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1 Rayon de convergence d’une série entière

1.1 Définition d’une série entière

Une série entière est une série de fonctions
∑
n≥0

fn où pour tout n ∈ N, fn

{
C→ C
z 7→ anz

n
où

an ∈ C.

Comme pour toute série de fonctions, on cherche le domaine de définition de sa somme ie
le plus grand ensemble sur lequel elle converge simplement.
Il s’agit donc, une fois fixé z0 ∈ C, de déterminer la nature de la série de nombres

∑
n≥0

anz
n
0 .

En pratique la méthode la plus simple et la plus fréquemment employée est l’utilisation de
la règle de d’Alembert :

On suppose : ∀n ∈ N an 6= 0.
On suppose z0 non nul.
En effet quelque soit la série entière, il y a toujours convergence pour z0 = 0, la somme de la
série valant alors a0.
On forme le quotient des valeurs absolues de deux termes consécutifs de la série :

∀n ∈ N

∣∣∣an+1z
n+1
0

∣∣∣
|anzn0 |

= |an+1|
|an|

|z0| =
∣∣∣∣an+1
an

∣∣∣∣ |z0|

On suppose |an+1|
|an|

−−−−−→
n→+∞

l ∈ [0; +∞]. C’est le cas en particulier si an+1
an

a une limite.
La règle de d’Alembert permet alors d’affirmer :

• Si |z0| <
1
l
alors

∑
an z

n
0 converge absolument.

• Si |z0| >
1
l
alors

∑
an z

n
0 diverge grossièrement, et plus précisément : |an zn0 | −−−−−→n→+∞

+∞

Par contre si |z0| =
1
l
, on ne peut rien dire.

Le domaine de définition de la somme de la série entière est donc, en posant R = 1
l
∈ [0; +∞] :
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• {0} si R = 0.
• R ou C si R = +∞.
• ]−R;R[ éventuellement augmenté de −R ou de R si on travaille avec une variable réelle
dans le cas où R ∈ R∗+
• le disque ouvert centré en 0 et de rayon R, éventuellement augmenté de certains points

du cercle de rayon R si on travaille avec une variable complexe dans le cas où R ∈ R∗+
Toutefois, |an+1|

|an|
n’a aucune raison d’avoir une limite.

C’est le cas particulier, classique dans les cours sur les séries entières, de la série dite militaire :{
∀n ∈ N a2n = 1
∀n ∈ N a2n+1 = 2

Le quotient |an+1|
|an|

= an+1
an

qui vaut alternativement 2 ou 1
2 n’a pas de limite.

Toutefois, une utilisation judicieuse de la règle de D’Alembert permet de déterminer à peu près
complètement le domaine de définition de la somme de la série entière

∑
an x

n.

On considère
∑

a2n z
2n
0 .

|a2n+2|
|a2n|

= 1 −−−−−→
n→+∞

1 : Attention danger sans le z2
0 , il y a un risque élevé d’erreur.

Donc :
• Si |z0| < 1 alors

∑
a2n z

2n
0 converge (absolument).

• Si |z0| > 1 alors
∣∣a2n z

2n
0
∣∣ −−−−−→
n→+∞

+∞

On considère
∑

a2n+1 z
2n+1
0 .

|a2n+3|
|a2n+1|

= 1 −−−−−→
n→+∞

1
Donc :

• Si |z0| < 1 alors
∑

a2n+1 z
2n+1
0 converge (absolument).

• Si |z0| > 1 alors
∣∣∣a2n+1 z

2n+1
0

∣∣∣ −−−−−→
n→+∞

+∞
Donc :

• Si |z0| < 1 alors
∑

an z
n
0 converge (absolument).

En effet, on note Pn =
n∑
k=0

a2kz
2k
0 et In =

n∑
k=0

a2k+1z
2k+1
0 qui ont toutes deux une limite

finie, lP pour la première, lI pour la seconde.

On note Sn =
n∑
k=0

akz
k
0 et on a :

S2n = Pn + In−1 et S2n+1 = Pn + In qui convergent vers lP + lI .
• Si |z0| > 1 alors |an zn0 | −−−−−→n→+∞

+∞
Donc : D(0, 1) ⊂ DS ⊂ Df (0, 1).
Mais si |z0| = 1, la série

∑
an z

n
0 diverge grossièrement donc DS = D(0, 1).

