TD 2025-2026 Analyse 2 Chapitre 3 Continuité

941

1 Continuité des fonctions de plusieurs variables

Exercice 1

Soit
$$f$$

$$\begin{cases}
\mathbb{R}^2 \to \mathbb{R} \\
(x,y) \mapsto \frac{x \sin(y) - y \sin(x)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\
(0,0) \mapsto 0
\end{cases}$$

f est-elle continue sur \mathbb{R}^2 ?

Exercice 2

On pose pour tous réels x et y : $f(x,y) = \begin{cases} y \ (x-y) \ \text{si} \ x \geq y \\ x \ (y-x) \ \text{si} \ x < y \end{cases}$ Etudier la continuité de f.

Exercice 3 (D'après Centrale 2013)

Soit
$$\mathcal{D} = \{(x, y) \in \mathbb{R}^2 \text{ tq } y \ge 0\}.$$

On définit
$$f \begin{cases} \mathcal{D} \to \mathbb{R} \\ (x,y) \mapsto \frac{x^5}{y^2} e^{-x^2/y} \text{ si } y \neq 0 \end{cases}$$
 et $g \begin{cases} \mathcal{D} \to \mathbb{R} \\ (x,y) \mapsto \frac{x^4}{y^2} e^{-x^2/y} \text{ si } y \neq 0 \end{cases}$.
$$(x,0) \mapsto 0$$

- 1. Montrer que pour tout $y \ge 0$, $x \mapsto f(x,y)$ et $x \mapsto g(x,y)$ sont continues sur \mathbb{R} .
- 2. Montrer que pour tout $x \in \mathbb{R}$, $y \mapsto f(x,y)$ et $y \mapsto g(x,y)$ sont continues sur \mathbb{R}_+ .
- 3. f et g sont-elles continue sur \mathcal{D} ?

Exercice 4 (X 2010)

Montrer qu'il n'existe aucune application continue bijective de \mathbb{R}^2 sur \mathbb{R} .

$\mathbf{2}$ Fonctions lipschitziennes

Exercice 5 (Mines 2023)

- 1. Soit $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux \mathbb{K} -ev de dimensions finies. Soit u une application linéaire de E dans F. Montrer que u est lipschitzienne.
- 2. Soit $n \in \mathbb{N}^*$. Montrer: $\exists C \in \mathbb{R}_+ \text{ tq } \forall P \in \mathbb{R}_n[X] \ P(-1)^2 + P(0)^2 + P(1)^2 \le C \int_{-1}^1 P(x)^2 \, \mathrm{d}x$

3 Parties fermées

Exercice 6 (X 2021)

Soit n un entier supérieur ou égal à 2.

 $\{(x,y,z) \in (\mathbb{R}^n)^3 \text{ tq } (x,y,z) \text{ est liée} \}$ est-elle une partie fermée de $(\mathbb{R}^n)^3$? L'examinateur a demandé de traiter les cas n=3, n=2 et n=4 avant de passer au cas général.

Exercice 7 (Centrale 2022)

Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynômes telle que $\begin{cases} P_0(X) = X \\ \forall n \geq 1 \ P_n(X) = (P_{n-1}(X))^2 + X \end{cases}$

On note \mathcal{M} l'ensemble des nombres complexes c tels que la suite $|(P_n(c)|)_{n\in\mathbb{N}}$ ne tendent pas vers $+\infty$.

- 1. Donner le degré et le coefficient dominant de P_n .
- 2. Le but de cette question est de montrer l'équivalence des deux propositions :
 - (i) $c \notin \mathcal{M}$
 - (ii) $\exists n \in \mathbb{N} \text{ tq } |P_n(c)| > 2$
 - (a) Montrer $(i) \Longrightarrow (ii)$.
 - (b) On veut montrer $(ii) \Longrightarrow (i)$.
 - Premier cas

Soit $c \in \mathbb{C}$ tel que $|c| \leq 2$ et tel qu'il existe $n \in \mathbb{N}$ tel que $|P_n(c)| > 2$.

On note $n_c = \min (\{n \in \mathbb{N} \text{ tq } |P_n(c)| > 2\}).$

Montrer:

 $\forall n \ge n_c |P_n(c)| \ge |P_{n_c}(c)| (|P_{n_c}(c)| - 1)^{n - n_c}$ et en déduire $\lim_{n\to+\infty} |P_n(c)|$

• Deuxième cas

Soit $c \in \mathbb{C}$ tel que |c| > 2.

Montrer:

 $\forall n \in \mathbb{N} |P_n(c)| \ge |c| (|c| - 1)^n$ et en déduire $\lim_{n \to +\infty} |P_n(c)|$

3. Une dernière question dont je n'ai pas l'énoncé.

On peut envisager de prouver que \mathcal{M} est fermé, borné et non vide.