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1 Rayon de convergence d’une série entiere

1.1 Définition d’une série entiére

Une série entiére est une série de fonctions E fn ou pour tout n € N, f,
n>0

C—C
z = apz"
an € C.

Comme pour toute série de fonctions, on cherche le domaine de définition de sa somme ie

le plus grand ensemble sur lequel elle converge simplement.

Il s’agit donc, une fois fixé zy € C, de déterminer la nature de la série de nombres Z anz -
n>0

En pratique la méthode la plus simple et la plus fréquemment employée est 'utilisation de

la regle de d’Alembert :

On suppose : Vn € N a,, # 0.

On suppose zy non nul.

En effet quelque soit la série entiere, il y a toujours convergence pour zg = 0, la somme de la
série valant alors ag.

On forme le quotient des valeurs absolues de deux termes consécutifs de la série :

‘an+lzg+1‘ |an+1\ an+1
¥n e N —— = |20l = |——| [20]
|anzg |an| n
On suppose [t — [ € [0;400]. C’est le cas en particulier si Int1 5 une limite.
|an| n—+
an, n—-+o0o A,

La régle de d’Alembert permet alors d’affirmer :

e Si|z| < 7 alors Zan 2y converge absolument.

o Si|zo| > 7 alors E an zj diverge grossierement, et plus précisément : |a, (| —+——> +o00
n—-+0oo

. 1 . .
Par contre si |z9| = —, on ne peut rien dire.

l

1
Le domaine de définition de la somme de la série entiere est donc, en posant R = 7

€ [0; +o0] :
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e {0} si R=0.
e RouCsiR=+o0.
e | — R; R[ éventuellement augmenté de —R ou de R si on travaille avec une variable réelle

dans le cas ou R € R*
le disque ouvert centré en 0 et de rayon R, éventuellement augmenté de certains points
du cercle de rayon R si on travaille avec une variable complexe dans le cas ot R € R

. an+1 . . ..
Toutefois, | n+’ | n’a aucune raison d’avoir une limite.
a’l’b
C’est le cas particulier, classique dans les cours sur les séries entieres, de la série dite militaire :
Vn € Nay, =1
Vn € N a2p+1 = 2
. Ap+1 p+1 . ) 1 -
Le quotient | |n+| | =t qui vaut alternativement 2 ou 3 n’a pas de limite.
G Qnp

Toutefois, une utilisation judicieuse de la régle de D’Alembert permet de déterminer & peu pres
complétement le domaine de définition de la somme de la série entiere Z an ",

On considére Z aon, z%”.

A2n+2 . . . o
[22n+2] =1——1: Attention danger sans le 22, il y a un risque élevé d’erreur.
’a2n‘ n—4o00

Donc :
e Si|z| < 1 alors Zagn 22" converge (absolument).
e Si|z| > 1 alors |ag, 28"| ——— +o0
n——+o0o

On consideére Z a2n11 zS"H.
|a2n+3| — 1

|a2n+t1] n—+00

Donc :

e Si|z| < 1 alors Za2n+1 22"+ converge (absolument).

e Si|zp| > 1 alors ‘a2n+1 zg”H — 400
n—4o0o

Donc :
e Si |29 < 1 alors Zan 2y converge (absolument).

n n
En effet, on note P, = Z agkzgk et I, = Z a2k+1Z(2)k+1 qui ont toutes deux une limite
k=0 k=0
finie, [p pour la premiere, [; pour la seconde.
n
On note S,, = Z arzy et on a :

k=0
Son = Pp 4+ Ih—1 et Sop11 = P, + I, qui convergent vers Ip + [j.

e Si|z9| > 1 alors |ay, 2| —— 400
n—-+00
Donc : D(0,1) C Ds C Dy(0,1).
Mais si |zg] = 1, la série Z an zj diverge grossierement donc Dg = D(0, 1).
Si on se limite a la variable réelle, Dg =] — 1;1].

Par contre, pour une série entiere comme Zsinnz", il est impossible d’utiliser la regle de
d’Alembert :
sin (n+ 1) o sin (n + 1)|
u
sin (n) |sin (n)]
Si|zp| < 1 alors :

n’ont pas de limite.
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Vn € N |[sin (n) 2| = [sin (n)]|20]™ < |20|" terme général d’une série convergente.
Donc Z sin (n) zy converge absolument.

Soit zp € R tel que |z9] > 1.

Supposons que Z sin (n) z; converge.

Alors sin (n) zf —— 0
n—+oo

. < . n — . n .
Donc [sin (n)| < [sin (n)]|zo] |sin (n) 2§ | — 0 et sin (n) — 0

Donc sin (n +1) —— 0
n—-+00

Or sin (n+ 1) = sin (n) cos (1) + cos (n) sin (1) avec sin (1) # 0

Donc cos (n) —— 0
n—-+oo

Donc 1 = sin? (n) + cos® (n) ——— 0
n—+oo
C’est absurde.
Donc si |zg| > 1 alors Z sin (n) zg diverge grossiérement.
Donc Dg = D(0, 1).
Si on se limite & la variable réelle, Dg =] — 1; 1].

On constate que le domaine de définition de la somme des séries entieres précédentes est :

i un intervalle ouvert centré a l'origine éventuellement augmenté d’une ou de ses deux
extrémités.

ii un disque ouvert (en considérant C comme un disque ouvert de rayon infini) éventuellement
augmenté d’'un ou de plusieurs points de sa frontiere.

Nous allons montrer que cette situation est générique.

1.2 Définition du rayon de convergence d’une série entiere

La définition du programme est la suivante :

Soit Z anx™ une série entiére.
n>0
On appelle rayon de convergence de la série entiere Z a,x" la borne supérieure dans R de
n>0
{p € R} tq la suite (a,p™) est bornée}.

Il résulte immédiatement de cette définition que si z est un nombre complexe tel que |z| > R
alors la suite (a,z")nen n’est pas bornée (et en particulier la suite (a,2"),en ne converge pas
vers 0 et la série Z anz" diverge).

n>0

1.3 Lemme d’Abel

Soit (an)nen une suite & valeurs dans C.
On suppose qu'il existe zp € C* tel que la suite (anz2{)nen soit bornée.
Alors pour tout z € C tel que |z| < |zo| la série Z apz" converge absolument.

Démonstration
IM € Ry tq Vn € N |ay||20]" = |anzi| < M
Soit z € C tel que |z| < |zo].
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n n
Vn € N |anz"| = |an||2|" = |an||20[". (M) =M (M)
|20] |20l
||

n
Or ‘|Z|| < 1 donc la série géométrique Z M <H> converge.
20 20

On en déduit que Zanz” converge absolument.

1.4 Conséquences du lemme d’Abel

Soient E anx” une série entiere de rayon de convergence R et z un nombre complexe.
n>0
Si|z| < R la série E anz" converge absolument.

Démonstration
Par définition de R, il existe p € R, tel que :

ilz|<p<R
ii la suite (anp™)nen est bornée.

D’apres le lemme d’Abel, la série Z anz" converge absolument.

1.5 Remarque

On est donc dans une des trois situations suivantes :

R=0 R infini
o o
r 1 r 1
- 0 © - 0 ©
X X
- o0 - — o 4
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R fini non nul

On dispose alors d’un certain nombre de formules du genre :

Rey = supsr e Ry tq Zanr” converge}

= sup

= sup {T e R, tq Z anr" converge absolument}
{]z],z € Ctq Zanz" converge}

= supqlz],z € C tq Z anz" converge absolument}

= sup{\z\,z € Ctq apz" — 0}
n—-+oo

_ Jinf{|z], 2 € C tq (a,2") n’est pas bornée} si cet ensemble n’est pas vide
| +oo si il est vide

1.6 Disque et intervalle ouverts de convergence

Soient Z anz" une série entiére et R son rayon de convergence.
n>0
{ze€Ctqlz| <R} (cest D si R =0et Csi R = +00) est appelé disque (ouvert) de convergence.
] — R;R[ (c’est  si R=10 et R si R = 400) est appelé intervalle (ouvert) de convergence.

1.7 Détermination pratique du rayon de convergence

e Utilisation de la regle de D’Alembert
C’est la méthode la plus simple a utiliser mais elle ne s’applique pas dans tous les cas.
Le programme indique que le théoreme suivant peut étre utilisé :
Théoréme
Soit Z anz" une série entiere telle que :
n>0
ivneNa, #0

e [0;tod]
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1
Alors le rayon de convergence est R = T

Exemples
— Z n“z", a € R
n>0
Vn € N*a, =n*#0
] (n+1) a1y ,
o ( ) n—-+o0o

lan| ne n
Donc R =1.
Ce résultat est mentionné explicitement dans le programme.
Z (_1)nz2n
S0 2"+ n
VneN —1)" £
n ap, =
"oongp
lant1] 2"+ 2" 1
lan| 27t 4nm 41 2ntl 2
Donc R = 2.

C’est un raisonnement faux.
Le théoréme est bien pratique mais doit étre manié rigoureusement.

Soit r € R*..

Vn € N |a,|r?" >0

|an+1|7ﬂ2n+2 _ [y 2 r?
lan|m20 T an|  note 2

Si r < /2 alors Z a,r’" converge absolument.
Sir > /2 alors |a,|r?" ——— 400
n—-+oo

Donc R = /2.

Dans les cas ou on ne peut pas appliquer la regle de D’Alembert, on peut utiliser la
proposition suivante qui découle immédiatement des résultats précédents :
e Proposition!
Soient Z anz" une série entiere et R son rayon de convergence.
n>0
— Si on trouve zg € C tel que la série Z anzy converge alors on peut dire que R > |zg|.
n>0
— Si on trouve 2y € C tel que la série Z anzy converge absolument alors on peut dire
n>0
que R > |zg|.
— Si on trouve zg € C tel que la suite (anz{)nen soit bornée alors on peut dire que
R Z ‘Zo|.
— Si on trouve zp € C tel que la suite (a,z{)nen converge vers 0 alors on peut dire que
— Si on trouve z; € C tel que la série Z apzy diverge alors on peut dire que R < |z].
n>0
— Si on trouve z1 € C tel que la série Z anzy ne converge pas absolument alors on peut
n>0
dire que R < |z1].

1. cette proposition n’est pas mentionnée explicitement dans le programme mais reléve du bon sens
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— Si on trouve z; € C tel que la suite (ap2])nen ne soit pas bornée alors on peut dire
que R < |z1].

— Si on trouve z; € C tel que la suite (a,2]),en ne converge pas vers 0 alors on peut
dire que R < |z1|.

1.8 Rayon de convergence et comparaison des coefficients
1.8.1 Proposition

Soit Z a,z" une série entiere de rayon de convergence R,.
n>0
Soit Z bp 2" une série entiere de rayon de convergence Ry,.
n>0
On suppose :

an = O(by)
Alors R, > Ry.

Démonstration
Si R, = 0 le résultat est clair donc on suppose Ry > 0.
an = O(by,) donc :
E(M, nO) € Rj— X N tq Vn > ng |an| <M |bn’ = |Mbn‘
Il est clair que le rayon de convergence de Z Mby,z" est égal & Ry.
n>0

Soit r € [0; Rp|.
On a:

o Vn>ng 0 < |ay|r™ < |by|r™

e la série Z |bp|r™ converge (car r < Rp).

n>0
Donc la série Z lan|r"™ converge et R, > r.
n>0

En faisant tendre r vers R, on obtient R, > R.

Remarque
Le résultat s’applique en particulier si a,, = o(by,) puisqu’on a alors a, = O(by,).

1.8.2 Proposition

Soit Z a, 2" une série entiere de rayon de convergence R,,.
n>0
Soit Z b,z™ une série entiere de rayon de convergence Ry.
n>0
On suppose : |a,| ~ |by,|
Alors R, = Ry.