Si on se limite à la variable réelle, DS =]− 1; 1[.

Par contre, pour une série entière comme
∑

sinn zn, il est impossible d’utiliser la règle de
d’Alembert :
sin (n+ 1)

sin (n) ou |sin (n+ 1)|
|sin (n)| n’ont pas de limite.

Si |z0| < 1 alors :
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∀n ∈ N |sin (n) zn0 | = |sin (n)| |z0|n ≤ |z0|n terme général d’une série convergente.
Donc

∑
sin (n) zn0 converge absolument.

Soit z0 ∈ R tel que |z0| ≥ 1.
Supposons que

∑
sin (n) zn0 converge.

Alors sin (n) zn0 −−−−−→n→+∞
0

Donc |sin (n)| ≤ |sin (n)| |z0|n = |sin (n) zn0 | −−−−−→n→+∞
0 et sin (n) −−−−−→

n→+∞
0

Donc sin (n+ 1) −−−−−→
n→+∞

0
Or sin (n+ 1) = sin (n) cos (1) + cos (n) sin (1) avec sin (1) 6= 0
Donc cos (n) −−−−−→

n→+∞
0

Donc 1 = sin2 (n) + cos2 (n) −−−−−→
n→+∞

0
C’est absurde.
Donc si |z0| ≥ 1 alors

∑
sin (n) zn0 diverge grossièrement.

Donc DS = D(0, 1).
Si on se limite à la variable réelle, DS =]− 1; 1[.

On constate que le domaine de définition de la somme des séries entières précédentes est :
i un intervalle ouvert centré à l’origine éventuellement augmenté d’une ou de ses deux

extrémités.
ii un disque ouvert (en considérant C comme un disque ouvert de rayon infini) éventuellement

augmenté d’un ou de plusieurs points de sa frontière.
Nous allons montrer que cette situation est générique.

1.2 Définition du rayon de convergence d’une série entière

La définition du programme est la suivante :

Soit
∑
n≥0

anx
n une série entière.

On appelle rayon de convergence de la série entière
∑
n≥0

anx
n la borne supérieure dans R de

{ρ ∈ R+ tq la suite (anρn) est bornée}.

Il résulte immédiatement de cette définition que si z est un nombre complexe tel que |z| > R
alors la suite (anzn)n∈N n’est pas bornée (et en particulier la suite (anzn)n∈N ne converge pas
vers 0 et la série

∑
n≥0

anz
n diverge).

1.3 Lemme d’Abel

Soit (an)n∈N une suite à valeurs dans C.
On suppose qu’il existe z0 ∈ C∗ tel que la suite (anzn0 )n∈N soit bornée.
Alors pour tout z ∈ C tel que |z| < |z0| la série

∑
anz

n converge absolument.

Démonstration
∃M ∈ R+ tq ∀n ∈ N |an||z0|n = |anzn0 | ≤M
Soit z ∈ C tel que |z| < |z0|.
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∀n ∈ N |anzn| = |an||z|n = |an||z0|n.
( |z|
|z0|

)n
≤M

( |z|
|z0|

)n
Or |z|
|z0|

< 1 donc la série géométrique
∑

M

( |z|
|z0|

)n
converge.

On en déduit que
∑

anz
n converge absolument.

1.4 Conséquences du lemme d’Abel

Soient
∑
n≥0

anx
n une série entière de rayon de convergence R et z un nombre complexe.

Si |z| < R la série
∑

anz
n converge absolument.

Démonstration
Par définition de R, il existe ρ ∈ R+ tel que :

i |z| < ρ ≤ R
ii la suite (anρn)n∈N est bornée.

D’après le lemme d’Abel, la série
∑

anz
n converge absolument.

