ $A^T A \epsilon_i = \lambda_i \epsilon_i$
 - (e) On pose pour $i \in [1; r]$ $e_i = \frac{1}{\sqrt{\lambda_i}} A \epsilon_i$. Montrer que (e_1, \dots, e_r) est une BON de Im (A).
 - (f) Montrer qu'il existe $U \in O(n)$ tq B = UA.
 - (g) Conclure.

Exercice 20 (Mines 2023)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice trigonalisable.

- 1. Montrer qu'il existe une matrice orthogonale Ω et une matrice triangulaire supérieure B telles que $A = \Omega B \Omega^T$.
- 2. On suppose que $AA^T = A^TA$. Montrer que A est diagonalisable.
- 3. La réciproque de la question précédente est-elle vraie?

2.2 Endomorphismes et matrices symétriques

Exercice 21 (CCP 2022)

Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M^n = 0$.

- 1. On suppose que $M^T = M$. Montrer que M = 0.
- 2. On suppose que M commute avec M^T . Montrer que M=0.
- 3. ?

Exercice 22 (Mines 2019)

Soit E un espace euclidien.

Un endomorphisme f de E est dit antisymétrique si, et seulement si :

 $\forall (x,y) \in E^2 \ (f(x)|y) = -(x|f(y))$

- 1. Montrer que $\{f \in \mathcal{L}(E) \text{ antisymétrique}\}$ est un sous-espace vectoriel de $\mathcal{L}(E)$.
- 2. Que dire de la matrice de f dans une base orthonormée de E?
- 3. Déterminer la dimension de $\{f \in \mathcal{L}(E) \text{ antisymétrique}\}.$

Exercice 23 (Mines 2016)

Soit E un espace euclidien de dimension finie et $u \in \mathcal{S}(E)$ un endomorphisme symétrique. Montrer que $\mathcal{C} = \{v \in \mathcal{L}(E) \text{ tq } v \circ u = u \circ v\}$ est un sous-espace vectoriel de $\mathcal{L}(E)$ de dimension $\sum_{\lambda \in \operatorname{Sp}(v)} (\dim E_{\lambda}(u))^{2}.$

Exercice 24 (Mines 2019)

Réduire
$$A = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix}$$

Exercice 25 (Mines 2016)

Soit $A \in S_n(\mathbb{R})$ telle que $A^2 = A$.

- 1. Montrer : $0 \le \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} \le n$ Préciser les cas d'équlité
- 2. Montrer: $\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{i,j}| \le n \sqrt{\operatorname{rg}(A)}$

Exercice 26 (Mines 2015)

Soit E un espace euclidien de dimension $n \geq 3$ et a et b deux vecteurs unitaires linéairement indépendants de E.

Pour x dans E, on pose u(x) = (a|x)b + (b|x)a.

- 1. Montrer que u est un endomorphisme symétrique de E.
- 2. Trouver les valeurs propres et les sous-espaces propres de u

Exercice 27 (Mines 2005)

Soit E un espace euclidien.

- 1. Qu'appelle-t-on endomorphisme symétrique de E?
- 2. Propriétés des endomorphismes symétriques?
- 3. Soit f un endomorphisme symétrique de E. Existe-t-il g symétrique tel que $g^5=f$? g est-il unique?

Exercice 28 (Mines 2013)

Soient A et $B \in S_n(\mathbb{R})$.

On suppose que $\operatorname{Sp}(A) \subset [a;b]$ et que $\operatorname{Sp}(B) \subset [a';b']$.

Montrer que $Sp(A + B) \subset [a + a'; b + b'].$

Exercice 29 (Centrale 2014)

Soient E un espace euclidien et a, b, c trois éléments de E.

Soit
$$M = \begin{pmatrix} (a|a) & (b|a) & (c|a) \\ (a|b) & (b|b) & (c|b) \\ (a|c) & (b|c) & (c|c) \end{pmatrix}$$

- 1. Montrer que M est diagonalisable.
- 2. Montrer que $Sp(M) \subset \mathbb{R}_+$.