Démonstration
Si |an| ~ |by| alors a, = O(by) et Ry > Ry.
Si |ay| ~ |by| alors b, = O(ay,) et Ry > R,.
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1.9 Exemple : CCP 99

Pour tout n € N*, soit a, la n'®™® décimale de .

Soit o € RY..
, . N an 4
Rayon de convergence de la série entiere Z —
n>1
Correction
m=3,1415...
a; = 1 ag = 4...
9
Wne N+ |2n) O o 2
ne ne ne
a 1
Donc — = ()
[e% na
':L,TL
— -, .n —
Donc R> Rey [ Y | =Rev | Y _n %" | =1
n>1 n>1
D'ou R > 1.

Dans l'autre sens c’est plus compliqué car a,, peut étre nul.
Ceci dit :

{n € N* tq a,, # 0} est infini.

Sinon 7 serait décimal donc rationnel, ce qui est faux.

Je suppose ici qu’on considére comme acquis : 7 € Q.

Donc il existe ¢ de N* dans N* strictement croissante telle que :
Vn € N* Qp(n) # 0.

Mais les a, sont des entiers positifs donc :

Vn € N* ag,p,) > 1

Soit z > 1

(n)
« To(n) e ¥
Vn e N >
p(n)e” p(n)*

. € .
La suite ( ) diverge vers +o0o donc la suite extraite - aussi.
p(n)* ) o

() %—I—oo

Ayp(n
Donc o(n ) p—

a

Une des suites extraites de (Zm”) diverge donc cette suite diverge.
n

D'ou R < z.

En faisant tendre = vers 1, on obtient R < 1.

Finalement, R = 1.

Mines 2022
Pour tout n € N*, soit a, la n'®° décimale de 7.

Rayon de convergence de la série entiere E anpx™?
n>1

1.10 Linéarité

e Produit par un scalaire?

Soient g anz" une série entiére et R son rayon de convergence.
n>0

2. Il s’agit plus d’un rappel de bon sens que d’un théoréme
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Pour tout A € C*, le rayon de convergence de la série entiére Z Aanz" est égal & R.
n>0
De plus si R > 0 on a pour tout z € C de module strictement inférieur a R :

Z Aap, 2" =\ Z anz"
n=0 n=0

e Somme

Soient Z a,z" une série entiére et R, son rayon de convergence.
n>0

Soient Z bn 2" une série entiere et R}, son rayon de convergence.
n>0

Soit R le rayon de convergence de la série entiére Z(an + by )"

n>0

On a: R > min (R,, Ry).

De plus :

— Si R, # Ry alors R = min (R, Rp).

— Simin (Rg, Ry) > O on a pour tout z € C tel que |z| < min (R,, Rp) :
+o00

Z(an—i-b Zanz —i—sz

n=0
Démonstration
— Simin (R,, Ry) = 0 il est clair que R > min (Rg, Rp).
Supposons min (R, Rp) > 0.
Soit z € C tel que |z| < min (R, Rp).
Les séries Z anz" et Z bpz" convergent donc :

n>0 n>0
— la série Z anz™ + by 2" ie Z(an + by)2" converge et par conséquent R > |z|.
n>0 n>0

72%4_(7 Zanz +anz

On en dedult en partlcuher
Vr € [0;min (R,, Rp)[ R > 7
D’ot R > min (Rg, Rp).
— On suppose R, # Ry, par exemple R, < Ry
(on ne fait plus 'hypothese : "min (R,, Ry) > 07).
Pour tout r €]R,; Rp[ la série Z a,r" diverge et la série Z b,r™ converge donc la
n>0 n>0
série Z (ap, + by)r™ diverge.
n>0
Donc :

Vr €]Ra; Ry > R
D’ott Ry > R > min (Ra, Ry) = Ra.
Donc R = R, = min (R, Rp).

Remarque
Si Ry, = Ry = +00 alors R = 400 mais si R, = Ry € Ry il peut se passer n’importe
quoi :

— Si pour tout n € N b, = —a,, on a R = 4o0.
— Si pour tout n € N b, =a, ona R= R, = R, = min (R,, Rp).
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— Si pour tout n € N b, = —a, + ¢, avec Roy Z 2" | = R, réel > R, on a bien
n>0
Ry = R, a cause de la proposition et R = R..

1.11 Produit de deux séries entieres

1.11.1 Introduction

P q
Considérons deux polynoémes : P = Z apn X" et Q = Z b, X". Leur produit est le polynéme

ptq
> X" ot
cp X" ou :

n=0

Vne{0;...;p+q}tcn = Z arb;
k+l=n
0<k<p
0<i<q

Se pose alors naturellement la question suivante :
étant données deux séries entieres E anx” et E bpx™,

n>0 n>0
si on définit pour tout n € N ¢, = Z arb;
k+l=n
—+o00 “+o00 —+o00
a-t-on : Z anx" X Z bpa™ = Z cp,x” et si oui pour quels x ?
n=0 n=0 n=0

1.11.2 Produit de Cauchy de deux séries de nombres

Soient E Uy, et Z v, deux séries a termes dans K.
n>0 n>0

On appelle produit de Cauchy des deux séries Z Uy, €t Z vy, la série Z Wy, OU :
n>0 n>0 n>0

n n
Vn € Nw, = Z UpVg = Z UpUp—p = Z Un—qVq
ptg=n p=0 q=0

1.11.3 Théoréme
Soient Z Up, €t Z v, deux séries & termes dans K et Z wy, leur produit de Cauchy.

n>0 n>0 n>0
Si les séries Z Uy, et Z v, convergent absolument alors la série Z wy, converge absolument et
n>0 n>0 n>0

on a :
—+00 “+o00 —+00
S = (Y] (S
n=0 n=0 n=0

Remarque

Le théoreme s’applique en particulier si E Uy, €t E vy, sont deux séries a termes réels positifs
n>0 n>0
convergentes.

10
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Exemple

Considérons la série entiere E - dite série exponentielle.
n!

1
VvneNa,=—>0

n!
|apn+1] B n! 1

lan]  (n+ 1! n+1 notoo

0 donc R = +o0.

- z"
Donc pour tout z € C, la série Z — converge absolument.
n!

Sa somme est notée exp. :

+o00 Zn
Vz e C exp(z) = Zm
n=0
Soient 21 et z9 € C.
, 2 zy
Pour tout n € N, soient u,, = = et v, = -
n! n!

LN S 1 & (n
VneNw, = 2—127:—'2 2257F
n!

o= P (n—p)!

= j(2’1 + 29)"

. 21 2y (21 + 22)"
Le produit de Cauchy de Z o et de Z o est Z —
Z'I’L
Or, pour tout z € C, la série Z — converge absolument donc :
n!

(21 + 22 2 =X
V(z1,22) € C Z Z x> =z
n=0 n=0 n

ou encore

V(z1,22) € C exp (21 + 22) = exp (21) X exp (22)
En particulier :

+oo On

Vz € C exp(z) X exp (—z) = exp (0) = Z =1

n!
n=0
On en déduit :

Vz e C exp(z) #0

et 1

VeeC — =exp(—2z
o (2] p(—2)

Démonstration 3

e Cas de deux séries a termes positifs
On suppose :
Vn € Nu, € R et v, € Ry
Pour tout n € N, on pose :

3. La démonstration est mentionnée comme ”non exigible” dans le programme.

11
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An:Zuk,Bn:kaetC :Zwk
k=0 k=0 k=0
VneNC, = ZZupvq: Z UpUy

k=0 p+q=Fk 0<p+q<n
n n
vneNA, B, = (Z uk> . <Z vk> = Z UpUy
k=0 k=0 0<p<n
0<g<n

Pour tout n € N, on pose D,, = {(p,q) € N? tq p+ ¢ < n}

et Ay ={(p,q) EN?tq0<p<net0<qg<n}.

VYneND, CA, C Dy,

Pour tout (p,q) € N?, uyv, > 0 donc :

vneNC, = Z UpVy < Z UpVy = ApBp < Z upvy = Cop,
(p,9)€Dn (P.9)EAR (p,9)€D2n

ie : VnENC < A, B, <C’2n

Soient A = Z u, et B = Z Up-

=0 n=0
Comme on a affaire a des séries a termes positifs, on a :

VneNO0<A,<Aet0<B,<B
Donc :
vneNC, <A,B, < AB
La suite des sommes partielles de la série & termes réels positifs Z wy, est majorée donc
n>0
la série Z wy, converge.
n>0
Soit C' sa somme.
vneNC, <A,B, <Cyy
D’ou, en passant a la limite :
C<AB<(Cie(C = AB.

e Cas général

Soit Z wp, le produit de Cauchy de Z |un| et de Z |Un|.
n>0 n>0 n>0

n n
Vn € N ‘wn| = Zupvn—p < Z |uPHU”—P‘ = Wn

D’apres ce qui précede, la série E wy, converge donc la série E wy, converge absolument.

n>0 n>0
Si on conserve les notations précédentes, on a :
vneNA,B, —C, = Z UpUq — Z UpVq = Z UpUyq
(P,a)€EAR (p,9)€Dn (P,9)€EAR\Dn
D’ou :
Vn e N|A,B, — Cy| < Z [up]|vg]
(P,9) €EAR\Dn
< _ s P
< Z [up| [vg] Z [up]|vg] R 0 d’apres ce qui précede
(P,9)€EAR (P,9)€Dn

D’ou: A, B, — C, —— 0.

n—-+00

12
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Or A, B, —-C, —— AB - C.

n—-+o0o

Finalement C = AB.

1.11.4 Produit de Cauchy de deux séries entiéres

Soient Z anz" une série entiére et R, son rayon de convergence.
n>0
Soient Z byz" une série entiére et Ry, son rayon de convergence.
n>0
Soit (¢p)nen la suite & valeurs complexes définie par :

n n
Vn € N¢, = Z apby = Z apbp—p = Z ap—qbq
pF+q=n p=0 q=0
Soit R. le rayon de convergence de la série entiere Z cnz”.
n>0
On a: R. > min (R, Rp).
De plus, si min (R, Rp) > 0, on a pour tout z € C tel que |z| < min (R,, Rp) :

400 +00 +oo +oo
(Z anz”> . (Z bnz”> = Z 2"t = Z Z apby | 2"
n=0 n=0 n=0 n=0 \p+qg=n

Démonstration

Si min (Rg, Rp) = 0 le résultat est clair.
On suppose donc min (R, Rp) > 0.
Soit z € C tel que |z| < min (R4, Rp).

Vn € N ¢,2" = Z apby | 2" = Z (apbgz™) = Z (apzPbyz?)

pHg=n pt+g=n p+g=n
ie : la série Z cnz" est le produit de Cauchy des séries Z anz" et Z b, 2"
n>0 n>0 n>0
Or les séries Z anz" et Z b 2" convergent absolument donc :
n>0 n>0
e La série Z cpz" converge absolument et par conséquent R > |z|.
n>0

“+o0o +o0 +00
° Z 2" = (Z anz”> . (Z bnz”>
n=0 n=0 n=0
On en déduit en particulier :
Vr € [0;min (R,, Rp)[ Re > r
D’ou R. > min (R, Rp).

Remarque
Méme si R, # Ry, on peut avoir R. > min (R, Ryp).

Exemple
Soit (an)nen définie par : Vn € N a,, = 1.

R, = Rev Zanz” = Revy Zzn =1.

n>0 n>0
Soit (by,)nen définie par : bg =1, by = —1 et ¥Yn > 2 b, = 0.

13
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Ry = Rev Z bpz" | = +oo.
n>0
co = agp.bp=1et :
Vn € N* ¢, = Zan_qbq =by+b =0
q=0
Donc R, = 400.

