Révisions 2025 Algèbre linéaire 16 juin 2025

941

Exercice 1 (CCP 2023)

Soit
$$A = \begin{pmatrix} 5 & 1 \\ 3 & 3 \end{pmatrix}$$
.

On cherche les matrices $M \in \mathcal{M}_2(\mathbb{C})$ telles que $M^2 + M = A$.

- 1. Résoudre :
 - (a) $x^2 + x = 2$
 - **(b)** $x^2 + x = 6$
- 2. Déterminer les valeurs propres de A et une base de chaque sous-espace propre. A est-elle diagonalisable dans $\mathcal{M}_2(\mathbb{R})$?
- 3. On suppose dans cette question et dans la suivante que $M \in \mathcal{M}_2(\mathbb{R})$ et vérifie $M^2 + M = A$.
 - (a) Montrer que si X est un vecteur propre de M associé à la valeur propre λ alors X est vecteur propre de A et $\lambda \in \{-3; -2; 1; 2\}$.
 - (b) Montrer que A et M commutent. En déduire que tout vecteur propre de A est vecteur propre de M.
- 4. Montrer par l'absurde que M n'admet que des valeurs propres simples. M est-elle diagonalisable dans $\mathcal{M}_2(\mathbb{R})$?
- 5. Trouver toutes les matrices $M \in \mathcal{M}_2(\mathbb{R})$ telles que $M^2 + M = A$.

Exercice 2 (Centrale 2023)

Soit E un espace vectoriel de dimension $n \geq 2$.

Soit $u \in \mathcal{L}(E)$ tel que $u^2 = 0$.

On note r le rang de u et p = n - r.

1. Montrer que $2r \leq n$.

2. On a donc
$$r \leq p$$
 et on note $I_{p,r} = \begin{pmatrix} 1 & 0 & \dots & \\ 0 & 1 & 0 \dots & \\ & 0 & \ddots & \\ & & 0 & 1 \\ 0 & \dots & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & \dots & 0 \end{pmatrix} \in \mathcal{M}_{p,r}(\mathbb{K})$

Montrer qu'il existe une base \mathcal{B} de E dans laquelle la matrice de u est $\begin{pmatrix} 0 & I_{p,r} \\ 0 & 0 \end{pmatrix}$.

3. Montrer que $C(u)=\{v\in \mathcal{L}(E) \text{ tq } u\circ v=v\circ u\}$ est un espace vectoriel et donner sa dimension.

Exercice 3 (Centrale 2024)

Soit $A \in GL_n(\mathbb{C})$.

- 1. Est-ce que $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$ est diagonalisable?
- 2. 7

Exercice 4 (Mines 2023)

Soit $A \in \mathcal{M}_n(\mathbb{C})$ nilpotente d'ordre p.

- 1. Montrer que $p \leq n$.
- 2. Soit $A = \begin{pmatrix} 0 & 0 & 0 \\ -2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Montrer qu'il n'existe pas de matrice $B \in \mathcal{M}_3(\mathbb{C})$ telle que $B^2 = A$.

Exercice 5 (X 2023)

Soit G une partie de $GL_2(\mathbb{R})$ qui contient la matrice I_2 et qui est stable par le produit matriciel et par passage à l'inverse.

On note Vect(G) l'ensemble des combinaisons linéaires des éléments de G.

Montrer que $\mathrm{Vect}(G)$ est différent de $\mathcal{M}_2(\mathbb{R})$ si, et seulement si, une des deux conditions suivantes est vérifiée :

- (1) Il existe $P \in GL_2(\mathbb{R})$ telle que pour toute matrice M de G, PMP^{-1} est triangulaire supérieure.
- (2) Îl existe $P \in GL_2(\mathbb{R})$ telle que pour toute matrice M de G, PMP^{-1} est de la forme $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$.