Exercice 30 (Centrale maths 2 2019)

On considère $S_3(\mathbb{R})$ l'ensemble des matrices symétriques réelles de taille 3.

Soit
$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} \in \mathcal{S}_3(\mathbb{R})$$
. On définit la matrice $\hat{A} = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$, et on note

 $\lambda_1 \leq \lambda_2 \leq \lambda_3$ (resp. $\mu_1 \leq \mu_2$) les valeurs propres de A (resp. \hat{A}) rangées par ordre croissant.

- 1. Écrire une fonction symetrique() qui ne prend aucun argument et qui renvoie une matrice aléatoire de $S_3(\mathbb{R})$ dont les coefficients sont compris entre 0 et 1.
- 2. Pour une liste python L, la commande L=sorted(L) renvoie la liste rangée par ordre croissant. Afficher $[\lambda_1, \lambda_2, \lambda_3]$ et $[\mu_1, \mu_2]$ sur une dizaine d'exemples. Que peut on conjecturer quant à la position de μ_1 et μ_2 par rapport à λ_1 , λ_2 et λ_3 ?

Réponse

On conjecture:

$$\lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \lambda_3$$

- 3. On suppose pour cette question que A est inversible et on note C_1, C_2, C_3 ses colonnes. On note B la matrice A^{-1} .
 - a. Calculer $b_{1,3}C_1 + b_{2,3}C_2 + b_{3,3}C_3$.
 - b. Exprimer $\det(\hat{A})$ sous la forme d'un déterminant de taille 3 dont les deux premières colonnes sont les colonnes de A. En déduire une expression simple de $b_{3,3}$.
- 4. Montrer qu'il existe $U \in \mathcal{O}_3(\mathbb{R})$ telle que $A = U^{-1} \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} U$.
- 5. On note χ_A et $\chi_{\hat{A}}$ les polynômes caractéristiques de A et de \hat{A} . En exprimant le coefficient en bas à droite de $(tI_3-A)^{-1}$ de deux manières différentes, montrer qu'il existe $c_1, c_2, c_3 \in \mathbb{R}_+$ tels que pour tout $t \in \mathbb{R} \setminus \{\lambda_1, \lambda_2, \lambda_3\}$:

$$\frac{\chi_{\hat{A}}(t)}{\chi_{A}(t)} = \frac{c_1}{t - \lambda_1} + \frac{c_2}{t - \lambda_2} + \frac{c_3}{t - \lambda_3}$$

6. Démontrer la conjecture émise à la question 2.

Exercice 31 (X 2018)

Soient f et g deux projections orthogonales de \mathbb{R}^n (muni de sa structure euclidienne canonique). Montrer que $f \circ g$ est diagonalisable.

2.3 Endomorphismes et matrices symétriques positifs

Exercice 32 (X 2016)

Soit $A \in S_n(\mathbb{R})$ telle que :

$$\forall X \in \mathbb{R}^n \setminus \{0\} \ (AX|X) > 0.$$

Montrer que si X est non nul, $\lim_{k\to+\infty} \frac{(A^{k+1}X|X)}{(A^kX|X)}$ existe et vaut une valeur propre de A.

Exercice 33 (Centrale Maths2 2018)

Pour tout $n \in \mathbb{N}$, on note $c_n = \frac{1}{n+1} \binom{2n}{n}$. Pour tout $n \in \mathbb{N}$, on note H_n la matrice à n+1 lignes et n+1 colonnes définie par : $H_n = (c_{i+j})_{0 \le i,j \le n}$

- 1. Montrer que H_n est diagonalisable.
- 2. Ecrire une fonction retournant H_n .
- 3. Pour n=1 et n=2 montrer avec rigueur que $\det(H_n)=1$ et que $\operatorname{Sp}(H_n)\subset\mathbb{R}_+^*$.
- 4. Montrer l'équivalence :
 - (α) A est symétrique réelle et $Sp(A) \subset \mathbb{R}_{+}^{*}$.
 - (β) $\exists T \in GL_{n+1}(\mathbb{R}) \text{ tq } A = T^TT$