1.11.5 Centrale 2003

a():l

« _ Lrao Qp—2
Vn € N an——Q(m+--~+2!+an_1>

1. Montrer : Vn € N* |a,| <1
1 n
Montrer : Vn € N* |a,| < ()

In3
+o00
Qu’en déduire? (sur R rayon de convergence de Z anx")
n=0
+oo
2. Montrer : Vz €] — R; R[ (" 4+ 1). Z anz’ =2
n=0
3. En déduire : Vn € N* as,, = 0
4. Calculer ag,...,ag & I'aide de Maple.

def a(n):
from math import factorial
tab=[1.0]*(n+1)
for i in range(l,n+1):
tab[i]=-0.5*sum(tab[k] /factorial(i-k) for k in range(i))
return(tab)

print(a(6))
[1.0, -0.5, -0.0, 0.04166666666666667, -3.469446951953614e-18, \\
-0.004166666666666667, 4.336808689942018e-19]

Une solution récursive est envisageable. Sa complexité est trés mauvaise mais cela ne pose pas
de probléeme pour les premiers termes de la suite.

def a_rec(n):
from math import factorial
if n==0:
return 1.0
return(-0.5*sum(a_rec(k) /factorial(n-k) for k in range(n)))

for i in range(7):
print(a_rec(i))

1.0

-0.5

-0.0

14
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0.0416666666667
-3.46944695195e-18
-0.00416666666667
4.33680868994e-19

Correction

1. Pour tout n € N, soit P(n) : Vk € [0;n] |ax| < 1.

P(0) est vraie.
On suppose P(n) vraie.

IN

|an 1]

1

|an+1 k|
Z P

k=1

1+°° e—1_3-1

S*Zk'_ ;=g 1

1 k
Pour tout n € N, soit P(n) : Vk € [0;n] |ag| < <1 3) .

P(0) est vraie.
On suppose P(n) vraie.

X (In3)*

anit] < Z <3 Z TR
1 n+1 k 1
= 2(In 3)n+1 Z 2(In 3)n+1 Z
< s < 1
- 2(ln3)”+1 ~ (In3)ntt

On a donc prouvé par | récurrence :

1
VneN |a,| < .
neN |ay] (1 3)

1 n
On en déduit an—0(<13) )puis
2. Vz €R €” +1_2+Z be
n=0
+00o
VmeR(ez—i—l)Zanag”:chm"
avec : nnzo =0
Vn € N¢, = Z bran—rk
k=0
co = apbg = 2
Vn € N* cn—2an+za" k_ o
+oo
Donc Vo €] — Ry R[ (e" +1). > ana™
n=0
Donc :
X 2
Vz €] - R;R Lt =
x €] ; [Zam ]

15
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3.
Ve e - R[S ant = 2 - 2
xT ; n:1anﬂj = eer 1 apg = e + 1
1_ X
= 1+:$ noté f(x)
1_ @ (] _ o2 r_ 1
VreR f(mn) = O S Sl

T lter e?(14+ e @) e 41 -
f est impaire donc :

Vn € N* ag, =0

Remarque

1— ot — o%/2 (ex/Q _ e—x/Z)
et 1+ 1 - er/2 (ea;/Q + e—a;/Q)

= —tanh <$>
2

2 Les séries entieres comme fonctions : continuité, dérivation,

Vo€l - R R f(z) =

intégration
2.1 Modes de convergence d’une série entiére

Soit Z a,z" une série entiere de rayon de convergence R > 0.
n>0
Il y a convergence normale sur tout segment de | — R; R|.

En effet, considérons [a;b] (—R < a < b < R) un segment inclus dans | — R; R].

Soit ¢ = max (|a|, |b]) = max_|z|.
z€[a;b)

¢ < R donc la série E |an|c™ converge.

n>0

Vz € [a;b] Vn € N |a,2"| = |ap||z|” < |an|c™

On en déduit que la série entiere Z apx" converge normalement sur [a;b].
n>0

Il n’y a pas en général convergence normale sur | — R; R|.

Exemple : Z "

n>0
sup |2"| =1 qui est le terme général d’une série divergente.

z€]-1:1]

On en déduit que la série entiere Z z" ne converge pas normalement sur | — 1; 1[.
n>0

Il n’y a pas en général convergence uniforme sur | — R; R].

Si on reprend l'exemple précédent, sup [z"| ne tend pas vers 0 et la condition nécessaire
z€]-1;1]
de convergence uniforme vue en? du chapitre précédent n’est pas vérifiée.

16
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2.2 Continuité de la somme d’une série entiére

e Cas de la variable complexe
Soient Z a,z" une série entiere de rayon de convergence R > 0 et D son disque (ouvert)
n>0
de convergence.

D —C

La fonction S I , est continue.
Z = Z anz
n=0

Le programme signale que ce théoréme est admis.

e Cas de la variable réelle
Soient Z anz™ une série entiére de rayon de convergence R > 0 et | — R; R[ son intervalle
n>0
(ouvert) de convergence.

|- R;R[— C
+oo
:1:»—>Zanx”
n=0

Démonstration

La fonction S est continue.

Pour tout n € N, soit f, {] BRI C
T — apx™
— Pour tout n € N, f,, est continue sur | — R; RJ.
— La série de fonctions Z fn convergence uniformément sur tout segment de | — R; R| :
en effet, il y a convergence normale sur tout segment et la convergence normale en-
traine la convergence uniforme.

On en déduit que la fonction S est continue sur | — R; R].

e Remarque
Je cite le programme :

L’étude des propriétés de la somme au bord de l'intervalle ou du disque de
convergence n’est pas un objectif du programme.

2.3 Intégration terme a terme des séries entiéres
2.3.1 A propos du rayon de convergence

Le résultat qui suit n’est pas explicitement au programme.
Soit (an)nen une suite a valeurs dans C.
Zn+1 P
Les séries entieres Z anz" et Z an = Z an—1— ont le méme rayon de convergence.

n+1 n
n>0 n>0 n>1

Démonstration

Soit R; le rayon de convergence de la série entiere Z anz".
n>0

Zn+1

n+1

Soit Rs le rayon de convergence de la série entiere Z an
n>0
Pour tout z € C* on a :

17



Analyse 1, chapitre 4 2025 - 2026

et n

7’ . Z

la série E an converge <= la série E anil converge

n>0 n>0

TL
n>0 + 1
|an|

Vn e N =

’ + 1‘ n+17~ jan]
donc Ry > R;.

Supposons Ry > Rj.
Soient 71 et ro deux réels tels que Ry < 11 < ro < Ro.

ro < R9 donc la suite 7"2) est bornée et :

Qn

o= (3 o ((2))

D’ou |ay|r} —O(n :1) )

On a de plus :
° VnENn(

ﬂ

s
G

e la série E n
n>0

entiere Z nz" est égal a 1, cf ).
n>0
On en déduit que la série Z |an|r] converge (absolument), ce qui contredit r1 > R;.
n>0
Donc on a bien Ry = Rs.

r
1> converge (en effet -1 €]0; 1] et le rayon de convergence de la série
T2 T2

2.3.2 Proposition
Soit Z anx" une série entiere de rayon de convergence R > 0.

n>0
|- R; R[—> C

xHZanx

Soit 7" une prlmltlve de S sur | — R; R|.
Ona:
+o00

VxG]—R'R[T(:c):T(O)+Zn‘:’_LI +Zan1 n

En d’autres termes, les prlmltlves de S s’obtiennent en 1ntegrant terme a terme.

Soit S

Démonstration
Soit z €] — R; R[\ {0} (le cas = 0 est clair).
S étant continue, on a :

T(z) = T(0) + /0 " S(t)dt = T(0) + /0 ' (io ant”> dt
n=0

Soit J = [min (0, z), max (0, z)].
J—=C

Pour tout n € N, soit f,
t— apt™

18
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On a:
e Pour tout n € N f,, est continue sur J.

e La série de fonctions E fn converge normalement sur J.
n>0

On a alors d’aprés le théoréeme d’intégration terme a terme des séries de fonctions vu au para-

graphe 5.3.1 du chapitre précédent :
n-+

+00 x RALY 1
x
T :TO+§ n/ t”dt:T0+§ n——

2.3.3 Exemple

400 1
Vee|—1;1 —1)"z" = R=1
B = e (R )
En intégrant terme & terme :
+o00 "
Ve el —1;1[In(1+az) =) (-1)" 1=
n
n=1

D’apres le théoréme spécial sur la convergence des séries alternées, la série E (—

>1
converge. "=
+00 (_1)7171
Il est évidemment tentant d’écrire In (2) = Z —t
n
n=1
C’est vrai mais cela doit étre justifié.
0;1[— R
.
Pour tout n € N*, soit f, s (_Un_lﬁ
n
* (_1)n—1
e Pour tout n € N*, f,(z) — ———.
r—1 n

<1
. Z fn converge uniformément sur [0; 1] :
D’apres le calcul initial, il y a convergence simple.
Az e [0;1] fixé :

n
— E (—1)"_1x— est alternée
n
n

— DT 0

n n—+oo

n n
— (‘(—1)"—15”) - <x> décroit.
n>1 n Jnp>1

n
Donc par le théoréme sur la convergence des séries alternées :
<

1 * < —
vz € [051[vp € N |Bp(@)] < ()] = T2 < 7

Donc (R,) converge uniformément vers 0 sur [0; 1].

Donc Z fn converge uniformément sur [0; 1].
Par le théoreme de la double limite :

400 n 400 n—1
Z(—l)n_le Z( 1)
= n ool o n
Mais :
+oo l,'n,
Vore]—1;1[In(1 +x) = Z(*l)”_lg
n=1

19
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Donc :
+oo "
(=D —n(2)
n z—1
n=1 <l
Par unicité de la limite :
+00 (_1)n—1
Z ——— =1In(2)
n
n=1
Finalement :
+o0 Pk
Ve el-L1 n(l4+a2)=> (-1)"'—| (R=1)
n=1 n
qu’on peut également écrire :
+0o n
Ve e [-L1[ Y —=-In(l-x)
n=1
2.3.4 Exemple
arctan est C*° sur R et :
Vr e R tan’ = —
x arctan’ (x) T 22
Donc :
—+o00
Vz €] — 1;1[ arctan’(z) = Z(—l)"w% (R=1)
n=0
D'ou :
400 x2n+1
Ve el —1;1 t = -1)" R=1
rel = titfarctan (1) = S (V"5 (R=1)
. -n" . X A . -
La série Z 1 vérifie les hypotheses du théoreme spécial sur la convergence des séries
n>0
alternées :
. (-1 )
o La série Z —— est alternée.
2n+1
n>0
—1)" 1
e La suite ( (=1) > = < > est décroissante.
27’L + 1 neN 27’L + 1 neN

(="

2n + 1 n—+oo

. (="
Donc la série ——— converge.
nZ;O 2+ 1 8
Donc, comme dans ’exemple précédent :
+o0 .,L.2n+1
Vo e [0;1 1"
Finalement, compte tenu de la parité, on a :

= arctanx

400 x2n+1
Ve e |[-1;1 t = 1"
x € [-1;1] arctanz Z( ) 1

n=0

formule de Gregory (1638-1675)

En prenant x = 1, ce que Gregory n’a jamais fait, on a :

T g’f (="
4 o 2n+1

20
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formule proposée par Leibniz (1646-1716) en 1674, mais déja connue par le mathématicien indien
Madhava en 1410 et demeurée inconnue en Occident.

Cette formule est inutilisable en pratique pour calculer une valeur approchée de 7 : la convergence
est trop lente :

1 1 1
41—+ =|3,141612...
(155 fanpqr ) ~ 1418

Mais on dispose de la formule de John Machin (1680-1752) :
1 1

m=4 <4 arctan (5) — arctan (239)>

D’ot

ou :
Ry ( A(-1)" (" >
T = -
(2n + 1)52n+1  (2n + 1)2392n+1

n=0

Machin est, grace a cette formule, le premier & calculer 100 décimales de .

