Révisions 2025 Compléments 20 juin 2025

941

Exercice 1 (Centrale 2024)

- 1. On s'intéresse à la suite $(u_n)_{n\in\mathbb{N}^*}$ qui admet pour limite $l\in\mathbb{R}\cup\{-\infty;+\infty\}$. Montrer que la suite $\left(\frac{1}{n}\sum_{k=1}^n u_k\right)_{n\in\mathbb{N}^*}$ admet la même limite.
- 2. Soit $(v_n)_{n\in\mathbb{N}^*}$ une suite à valeurs réelles strictement positives telle que $\frac{v_{n+1}}{v_n}\xrightarrow[n\to+\infty]{}l\in\mathbb{R}_+\cup\{+\infty\}.$ Montrer que $v_n^{1/n}\xrightarrow[n\to+\infty]{}l.$ La réciproque est-elle vraie?
- 3. On suppose $v_n^{1/n} \xrightarrow[n \to +\infty]{} \in \mathbb{R}_+ \cup \{+\infty\}$. Montrer que si l < 1 alors la série de terme général v_n converge. Montrer que si l > 1 alors la série de terme général v_n diverge. Montrer que si l = 1, on ne peut pas conclure. Commenter.

Exercice 2 (Centrale 2024)

Soit $z = e^{i\theta}$ avec $\theta \in]0; 2\pi[$. Pour tout $n \in \mathbb{N}^*$, soit $S_n = \sum_{k=1}^n z^k$

- 1. Montrer qu'il existe $M \in \mathbb{R}_+$ tel que : $\forall n \in \mathbb{N}^* \ |S_n| \leq M$
- 2. Etudier la nature de la série de terme général $\frac{z^n}{n^s}$ avec $s \in]0;1]$.
- 3. Montrer que $\int_0^1 \frac{dr}{1 rz} = \sum_{n=1}^{+\infty} \frac{z^{n-1}}{n}$

Exercice 3 (Mines 2024)

Soit $n \geq 2$.

- 1. Montrer que $S_n(\mathbb{R})$ est un fermé de $\mathcal{M}_n(\mathbb{R})$.
- 2. Déterminer l'ensemble des points intérieurs à $S_n(\mathbb{R})$.
- 3. $S_n^+(\mathbb{R})$ est-il un fermé de $\mathcal{M}_n(\mathbb{R})$?

- 4. Soit $M \in S_n^{++}(\mathbb{R})$. Montrer qu'il existe $\alpha > 0$ tq: $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \ X^T M X \ge \alpha X^T X$
- 5. $S_n^{++}(\mathbb{R})$ est-il un ouvert de $S_n(\mathbb{R})$?
- 6. Quels sont les points intérieurs à $S_n^+(\mathbb{R})$?

Exercice 4 (Mines 2024)

Soit $(\epsilon_k)_{k\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes qui suivent toutes la loi uniforme sur [-1;1].

Montrer:

$$\exists l \in \mathbb{R} \text{ tq } \forall \epsilon > 0 \ P\left(\left|\frac{1}{n}\sum_{k=1}^{n}\cos\left(\frac{k}{n} + \epsilon_k\right) - l\right| \ge \epsilon\right) \xrightarrow[n \to +\infty]{} 0$$

Exercice 5

Montrer:

$$\forall (x, y, z) \in (\mathbb{R}_+)^3 \text{ tq } x + y + z = \frac{\pi}{2} \quad \sin(x)\sin(y)\sin(z) \le \frac{1}{8}$$