2.4 Dérivation terme a terme des séries entiéres
2.4.1 A propos du rayon de convergence

Soit (an)nen une suite & valeurs dans C.
Les séries entiéres Z apz" et Z napz""t = Z (n+1)an+12" ont le méme rayon de convergence.

n>0 n>1 n>0
Démonstration
Zn+1 1
Rev Z(n + 1)an+1z” = Rev Z(n + 1)an+17 = Rov Z an+1z”+
n+1
n>0 n>0 n>0
= Rcy Z a,2" | = Roy Z anz"
n>1 n>0
2.4.2 Corollaire
Soit (an)nen une suite & valeurs dans C.
Pour tout £ € N*, la série entiere
k)!
Z nn—1)...(n—k+1)a,z"* = Z(n—i— 1)...(n+k)apii2" = Z Mawrkz" a le méme
n!
n>k n>0 n>0

rayon de convergence que la série entiere E anz".
n>0
(11 suffit de raisonner par récurrence sur k)

2.4.3 Le résultat du programme

Soit (an)nen une suite & valeurs dans C.

Les séries entieres E anz" et E na,z" ont le méme rayon de convergence.
n>0 n>0
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2.4.4 Théoréme

Soit Z anx™ une série entiere de rayon de convergence R > 0.
n>0
|- R;R[— C

+oo
T Z anx"
n=0

S est de classe C> sur | —R;R] et :

Soit S

+o0
Vk e N*Vz €] — Ry R[ S®(z) = Z n(n—1)...(n—k+1)a,z"*
n=~k
+oo
= Z(n +1)...(n+ k)aprrpz”

n=0

+oo
n—+k)!
— Z( - )an—i-kxn

n=0

En d’autres termes, les dérivées de S s’obtiennent en dérivant terme a terme.

Démonstration
— R;R|— C
Pour tout n € N, soit f, {] Al
T = apx™
+00 too
Pour tout k € N, soit P(k) : S = Z fn est de classe CF et gk) _ Z f'y(],k)'
n=0 n=0

D’apres le paragraphe sur la continuité, P(0) et vraie.
On suppose P(k) vraie.

e Pour tout n € N, f,S’“) est Cl sur | — R; RJ.

° Z fék) CVS sur | — R; R[ : implicite dans I’hypothese de récurrence.

. Z (ffzk)), = Z f,(lkﬂ) CVU sur tout segment de | — R; R|.
Osik+1>n
ann(n —1)...(n —k)z"*1sin >k
Donc Z f,(lkﬂ) est une série entiere de rayon de convergence R.
Donc Z fkaH) CVN donc CVU sur tout segment de | — R; R].

VneNvz €] — R R[ £ (z) = {

+oo

D’apres le théoréme de dérivation terme a terme des séries de fonctions, la fonction Z fflk) est
=0
~+00 "
de classe C! ie S = Z fn est de classe CF+1.
n=0

De plus :

) _ (@Y _ (2 0) -2 ) _ 2 e
s = (59 = (S 10) =3 (1) = S o

n=0
et P(k+ 1) est vraie.
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2.4.5 Exemple

Soient z € C et :

R—C
+o00 n +00 n_n
€z (tZ) thz
L Z n! Z n!
n=0 n=0
La fonction e, est de classe C™ sur R et €, = ze,.
Démonstration

n

Pour tout ¢ € R, la série Z converge absolument.

tnn

Donc R <Z = +oo (la variable est t).

Donc e, est C°° sur R et :

400 nyn—1 400 (zt)nfl

400 n
/ _ 2 n—1 _ z _
VteR e,(t) = Eﬁ n—n!t = Eﬁ CES z Eﬁ (1)1
n=1 n=1 n=1

= zey(t)

2.4.6 Expression des coefficients en fonction de la somme

Soit E anx" une série entiére de rayon de convergence R > 0.

n>0
|- R;R[— C
Soit S I
T Z anx"
n=0
On a:
Vk € Nay, = ES(’“)( )
Démonstration
X (n —|— E)! n
Vk e NVx €] - R;R[ S =) A
En particulier, si on prend T = O;n en dedult
Vk e N Sk (0) = ' a0+k = klay.
D’ou le résultat.
Corollaire
Soit Z anx" une série entiere de rayon de convergence R, > 0.
n>0
Soit Z b,x™ une série entiere de rayon de convergence R > 0.
n>0
On suppose qu’il existe r €]0; min (R, Ryp)] tel que :
“+oo +oo
Vo €] —r;r| Z anx" = Z by
n=0 n=0
Alors :
Vn € Na, = b,

En particulier si il existe p €]0; R,] tel que :

Vz €] Z anx"
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alors :
YneNa, =0
Démonstration
]——}%a;I%aL—>(i ]—-}%b;fﬁﬁ—»(c
Soient S, = et S =
“ xHZanx" b xHanx"
n=0 n=0

On a, par hypothese :

Vo €] —r;r] So(z) = Sp(x)

Les fonctions S, et Sy sont C* sur | — ;7| donc :
Va €] — r;r[ vk € N S8 (z) = S ()

En particulier pour x =0 on a :

Vk € N kla, = S8 (0) = S (0) = klby

D’ou le résultat.

2.4.7 Exemple : Centrale 99

+oo
— 3n N _ (n—%2)!
f(x)_;vnx O T 8% 6% x (3n)

° Rayo;l de convergence R.
e Comportement pour z = R.

e Trouver une équation différentielle du premier ordre linéaire vérifiée par f.

=)

Un—1

(Indication : calculer

e Calculer f.

Correction ( 2 1( 2)
v o n+2) (n+1)n+
Vn € N* v, = al m
e Soit r € RY.
— Vn e N* 0,73 > 0
—VnGN*MZ---Z n+3 3 \ﬁ
Unrgn 3(n/+-1) n—+oo 3
Par la regle de d’Alembert :
— Sir < /3 alors la série de terme général v, 7" converge.

. 3 s . ;s . N
— Sir > /3 alors la série de terme général v,r3" diverge grossierement.

On en déduit R = /3
o Z v, R = Z(n + 1)(n + 2) est grossierement divergente.

Peut-étre Pexaminateur voulait-il le comportement de f(z) : ce n’est pas clair mais 1'ex-

pression de f(z) permettra de conclure.
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o Vn>2 Un _ 1 2
Up—_1 3n
“+o00 —+00
Vz €] - R R[ f'(z) = Z 3nu,z3" ! = Z(n + 2)v, 123" 4 3022
n=1 n=2

+00 —+00 +o0o
= 622+ Z(l + 3?2 = 622 + 23 Z ozt + 322 Z vt
=1 =1 =1

= 622+ xjf’(m) + 3% f ()
3

1'3

Vx €] — R; R| (1— 3

) f'(z) — 322 f(x) = 622

On travaille sur | — v/3; v/3[ donc 1 — % ne s’annule pas.

32
ESSM : ¢/ = ————
Yoz :U3/3y
Solution générale Y= m
!
Variation de la constante : & = 622
(1—23/3)
x3 ’
C(x) = -2 <1 - 3) + Cte
Doul luti énéral (z) 24 ¢
ou la solution générale : y(z) = — —_—
g ! (1—2%/3)3
|- R;R[—R
En particulier g = 2 est solution sur |— R; R[ du probléme de Cauchy
x —_— —
(1—2?%/3)3
a / 2 2
1—— -3 =6
3 Y vy v tout comme f.

y(0) =0
3
x
Or les fonctions z — 1 — =, & — —322 et  — 622 sont continues, la premiére ne

s’annulant pas sur | — R; R[ donc f = g ie :

Vo €] — V/3; V3 :i:jvnx?’" =2 ((1_3;13/?»3 _ ) — 2373(2(;__?;?;3“‘ a%)
Remarque
Il y a une méthode plus rapide pour calculer f(x). §
Ve €] — R; R f(z) = +fjo(n +1)(n+ 2)? = +fjo(n +1)(n+2) ("’f) ,
On pose : = n=l
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+oo
Ve el —1;1[ S(x) = Z(n +1)(n+2)2"™ (R =1 par d’Alembert)
n=1
d2 400 o d2 +0o0 .
0 = 4 (577) s (20

d2 a3
= dx2<1—x> lourd
d2 +o0 . ) d2 1 )
= dﬁ(,;f —1—x—x>:d$2<1x—l—x—x)
d 1 2 1
dz ((1—95)2 x) 1) ((1—95)3 )

vxe]—%;%[f(x)ﬂ(M—Q

2.4.8 Exemple : Mines 2009

+o0o
2n
f(z) = Z < >:B"
n=0 n
" (2 2n — 2
Déterminer S,, = Z P A 4 .
=\p)\n-p
Correction
2
On note a, = ( n)
n
Soit r € RY..
Vn € Na,r™ >0
Apyppr™ Tt (2n+2)!  nln! (2n+2)(2n +1) 2n+1 4
= r= r= r r
anrn" (n+ 1)l(n+1)! (2n)! (n+1)(n+1) n+1 no+too
On en déduit classiquement R = 1
11 s X (2w [2n—2p =
wel gl o= (Z p)Unen ) )7 = 25
n=0 \p=0 n=0
mais que vaut f(z)?
Dans la recherche du rayon de convergence, on a obtenu :
2 1
Wn e N Intl _ 920
an n+1
ou encore :
VneN n+1)aprr =2(2n+ 1)a,
11 +o0o “+o0o
Vr € ] 71 [ fl(z) = Z napz” ! = Z(n + Dap+12"
n=1 n=0
+00 +00 +oo
= 2 2(271 + 1)apz" = 4z Z na,z" ' + 2 Z anx"
n=0 n=1 n=0
= daf'(z) +2f ()

f est solution de I’équation différentielle (1 — 4x)y’ = 2y et f(0) = 1.
La résolution est standard et :
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11 1
el g 0= g
1= ) 1
V$€]—4,4[nzzosn$ = f($) —1_4$
+o0o
n=0
Finalement : .
VneNSn:Z<2p> <2n—2p> _n
=\p)\n-p

3 Fonctions développables en série entiere

3.1 Définitions

Soit I un intervalle de R tel que 0 ne soit pas une extrémité de I.
Soit f: I — C.
e Soit r €]0; +00] tel que | —r;r[C I.
On dit que f est développable en série entiere sur | — r;7[ si et seulement si il existe une

série entiere E anx”™ de rayon de convergence R > r telle que :
n>0

Vo e] —rr] f(z) = Jioana?”
n=0

Exemples
| —o0;1[ou R\ {1} = R
— La fonction f 1 est développable en série entiere sur
1—=z
]—1;1[etona:
1 =X
Ve €] — ;1] f(z) = . :nz:%x” (R=1)

Le programme mentionne également le développement de 1 sur le disque ouvert :

1 X
Pour tout nombre complexe z de module strictement inférieur a 1, 11—, Z 2",
—z
=0

— La fonction exponentielle est développable en série entiere sur R et on a :

+00 _n
Ve R ex:ZH (R = +00)
n=0
Démonstration
R—C
On fixe z dans C et on considére de nouveau e, IX
b >
n=0
e, est C® sur Ret : e, = ze, ie e, est solution de 3y’ = zy.
Donc :
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3C € Ctq Vt € R e, (t) = Cexp (2t) = C el
ot exp (a + ib) = et est défini par €@t = €% (cosb + isin b)

t—OdonneC—l
V(zt)ECXRZt = o

t =1 donne :
400 N

Vze(CZ

Le programme mentionne explicitement ce résultat.
En particulier :

+oo xn

n=0
En particulier :
+00 1

s loe

|
n—0 n:

Supposons e € Q.
Il existe (p,q) € N* x N* tels que e = b
q

Py + -+ Z
q ' n= q+1
On multiplie tout par ¢!.

pla=Dl= (@ gt tgtl) = 3
n=q+1
plg— 1) —(¢g'+ ¢+ +q+1) € Z mais :

n!

IS S
0< = = =
|
ey ™ koq—l—k—l—l) = (a+1)...(g+k+1)
+o0o
1 1
< =
q+1
1
< =<1
q
400 q|
Donc Y | € ZN|0; 1[.
n=q+1
On aboutit a une contradiction.
Donc e € Q.
e On dit que f est développable en série entiére si et seulement si il existe r €]0; 00| tel

que :
—|=rr[cI
— f est développable en série entiére sur | — ;7|

e Développer en série entiere f, c’est déterminer (si ¢’est possible) r €]0; +o0] et Z anpx"
n>0
série entiere de rayon de convergence R > r tels que :
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—]=rricI

“+oo
—Vx €] —rr[ f(z) = Z apz"”
n=0

Il résulte immédiatement de 2.4.4 que si f est développable en série entiére sur | — r;r[ alors :
e f est de classe C* sur | —r;r|.
Fm(0)

e YneNa, =
n!

Définition
Soient I un intervalle de R tel que 0 ne soit pas une extrémité de I et f : I — C de classe C*™.
F0) .,

x

On appelle série de Taylor (en 0) de f la série entiere Z '
n!

n>0

On a donc :
f est développable en série entiere <= la série de Taylor de f est convergente de somme f sur
un intervalle | — r;r[C I avec r €]0; +00]

3.2 Remarques

Soient I un intervalle de R tel que 0 ne soit pas une extrémité de I et f : I — C de classe
Ce.
Il peut se passer beaucoup de choses :
e La série de Taylor de f peut avoir un rayon de convergence nul. Dans ce cas f n’est pas
développable en série entiere.
On cherche F' € C* (R4, R) telle que;

vn e N FM(0) = (—1)" (n!)? (1)

1. Définition d’une fonction développable en 0, d’une série de Taylor en 0.

2. Une fonction F' vérifiant (1) est-elle développable en série entiére en 07

1
3. Tracer les 7 premieres sommes partielles de la série de Taylor de F' entre 0 et —.

2y +(z+1y=1

4. Pourquoi ne peut-on pas résoudre directement ce probleme : { 0)=1 ?
y =
1
Le transformer en probléeme de Cauchy approchant sur {10_3; 2} .

Tracer les solutions et comparer les tracés avec ceux de la question 3).
5. Résoudre le probleme de 4) sur R7 .
6. 4 autres questions
Correction

1. f est développable en série entiere en 0 si, et seulement si, il existe r > 0 et une série
entiere Z anx™ de rayon de convergence R > r telle que :
n>0

+o0
Vo €] —rr] f(z) = Z anz"
n=0

Soient I un intervalle de R tel que 0 ne soit pas une extrémité de I et f: I — C de
classe C*°.
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1)

On appelle série de Taylor (en 0) de f la série entiere Z '
n!

n>0
On a donc :

f est développable en série entiere <= la série de Taylor de f est convergente de
somme [ sur un intervalle | — r;r[C I avec r €]0; +00]

2. La réponse est non.
En effet la série de Taylor de f est Z anz™ avec a, = (—1)"nl.

n>0
a
[n 1] =n+ 1 —— +oo donc le rayon de convergence de la série de Taylor de F
‘an’ n—-+00
est nul.

3. import numpy as np
import matplotlib.pyplot as plt
from math import factorial

les_x=np.arange(0,0.51,0.01)
def F(N,x):
return(sum(factorial (n)*((-1)*x)**n for n in range(N+1)))

for N in range(7):
les_y=[F(N,x) for x in les_x]
plt.plot(les_x,les_y,color="black’)
plt.show()

0.0 0.1 0.2 0.3 0.4 0.5

1
Plus N est grand, plus la valeur en 3 est grande en valeur absolue.

4. Le théoréme Cauchy linéaire ne s’applique pas car le coefficient de ¢’ est nul en 0. A
priori, on ne peut rien dire sur ’existence ou 1'unicité d’une solution.
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r+1 1

Yy :
z? x?
Je propose de prendre comme condition initiale : y(0,001) = y(0) = 1.

Sur RY, 'équation différentielle s’écrit : y' = —

import scipy.integrate as integr

def f(y,x):
return ((-1)*(x+1)*y+1)/x**2

X=np.arange(0.001,0.501,0.001)
Y=integr.odeint (f,1,X)
plt.plot(X,Y,color="black’)
plt.show()

1.00 A

0.95 A

0.90 A

0.85 A

0.80 A

0.75 A

0.0 0.1 0.2 0.3 0.4 0.5

Le tracé est tres différent de ceux de la question précédente, ce qui peut paraitre sur-
prenant.
En fait le tracé de la question 3, suppose que la formule de Taylor-Young approche

F jusque — alors que Taylor-Young dit seulement qu’on approche F' sur un intervalle
de la forme [0; 6] avec § > 0 mais sans donner d’ordre de grandeur pour 4.

5. On commence par résoudre ’équation sans second membre :

1 1
/_a:;; dx:—ln(;v)—l—g

Donc la solution générale de ’équation sans second membre est : y = C

el/x

x
On cherche ensuite une solution particuliere avec la variation de la constante :

el/e 1
/ —
C'(z) e
o1/

C(z) :/ . dz
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D’oti la solution générale :
1/x -1/t 1/x
y(z) = o /x ! dt+C’e/
T Jooolr ¢ T
et on prend C = 0,001e7 19 pour avoir la solution du probléme de Cauchy appro-
chant de la question 4).
On remarque que C est tres proche de 0.

R* — R
+
Dans la suite de ’exercice, on s’intéresse naturellement a la fonction G el/z pa o=1/t
T / dt
x 0 t
R+ — R
e~/

La fonction g { 4 — six >0 estcontinue sur Ry donc G est bien définie sur

xT
0—0

R..
G est clairement de classe C! sur R% et :
vz > 022G/ (x) + (z 4+ 1)G(z)
1/ —1/x 1/x 1/x x ,—1/t x ,—1/t
xze/ et/ +x2—1/xe/ —el/ / eV $+1el/x/ e/
0 0

dt
2 t +3: t

dt

z x T
=1

Donc G est solution de (1) sur RY.
Il faut maintenant préciser le comportement de G en 0, ce qui revient a déterminer
—1/t
e
dt.

Comme souvent, on fait une intégration par parties :
ut)=t,u/(t) =1
—1/t

V() = 5 () = e/t

u et v sont de classe Ct sur ]0; 2] et u(t)v(t) —0
t—0

X
un équivalent de /
0

Donc : y y
Ve >0G(z) = © (xel/z—/ el/tdt> :1_67/ e~ 1/t 4t
€z 0 x 0

0 §/ e Vtdt < pe Ve

DonCOG(x) =14 0(1).
Il faut étre plus précis donc on va devoir procéder a des intégrations par parties suc-
cessives.
n el/z
Pour tout n € N, soit P(n) : G(x) = Z(—l)kk!mk+(—1)"+1(n+1)! . /0 e Mt dt,
k=
On vient de montrer que P(0) est Vrai%.
On suppose P(n) vraie.

—1/t
Tpettgy — Iz&’“”ﬂi dt
0 0 t2

:L,TL+2 e—l/CE o (TL + 2) /x t'ﬂ-‘rl e—l/t dt
0

On en déduit facilement que P(n + 1) est vraie.

X X
Ve >0Vne N0 < / e/t g < / p" e Ve qp = gnt2 e/
0 0
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On en déduit :
n+1 n n

Vn e NG(z) = Z(—l)kk!$k+0(ac”+l) = Z(—l)kkz!xk—i—O(a:”H) = Z(—l)kk!xk—l—
ol k=0 k=0 k=0

G a des développements limités de tous en ordre en 0 mais cela ne permet pas d’af-
firmer que G est de classe C*.

On peut quand méme dire que G se prolonge par continuité en 0 avec G(0) = 1 et
que G est alors dérivable avec G'(0) = —1.

G est une solution de (1) : 02G’(0) + (0 + 1)G(0) = 1.

C’est la seule. En effet, si H en est une autre, G — H est solution de 1’équation ho-
mogene associée et G — H est nulle en 0.

La résolution de 'ESSM a déja été faite :

el/z
CeRtqVe >0G(x) — H(z)=C
En faisant tendre z vers 0, on obtient C'= 0. G' et H coincident sur R .
Comme elles sont continues sur R, elles sont égales.

Pour tout n € N, soit P(n) : G possede un développement limité & tout ordre.
On vient de montrer que P(0) est vraie.

On suppose P(k) vraie pour tout k compris entre 0 et n avec n € N.

Ve >0G (z) = —22G(x) — 2 G(z) — 72

On dérive n fois :

Ve >0G" (@) = - Zn: (n - 1) (=2)(=3) ... (=2 — k+ 1)z~ 2 kG=k) (z)

— fj (” ; 1) (—=1)(=2)... (=1 =k + D)z~ 27 kqn=h)(z)

—(=2)...(=2— (n— 1))z~ ¥ "

et en multipliant par 2" :

Vo > 02" PG (@) = =3 (=1)F(k+ D" TGP ()
k=0
n

S (=D)Fkla" G (2) — (=1)"(n + 1)
k=0

Pour tout k compris entre 0 et n, n — k est compris entre 0 et n et G ) posséde un
développement limité & tout ordre.
On en déduit que x"+2G(”+1)(az) a un développement limité a tout ordre.

1
Mais au vu des hypothéses de récurrence, G a une limite en 0 donc / G (¢) de

converge. On en déduit que le terme de plus bas degré du développement de 2" 2G™+1) (z)
est de degré supérieur ou égal a n + 2 et G(™*1) a bien un développement limité &
tout ordre.

On en déduit que P(n + 1) est vraie puis que P(n) est vraie pour tout n.

Il en résulte alors que toutes les dérivées de G ont une limite finie en 0.

Par conséquent, GG est de classe C*°.

Par Taylor-Young et unicité du DL, on a bien :

vn e N GM(0) = (=1)" (n!)?
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e Si la série de Taylor de f a un rayon de convergence R > 0, il est possible que pour tout

2 £(n) (g
ve (0PN - BB f@) # Y D
n=0 ’
Exemple
R—R
Soit f{zrs e 12 & #£0
0—0

f est de classe C* sur R et :
YneN fM(0) =0
Le rayon de convergence de la série de Taylor de f est 400 mais :

I ¢(n)
Vo € R* f(x);é():zfn‘(o)x”

n=0
Démonstration
Les théoremes généraux assurent que f est C*° sur R*.
Un examen des premieres dérivées suggere ’hypothese de récurrence :
1
P(n): 3P, € R[X] tq Vz € R* fM(z) = P, <> e~ 1/2%
x

P(0) est vraie avec Py = 1.
On suppose P(n) vraie.

ek ot = Aa(2) e () 3o

z2" "

- (e n )
x2 z 3 x
T

avec P 1(X) =2X3P,(X) — X%P!(X)
Donc :
vn € N3P, € R[X] tq Vz € R* f™(2) = P, <) o

Il est notoire que :
Va e RtYe ™t —— 0

t——+oo
/
ke NV e R* |~ oV/e?| = L om1/e® _ (1) o 1/a7
2 o] x?
1
— —— 00 donc :
x4 z—0
x#0
1
Vk e N 7e—1/x2 — 0
xT x—0
z#0
Donc : .
VP € R[X] P () 12t g
€T z—0
x#0
Donc :
vn e N f((z) — 0
z—0
x#0
_ a1/
f(l‘) € m 0
x#0
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Donc f est continue sur R.
Pour tout n € N*, soit P(n) : f est n fois dérivable en 0 et £ (0) = 0.

f(.%)—f(O) _ 36*1/952 s 0
z—0 x z—0
z#0
Donc P(1) est vraie.
On suppose P(n) vraie.

ﬂm@>—ﬂmmy_y&<1)

x—0 x x

2
12t
x—0

#£0

Donc P(n + 1) est vraie.
Donc f est indéfiniment dérivable sur R ie f est C*° sur R avec :
VYn e N fM(0) =0
e Si la série de Taylor de f a un rayon de convergence R > 0, il est possible qu’on ait

X ()
flx) = ‘ " pour tout x € IN|] — r;7r[ avec 0 < r < R mais pas pour tout
n!

n=0
z e lIN — R;R[.

3.3 Utilisation des formules de Taylor
3.3.1 Formule de Taylor-Young
La formule de Taylor-Young ne peut pas servir a montrer qu’'une fonction de classe C* est
développable en série entiere.
3.3.2 Inégalité de Taylor-Lagrange

Soit I un intervalle de R tel que 0 ne soit pas une extrémité de I.
Soit f: I — C de classe C*.
On calcule pour tout n € N £((0).

On a: -
0,

p |x|p+1
VeelVpeN f(:c)—z -
n=0

< sup | F#) (0a)|

(p + 1! gepos]

On en déduit :
Si il existe r €]0; 4+o00] tel que :
—]=-mrricI
p+1
—Vre|l—rr| il

(»+1) (g 0
su z)| ——
(p+ 1! 96[01;)1] ‘f ( )‘ p=+oo

alors f est développable en série entiére (sur | — r;7[).

Exemple

Soit z € C.
R—C

Soit f {t L ot

D’apres le cours de SUP, f est de classe C*° sur R et :

Vt e RVn € N f(0)(t) = znet?

En particulier :
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vn € N f((0) = 27

p (n) 0 t|pt1
Vie RVpeN f(t)—zf (0)yn id sup ’zpﬂeetz
= (p+1)! ee[o 1]
t
< ( i 1E e 0(at ﬁxé)> .
(p+1)! p—+00
sup e?¢(®) indep de p
0€(0;1]
Donc :
s ( ) 4
vt e R nzo - — f(t)
Donc f est développable en série entiere sur R et :
+oco fmon
VteR e* = Z (avec évidemment R = +00)
= n!
On a en particulier :
+o00 L
zZ
VzeC e = Z o)
n=0
. +00 tn
VieR e :Zﬁ (R = +00)
n=0
+o0o 1
En particulier : e = —
nZ:%) n!

On peut déterminer de la méme maniere le développement en série entiere des fonctions co-
sinus, sinus, cosinus hyperbolique ou sinus hyperbolique.
Les calculs sont laissés aux lecteurs en exercice.

Exemple :
Centrale 99
Soit f € C*°(R,R) telle que :
n!
VneNVaze]—22’f ‘<2—n

Montrer que f est développable en série entiere sur | — 2;2].

Correction P ) )
f(0) |z |P* (p+1)

Ve €] —2;2[VpeN |f(x) — x| < sup |f'P 6’x

R © -2 S G| )

1!

Ox €] — 2;2[ donc ’f(pﬂ)(ﬁl‘) < (p2:’+1) et :
v 9:9( ¥p € N = SO) | 2P DY\ 0 (3 2 fixé
€] -22[vpe f(a?)—nzo 1 S sl 2\ 2 = (& z fixé).
D’ou :
o S IO
Donc :
Ve el —2;2[ f Z (la série converge bien sir).

Donc f est developpable en série entiere sur | —2;2[ et R > 2.
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3.3.3 Formule de Taylor avec reste intégral

Cette formule n’est pas exigible dans le programme de premieére année.
Elle figure explicitement au programme en seconde année dans le chapitre sur les séries entiéres.
Cette formule s’énonce ainsi :
Soit I un intervalle de R.
Soit n € N.
Soit f : I — R de classe C"*1.
Soit a et b deux éléments de I.

k=0 ) @ )

Cette formule se démontre par récurrence sur n.
La propriété est vraie au rang n =0 :
On suppose ici f de classe C 1

n_ f(k)
Z f kk'(a +/ (n+1)( t)dt = f(a) + /b f'(t)dt = f(t) car f est de classe C'.
k=0 ¢

On suppose la propriété vraie au rang n.
Soit f: I — R de classe C"t1.
La propriété est vraie au rang n donc :

M=

M(q _pn
o = S k,( )(b—a)’“+/b(bn,ﬂf(”“)(t)dt
k:() . a M
N (k) (g (b — )nt! b —(b—t)n*!
- 5! ,; o [mﬂw R
k: 0 ! . a a N

n+1 f(k; +2)
= — (n t)dt
! @) St / (n+ 1 (*)

et la formule est vraie au rang n + 1.

Remarque

L’inégalité de Taylor-Lagrange se déduit de la formule de Taylor avec reste intégral :
Soit f: I — R de classe C"+1.

Dans le cas a < b :

n

k) (g
_Zf k'( )(b_a)k

[ s ) a

— n!
< /ab(b;fyl‘f(”“)(t)‘ dt b—t>0
< sup |fOHV(y) /b (b —'t)” gt
y€a;b] a n:
b
< el |
b—a)" ! b— a|mtt
= el e ((n +)1)! - (n +’1)! yelmin () ()] ‘f(nﬂ)y)’
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Dans le cas a > b :

k)
OB k,“”(b—a)"’ -
k=0 :

n!

[ e ) a

a(t—>b"
< / (t=b" [Fr @) ar b-t<o
b n!
a(t—>b"
< s || [
y€E[bia] b n:
4179
< sup |V (y) (=6
y€Elbal (n + 1)‘ b
(a _ b)n—i—l ‘b _ a|n+1 1
< sup [fPH(y) = sup F (y)
yelbial (n+1)! (n+ 1! yeimin (a,b)max (a,b)] ‘ ’
Si on revient au développement en série entiére, on a la méthode suivante :
Soit I un intervalle de R tel que 0 ne soit pas une extrémité de I.
Soit f : I — C de classe C*°.
On calcule pour tout n € N f(")(0).
On a: o
n T — t)P
VeelIVpeN f(x)— Z / ‘(O)x" :/ Qf(p“)(t) dt
— nl 0 p!
—]—mricI
f est développable en série entiére < 3r €]0; +o0] tq T (x—t)P

— vV E]—r;r[/

0 p! p—r—+00

3.3.4 Exemple : Mines 2003

+oo /1 1\n
fy =y &Y

n=1

,(z €] = 1;1))

r+n

1. Définition de la somme.

2. Montrer que f est continue.

3. Montrer que f est C*°.

4. Montrer que f est développable en série entiere (et montrer que Roy = 1).
_tm

dt
1414

1
5. Montrer que : f(x) :/
0
Correction
Il s’agit d’un exercice classique dont il existe de nombreuses versions. Je n’en ai gardé qu’une.
1. Soit x €] — 1;1] fixé.
e VneN'z+n>n—-1>0
(=1)"
Donc est alternée.
Z rT+n
-n" 1
° ( (=) ) = < ) est décroissante.
r+n n>1 n—+x n>1
Y
(1) .
T +mn n—+oo
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_1)»
D’apres le TSCSA, Z (x+)n converge.
|-L1[—R
Donc, si on note pour tout n € N*, f, (—1)" alors an CVS sur | — 1;1].
T
n+x

f est bien définie sur | — 1;1].
2. e Pour tout n € N*, f,, est continue sur | — 1; 1[.
o Z frn. CVU sur tout segment de | — 1;1].
+00
Comme an CVS sur | — 1;1[, on peut définir R, = Z fn-
n=p+1
Soit [a;b] (—1 < a < b < 1) un segment de | — 1;1].

Vn € NVx € [a; 0] |Rp(x)] < |fas1(z)| d’apres le TSCSA cf 1)

< 1 < 1
T n4+l4+x n+l+a

indépendant de x et —— 0
n——+0o

Donc (R,) CVU vers 0 sur [a;b)].
Donc (R,) CVU vers 0 sur tout segment de ] — 1;1].
Donc Z fn CVU sur tout segment de | — 1;1].
Donc f est continue sur | — 1;1].
3. On calcule d’abord f,(lp).
Vp e NVn e Nz €] — 1;1] f{P(z) = (1)

Pour tout p € N, soit P(p) :
festCPsur|—1;1]et:

(=1)Pp!
(z 4+ n)ptl

+

Vo el — ;1] fP)(z) = fm

n=1

P(0) est vraie.

On suppose P(p) vraie.
|- L;1[— R
Pour tout n € N, soit g, (—1)”+Pp!
T
(x +n)ptl
e Pour tout n € N*, g,, est C! sur ] — 1;1].
o Zgn CVS sur | — 1; 1] (implicite dans P(p))
° Zgg CVU sur tout segment de | — 1; 1].
Soit [a;b] (—1 < a < b < 1) un tel segment.

Vn € NVz € [a;b] |¢,(z)] = (;ZZ;ILQ = (a(]i:;)lzgi?

général d’'une série convergente.
Donc Zg; CVN sur tout segment de | — 1;1].

Donc z:g,'1 CVU sur tout segment de | — 1; 1].

indépendant de x et terme

Donc f® est C! ie f est CPT! et :

—+o00
f(p+1) - (f(l?)), — Z g;l et P(p+ 1) est vraie.

n=1
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Donc f est C*® sur | —1;1] et

p n x _ 4\p
. VpeNVz el —1;1[ f Z :/ (=t FEFD @) dt
0

Le cas x = 0 est clair.
Supposons z €]0; 1].

p +oo 1
100 ¢ [ (o= [£2 (1) 1)
VpeN - nl< | | D dt:/ dt
Dp f(z) ;::0 ol T < o ] ’f ( )‘ 0 P! — (t +n)p+2
one :
VpeN S0 W [ 1 £)P (D" dt
P e f(if)—;:% R _/(P+ )@ —t) ;W
Pour tout ¢ € [0;1], la série Z (t—|—1§+ vérifie les hypotheses du TSCSA (facile a
vérifier) donc :
p
Fmo) @ 1
Vp e N f(:c)—z n!( )1: S/O (p+1)(x7t)pmdt
Comme z > 0, ¢ ; 0 donc
wpen @) -3 I n, 0) < [(o+)@—tpas= [~ - pt] =2t ——0.
n=0 : 0 p *°
Supposons z €] — 1;0[.
Pm0) L 0= | (¢ =) [£2 (c1) (ot 1)
Vp e N f(:v)—z) & S/m . ‘f(p+)(t)’dt:/0 o Z:l T ) dt
Donc : - -
Donc : - N
p 00
fn (O) n 0 D (_1)71
Pour tout t €] — 1;0], la série Z 1§p+2 vérifie les hypotheses du TSCSA (facile a
n>1
vérifier) donc :
p
™o 0
Vp eN 'f(x)_ ZO < /ac (p+1)( )p(t+1)p+2

(1 +1x)2 /:(p 1) (i;i)p a

d<t_$): 9:+t1) > (0 donc :

dt \1+1 (1+

Ny 1 0 0—a\P (p+1) [P
VpeN 1 dt =
pe Z_: ’ (1+:1:)2/$(p+)<1+0> (1+2)2  potoo
0

On a donc montré que f est DSE sur | — 1;1] et que R > 1.
Si R était strictement supérieur a 1, f aurait une limite finie en -1 mais :
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Vo - L[ fa) = -+ 3o Ly
x €] —1; x)=— =———f(z
I+ —az+n 1+2
et on arrive a une absurdité en utilisant la continuité de f en 0.
5. On fixe z €] — 1;1].

T +00 +00

t
vt €]0; 1 =° )" = —1)nte
03 = X1 = S
A premiere vue, aucun des deux théorémes du cours ne s’applique.
Soit N € N.
N n N 1— (_t)NJrl
Vvt €]0; 1 —)tr = N () =
011 ) > =
Pour tout n € N,  +n > —1 donc ¢t — t"** est intégrable sur |0; 1].
D’ou :
N 1 1/ g (N+1+a
Z(—n”/ £y — / 4 (=N dt
o 0 o \1+t¢ 1+t
Donc :
N (=1)" 1 g N 1 4N+1+ta
= dt + (—1 dt d ble
nzz‘f)"""l"‘x /0 T3 +(-1) /0 151 (pas de probleme)
Or:
1 ¢N+1+a 1 1
og/ dtg/ N g = » 0
o 1+t 0 N+24+ 2 Notoo
Donc : N N
1 tz o —1)" oo -1 n—1
JR S )
o 1+1¢ —n+1+zx — n+zx
n=0 n=1
Finalement :
1 i d
Ve el —-1;1 = —/ t
vel - L1 fa) =~ [ 102

3.4 Combinaisons linéaires de développements connus

ix —iz 1 400 n,.n +00  A\n,n
Vr € R cosx = e—I—e:<sz' Z( )'x ( cf la fonction e,)
2 2 " S
1 2" 1R z?P
D ML RN R S Y
2 n! 24 (2p)!
+oo 2p
- Z(,l)p x :
= (2p)
On raisonne de méme pour sin.
+00 $2p
Ve eR COS$:Z(—1)p | (R=+00)
= (2p)!
400 p2pt1
. P -
Ve e R smx—ng)( 1) 211 (R = +00)
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On démontre de méme :

+o0 xh)

Vr € R coshx =
;::0 (2p)!

(R = +00)

+o00 1@p+1

Ve eR sinhxzz

2 2t 1)) (R =+o0)

3.5 Intégration et dérivation de développements connus

e Intégration
Soit I un intervalle de R tel que 0 ne soit pas une extrémité de I.
Soit f : I — C dérivable sur I.

On suppose que [’ est développable en série entiere ie : il existe r €]0;+00] tel que

| —rr[C T et Z anx™ une série entiere de rayon de convergence R > r tels que :

n>0
Vo €] —r;r| Z anz"
Alors :
2+l
Ve €l —ryr] f(x) = +Zann+l

et f est développable en série entiére sur | — r;7|.

Exemples
—1; —R
— Soit f J= Lo
z—In(l+x)
fest C® sur | — 1;+o0].
1
Vo €] — 1] f(z) = —Z R=1)
D’ou :
400 +1 " "
v 1. — _ _ ) _
el -1 In(l+az)=> (-1 n+1 Z (R=1)
n=0 n=1
1 1"
On sait que la série Z(—l)"— converge donc aussi la série Z(—l)”*l—.
n
n>1 n>1
Il est alors tentant de prendre x = 1 dans la formule précédente et d’écrire :
In 2 fi(_l)nfl T S
n2= =l-c+5—
o n 2 3 4
C’est 1égitime mais il faut le justifier rigoureusement.
0;1] - R
Pour tout n € N*, soit f, (1) 1gn
T

n
— Pour tout n € N*, f,, est continue sur [0;1].
— La série de fonctions Z fn converge uniformément sur [0; 1].

Par propriété des séries entieres, on sait que la série de nombres E fn(z) converge

pour tout z € [0; 1] et comme remarqué ci-dessus, elle converge pour = = 1.

La série de fonctions Z fn est donc simplement convergente sur [0;1], ce qui
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permet de définir la suite de ses restes.

Montrer que la série de fonctions Z fn converge uniformément sur [0;1] revient
a montrer que la suite de fonctions (R,,) converge uniformément vers la fonction
nulle sur [0;1].

Pour z positif fixé, la série de terme général f, () est alternée.

n
A z € [0;1] fixé, la suite (|Rp(2)]),ene = (x) est décroissante et converge
1/ neN~

vers 0. On en déduit :

00 (_1)n71xn " 1

Vn € N* Vo € [0;1] |Ry(z)| = Z — < o < - indépendant de x et
=1

—0 "

n——+00

Donc la suite de fonctions (R,,) converge uniformément vers 0 sur [0; 1].
400 [O' 1] _> R
La fonction —1)»=1z"  est donc continue sur [0;1] et :
DOFIRNN Z (=1)"tan 0:1]

n=1

n
+o00 (_1)n—1 oo n 1:L‘n
Tw T m(z )Ziﬂﬂn(l”))
n=1 x<l \n=1 <1
= In(2)
Finalement :
+oo $n
Veel- L1 In(1+z) =Y (-1)"'—| (R=1)
n=1 n
qu’on peut également écrire :
vz e [-1;1] Z—:—ln 1—x)
— arctan est C* sur R et :
Vx € R arctan’ =—
x arctan’ (x) 522
Donc :
+o0o
Vz €] — 1; 1] arctan’(z) = Z(—l)"m% (R=1)
n=0
D’ou :
00 :L,2n+1
V. - 1;1 t = 1" R=1
x €] —1;1[ arctanz nz::o( ) 1 ( )

vérifie les hypotheses du théoreme spécial sur la convergence des

_1\n
La série Z (=1)
n>0 2n

séries alternees

— La série Z est alternée.
n>0
—-1)" 1
— La suite ( ( ) ) = ( ) est décroissante.
2’/2 + 1 neN 2n + 1 neN

(=n"

2n+1 n—+oo

43



Analyse 1, chapitre 4 2025 - 2026

1)n 12n+1
Donc la série ie -1H" converge.
Z n+1 §0< Vo convers
Comme pour la fonctlon précédente, on peut justifier :
400 .,L.2n+1
Vo € [0;1 -"
Finalement, compte tenu de la parité, on a :

= arctanx

400 2n+1
Vo € [—1;1] arctanz = -1" formule de Gregory (1638-1675
[~1;1] ;0( i gory ( )

e Dérivation
Soit I un intervalle de R tel que 0 ne soit pas une extrémité de I.
Soit f : I — C continue.
On suppose que f posseéde une primitive F' développable en série entiere :
il existe r €]0; +00] tel que | —r;7[C I et Z apz™ une série entiere de rayon de conver-

n>0
gence R > r tels que :
Vo €] —rr] F(x) = Z anz"
Alors : -
[e’¢) +oo
Vo €] —rr[ f(z) = Z napz" " = Z(n + Dapy12"
n=0

et f est développable en série entiére sur | — r;r].

Exemple
|-L1—R
Soit f . 1
(1—x)?
|- 1L1[—-R
f est la dérivée de F 1
T —
1—=2
Vo €] — 1;1] Zaz =
Donc :
+0o0
Ve el —-1;1] f an :Zn—i—l)x"(R:l)
n=0
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Plus généralement, on a :

vpzzvgce}—m[(l_lx)p - w
_ ngol n(n—l)(}.).;(g' P+2)
_ i(nﬂ)(..._(q;rp—n n
= Z Mapoie” (R=1)
_ 2(”;5;? " (R=1)

3.6 Produit de développements connus

1 1 1
Vo €] — 1;1] =22 = 121 2

+oo +oo
= (Z 1:”) . <Z 1:”) avec Roy = 1 pour les 2 séries
n=0 n=0
+o0o
= > ( > 1.1) "

n=0 \p+g=n
= ZCard({ eNthp—i—q—n})x
= Jio(n—i—l)ar” et R>1

n=0

On a R =1 car la série diverge pour z = 1 vu que (n + 1),en ne converge pas vers 0.
L’avantage de cette technique (dans le cadre du programme) est qu’elle s’applique au cas ou
z € C avec |z| < 1. On a donc :

1 X n
On a en fait :
1 =
Vp >2Vz € D(0;1) =Y cro 2" (R=1)
b= ’ (1 _ Z)p = n+p—1

D(0;1) - C

Pour le démontrer (dans la cadre du programme) on utilise le produit pour prouver que 1

(1—2)P

est développable en série entiere sur D(0;1) et on utilise 3.3.3 et 3.4.5 pour calculer les coeffi-
cients.
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3.7 Utilisation d’une équation différentielle

Soit I un intervalle de R tel que 0 ne soit pas une extrémité de I.
Soit f : I — C de classe C*°.
On suppose qu’on a trouvé un probléme de Cauchy en 0 : (P) dont f est solution sur I.
On suppose avoir déterminé une série entiere Z apx" de rayon de convergence R > 0 dont la
n>0
somme est solution sur | — R; R[ de (P).
Si (P) possede une et une seule solution sur IN] — R; R| alors :

Ve e In] — Zana:

Remarque

Il est écrit dans le programme :

Les étudiants doivent savoir développer une fonction en série entiére a ’aide d’une équation
différentielle linéaire.

L’unicité de la solution d’'un probleme de Cauchy adapté sera explicitement admise.

Je ne vois pas ce que cela signifie au juste.

Il a été vu en Sup le résultat suivant :

Soit I un intervalle de R et x¢ € 1.

Soient a, b, ¢ trois fonctions de I dans K continues.
On suppose que a ne s’annule pas sur /.

a(z)y’ + b(x)y + c(x) =

possede une et une
y(xo) = yo

Alors pour yg € K, le probleme de Cauchy {

seule solution définie sur I.

Il a également été vu en Sup :

Soit I un intervalle de R et xg € 1.

Soient a, b, ¢ trois nombres et d une fonction de I dans K continue.
ay’ + by +cy+d(x) =0

Alors pour (yo, ) € K2, le probléeme de Cauchy y(xo) = Yo possede une et
y'(z0) = yp

une seule solution définie sur I.

Le résultat suivant, hors-programme, semble étre celui qui est évoqué par le programme :
Soit I un intervalle de R et xy € I (en pratique on aura xy = 0).

Soient a, b, ¢, d quatre fonctions de I dans K continues.

On suppose que a ne s’annule pas sur [.

a(z)y” +b(z)y + c(z)y + d(z) =0
Alors pour (yo, y) € K2, le probléme de Cauchy ¢ y(z) = vo possede
/ R
Y (o) = Yo

une et une seule solution définie sur I.

Exemple

Va e R\NVz €] — 1;1[ (1 + 2)* _1+Z ala—1) (O‘_”“)z” (R=1)
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Démonstration
Soit / {] —1;4+0[— R
z— (1+z)*

Sia€Z*, f est définie sur | — co; —1[ mais on ne peut pas espérer dépasser —1.
Si o € N, f est une fonction polynémiale qu’on développe par la formule du binéme. Dans ce
cas, f est développable en série entiere sur R.
fest C® sur | —1;400] et :
Vz €] — 15400 f/(x) = a(l + z)* 1
Donc :
Vo €] — 15400 (1 4+ 2)f(z) = a(l + 2)* = af(x)
De plus f(0) = 1.
f est solution sur | — 1; +o0[ du probléme de Cauchy :
P) {(1 +2)y —ay=0

y(0)=1
Il a été vu en Sup que (P) a une et une seule solution sur tout intervalle ne contenant pas —1.
Soit alors Z apx" une série entiere de rayon de convergence R > 0 et S sa somme.

n>0
+o0
Vr €] — R;R[ S(z) = Z anz"
n=0
+o00
S'(z) = Z napz" "t
n=1
S solution de (P) sur | — R; R|
ag = 1
= = =
Vx €] — R; R[ (1 + x) Z na,z” ! — o Z apz” =0
n=1 n=0
apg = 1
+o0 “+oo +0o0
<~ \Vz €] - R;R| Z nanz" "t + Z napx" — « Z anz" =0
n=1 Zié n=0
ag = 1
— =
Vx €] — R; R| Z (n+ Daps1 + (n — a)ay)z™ =0
n=0
{ao =1
<~ a—n
Vn € Napy1 = n+1an
ag = 1
<~ — 1 — 2)...
Vn e N* a, — (a—n+1)(a—n+2) aao
nn—1)...1

CL():]_
—1)... — 1
Vn € N* a, — ala—1) n'(oa n+1)
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-1)...(a— 1
On détermine ensuite le rayon de convergence de 1 + Z ala ) |( a-nt ):c"
n!
n>1
Soit r € RY..
-1)...(a— 1
e Vn € N* afa—1) '(04 n+)7“”>0
n!
ala—=1)...(a=(n+1)+1)|
(n+1)! la —n| n —a pour n >> 1
¢ —1...(a—=n+1) - 17 1 {— T
Oé(Oé ...' n n + n+ n o0
n!
On en déduit classiquement R = 1.
|- 1L;1[— R
Donc S iy -1)...(a— 1 est solution sur | — 1;1[ de (P).
— n!

Donc fj_i =9 ie :
a—1)...(a—n+1)

.,L,n
n!

+C>Oa(
Veel-L1[(1+a)*=1+>
n=1

Remarques
e La formule est en fait valable pour o € N et x € R mais c’est alors une écriture compliquée
de la formule du binoéme.

En effet, si « € N, on a :
ala=1)...(a =n+1)

Vn > « =0
n!
et
—1...(a— 1
Vn € [0; ] ale—1) '(04 nt1) = (a)
n! n
1
e Supposons a = —3
vn € N* ala—1)...(a —n+1) _ (—=1/2)(=3/2)...(—(2n—1)/2) _ (—1)”1 X3X--x(2n—1)
n! n! 2nn)!
B plx3x-ox(2n—-1) . (2n)!
= Vo - Y (27n!)2
2n
_ n @)\ B
= (-1) () (—1) 5o égal 1 pour n =0
Vo €] - ;1] —— fi(_l)n@”)! " (R=1)
T €|l —1; =
VIt = (2mal)?
On en déduit par exemple :
1 X (@2n)
11— = A 1
Vo €] - 1;1] N nzzo (an!)zx (R=1)
et :
+00 2n+1
_ (2n)! =z
—1;1 = =1
Vo €] — 1;1[ arcsinz nzzo @11 (R=1)
2n)! 1 11

@220+ 1 27 nd/2
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On peut montrer qu’il y a convergence normale sur [—1;1] et obtenir :
i" (2n)! 1
2 T (2220 + 1
4 Quelques exemples d’utilisation des séries entieres

e Mines 2019
Upg = 1

Un+1 = Z Uk Un—

On donne la série entiere Zun:p”
Calcul de u,,, pour tout n € N.

Correction
La suite existe et est unique.
— Analyse
Formellement, on pose S(z Z Upx"
+o0 n
-y (zu> =3
n= O k=0 n=0
+oo
xS(z)? = Z Uppr12" T = Z upx" = 8S(x) —ug = S(z) —1
n=1
S(x)? - ( ) +1=0
A=1-—4x
1++v1—4x
S(r)= ———
2x
— Syntheése
| —1/4;1/4[— R
. 1—-+v1—-4
Soit f{gpy VI six#0
2x
0—1
(1/2)(-1/2)...(1/2 — 1
Viel - 1;1[VI+t = 1+Z (1/2)(=1/2) ,(/ ntlp gy
n!
t IX(1/2)1/2)...2n—3)/2, . 1m
= 143+ Z p (1)1t
n=2
t 1X3x---x(2n—3)
- 1 v -1 n—1 t
+ 2 * Z( ) 2nn!

t = (2n — 2)!
= 1+- . t"
+ 2 + nz:;( ) 22n=lpl(n —1)!

2n —2)!
+ 7;( ) 22n=lpl(n —1)!

49



Analyse 1, chapitre 4 2025 - 2026

111 = (2n — 2)! (2n — 2)!
—— | V1—dx=1 —1)n! 1)"4"g™ = 1-2
Vo € ] 4; 4 T +nz::1( ) 22n_1n!(n — 1) ( ) Z n| n . 1
(R=1/4) .
1117 % (2n —2)!
— 1V dr =2y g (R=1/4
Va:E_ 4’4 v nz::ln!(n—l)!x (B=1/4)
1117 X @2n-2)! ., X (@2n)
Vo e |—=; - AR T gt N T (R=1/4
7€ g MO = 2 = 2 i (B
La dermere formule est valable pour x = 0 donc :
vrel- 5 s =% 20 nr iy
S IVRY A _n:On!(n—}—l)!x N
2n)!
On note a,, = &
n!(n +1)!
11
Vo € }—4;4{\{0} zf(z)2 — f(x) +1 = 0 : on a trouvé f(z) en résolvant cette
équation.
D’ot, par continuité (f est DSE donc continue) :
11
\VIZUE}—;{ zf(z)? — f(z)+1=0
44
11 +o0o +00 +00
Vx E]—4;4[ T (nz::oanx ) <nz::0anx ) +1—- <1+;anx > =0
+0o0 n +0o0
x Z <Z akan_k> " — Z apx’™ =0
n=0 \k=0 n=1
xZ( Oy k)x —xZan:U =
n=0 \k=0
+00 n
T (Z (Zakan k) " — zan+1l‘ ) =
n=0 \k=0
Donc :
1 1 +oo n +oo
Va E} {\{O} Z Zakan k| —Zan+1x = 0, valable aussi en = 0 par
n=0 \k=0 n=0
continuité.
Donc :

Vn € Napt1 = Z ApQpn—f-

Comme de plus ag =1, on a par une récurrence triviale :
vn € Nu, = a,
Finalement :

(2n)!

VneNu, = ———
nenu nl(n +1)!

e Mines 2013

Soit, pour n € N, a,, le cardinal de I’ensemble des couples (p, ¢) € N tels que n = 3p+2gq.
+00

Soit f:x +— Z anx™.
n=0

Montrer que le rayon de convergence de f est strictement positif.
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Donner une expression simple de f.

Correction

Sin =2q+ 3p avec p,g >0 alors p < 3p=n—2q¢ <n.
Donc 0 < a,, <n+ 1.

Donc R > Rev (Y (n+1)2") = 1.

|~ 11> R
Soit g =, 1
> "=
T Y @ T3
n=0
+oo
Ve el —1;1[ g(z) = Z apx" avec agp = 1 et agpr1 = azpro =0
n=0
|- L 1[— R
Soit h RS 1
ey a? = T
n=0
+o0o
Vo €]l —1;1[ h(z) = Z Bna™ avec Pa, =1 et Bopy1 =0
n=0

“+oo —+00 “+oo
Vo €] = L1 g@)h(z) = Y oz x Y Bpa” = ypa”
n=0 n=0 n=0

WmeNy, = Y b
k+l=n

= Z agpf) car oy, = 0 si k n’est pas un multiple de 3
3p+l=n

= Z a3pfag car f; = 0 si [ n’est pas un multiple de 2
3p+2q=n

= Z 1=a,

3p+2q=n

Donc : . .

ve el =L@ =m0

f(z) — Foo donc R <1 puis R = 1.
z—

La décomposition en éléments simples n’étant pas au programme, on ne peut pas aller
plus loin.

1 1
1-X)1-X3%)  (1-X)?2(1+X)(j—-X)(5%2-X)
a b c d e

T T x o xETiix X T PF-x

On multiplie par j2 — X et on évalue en j2 :

e = ! A L S
I T S R R T )

—1

3v3
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i
On en déduit d = ——

3V3
On multiplie par X + 1 et on évalue en —1 :

:M:i((j—X)(jQ—X):X2+X+1)

On multiplie par (X — 1)% et on évalue en 1 :
-

On multiplie par X et on fait tendre X vers +o0 :
—a+c—(d+e) :0donca:i

—+00

VxE]—l;l[Zanm”
n=0
1 1 1 V3 1 1
- + + +“[(. — - )
41 — ) 6(1 —x)?2 41+ a:) 9 \j—z j%2-z
1 3 1
P anm . z o Zo<jn+1—j2<n+1>)w”

1 +oo Z\f 400 '
- = Z v Z n 4+ 1 1. 4= Z n " 9 Z ( —i(n+1)27/3 _ z(n+1)27r/3> "
n=0

On en déduit :
_1\n
n+1 1 (=1) 2\9fsm(2(n+1)7r>

vn € Na, = 6 1 1 3

e X
Soit H,, ;. le nombre de permutations d’'un ensemble a n éléments ayant k points fixes.
On pose hy, = Hy .

Prouver : H, ;, = (Z) hp—ie-

Calculer Z (Z) hy.

k=0

s . N hi2"
On considere la série entiere D(z) = Z .
k!
£>0
Minorer la rayon de convergence R de cette série entiere.

Calculer D(z) pour |z| < R (Indication : considérer e*D(z)).

k1
En déduire que hy est la partie entiere de — + 3
e

Correction
Soit E un ensemble ayant n éléments.
Pour fabriquer une permutation de F ayant exactement k points fixes on choisit ces k

n
points : I choix possibles, puis on choisit une permutation sans point fixe des n — k

éléments restant de E.
D’ou :

Vn € NVk € {0; e n} Hn,k = (TL) Hn—k,[) = <n> Ry —k
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n

vneNZ< )hk—z

k=0
Vk € Nhy = Hpo < K!

Donc R > Rcoy Z z
k>0

Vze Ctqlz| <R e*D(z

(

)

n
n—k

k) .

o

k=0

Si on avait R > 1, on aboutirait a une contradiction donc R =1 et :

Vze Ctqlz| <1D(z) =

—Zz

-z
+oo (—l)kzk +o00o .
Vze@tq]z|<1D(z):<Z X ><Zz>:
k=0 : k=0
D’ou : i i
lky (_1)1
vk e Ny =y gy O
1=0 1=0
k! 1 == E =Dk
- [ | =
VkGNe+2 2+k.z 0 Z I
1=0 1=0
Soit k > 2.
On a:
— La série Z est alternée.
>0
—1)! 1
— La suite ( ( ') > = <'> est décroissante.
(=1
i l—+o0

Donc, d’apres le théoreme des séries alternées :

+oo

(—1)! k! 1 1
|l:k+1 I (k+1)! k+1 2
Donc : N
1 = (=D
5 TH > o €]0; 1]
I=k+1
De plus :
k!
Vi e {0;...;k} m eN
Donc : '
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k=0

(x5

=0

n
hnfk = Z Hn,k =n!

)
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1=0
D’ou : i
K1 (—1D)'E!
El—+=)= ——=h
( e + 2) E) ! k
De plus, en revenant a la définition h; = 0 et hg = 1.

11 11
E(O—i—):OetE(—i—):Odonc:
e 2 e 2

K1
szeN*hk:E(+>
e 2

Variante : Mines 2019
On note N(n,p) le nombre de permutations de [1;n] ayant exactement p points fixes.

+00
D
On note D(n) = N(n,0) (le nombre de dérangements de [1;n]) et f: 2z — Z éln):v”
n=0 ’

1. Relation entre N(n,p) et D(n — p).

2. Montrer que f est définie sur | — 1; 1] et calculer f(z).
3. Calculer D(n).

4. Calculer N(n,p).

5 Exercices d’application directe du cours

Exercice 1 (Mines 2011)

n
Déterminer le rayon de convergence de la série entiere de terme général —-.
n

Exercice 2 (Mines 2011)

sinh n
z™.

Déterminer le rayon de convergence de la série entiere de terme général

Exercice 3 (Centrale 2019)

1. Soit (ay)nen une suite bornée.
Montrer que le rayon de convergence de la série entiere E a,x" est supérieur ou égal a

1.
2. Soit (an)nen une suite de réels positifs telle que la série Z an converge.
—+00 —+00
Montrer i "= )
que il_}ml Z an Z an,
<1 n=0 n=0
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