1.5 Remarque

On est donc dans une des trois situations suivantes :
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On dispose alors d’un certain nombre de formules du genre :

RCV = sup
{
r ∈ R+ tq

∑
anr

n converge
}

= sup
{
r ∈ R+ tq

∑
anr

n converge absolument
}

= sup
{
|z|, z ∈ C tq

∑
anz

n converge
}

= sup
{
|z|, z ∈ C tq

∑
anz

n converge absolument
}

= sup
{
|z|, z ∈ C tq anzn −−−−−→

n→+∞
0
}

=
{

inf {|z|, z ∈ C tq (anzn) n’est pas bornée} si cet ensemble n’est pas vide
+∞ si il est vide

= . . .

1.6 Disque et intervalle ouverts de convergence

Soient
∑
n≥0

anz
n une série entière et R son rayon de convergence.

{z ∈ C tq |z| < R} (c’est ∅ si R = 0 et C si R = +∞) est appelé disque (ouvert) de convergence.
]−R;R[ (c’est ∅ si R = 0 et R si R = +∞) est appelé intervalle (ouvert) de convergence.

1.7 Détermination pratique du rayon de convergence

• Utilisation de la règle de D’Alembert
C’est la méthode la plus simple à utiliser mais elle ne s’applique pas dans tous les cas.
Le programme indique que le théorème suivant peut être utilisé :
Théorème
Soit

∑
n≥0

anz
n une série entière telle que :

i ∀n ∈ N an 6= 0

ii |an+1|
|an|

−−−−−→
n→+∞

l ∈ [0; +∞]
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Alors le rayon de convergence est R = 1
l
.

Exemples
—

∑
n≥0

nαzn, α ∈ R

∀n ∈ N∗ an = nα 6= 0
|an+1|
|an|

= (n+ 1)α

nα
=
(
n+ 1
n

)α
−−−−−→
n→+∞

1
Donc R = 1.
Ce résultat est mentionné explicitement dans le programme.

—
∑
n≥0

(−1)nz2n

2n + n

∀n ∈ N an = (−1)n

2n + n
6= 0

|an+1|
|an|

= 2n + n

2n+1 + n+ 1 ∼
2n

2n+1 = 1
2

Donc R = 2.
C’est un raisonnement faux.
Le théorème est bien pratique mais doit être manié rigoureusement.
Soit r ∈ R∗+.
∀n ∈ N |an| r2n > 0
|an+1| r2n+2

|an| r2n = |an+1|
|an|

r2 −−−−−→
n→+∞

r2

2
Si r <

√
2 alors

∑
anr

2n converge absolument.
Si r >

√
2 alors |an| r2n −−−−−→

n→+∞
+∞

Donc R =
√

2.

Dans les cas où on ne peut pas appliquer la règle de D’Alembert, on peut utiliser la
proposition suivante qui découle immédiatement des résultats précédents :
• Proposition 1

Soient
∑
n≥0

anz
n une série entière et R son rayon de convergence.

— Si on trouve z0 ∈ C tel que la série
∑
n≥0

anz
n
0 converge alors on peut dire que R ≥ |z0|.

— Si on trouve z0 ∈ C tel que la série
∑
n≥0

anz
n
0 converge absolument alors on peut dire

que R ≥ |z0|.
— Si on trouve z0 ∈ C tel que la suite (anzn0 )n∈N soit bornée alors on peut dire que

R ≥ |z0|.
— Si on trouve z0 ∈ C tel que la suite (anzn0 )n∈N converge vers 0 alors on peut dire que

R ≥ |z0|.
— Si on trouve z1 ∈ C tel que la série

∑
n≥0

anz
n
1 diverge alors on peut dire que R ≤ |z1|.

— Si on trouve z1 ∈ C tel que la série
∑
n≥0

anz
n
1 ne converge pas absolument alors on peut

dire que R ≤ |z1|.

1. cette proposition n’est pas mentionnée explicitement dans le programme mais relève du bon sens
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— Si on trouve z1 ∈ C tel que la suite (anzn1 )n∈N ne soit pas bornée alors on peut dire
que R ≤ |z1|.

— Si on trouve z1 ∈ C tel que la suite (anzn1 )n∈N ne converge pas vers 0 alors on peut
dire que R ≤ |z1|.

1.8 Rayon de convergence et comparaison des coefficients

1.8.1 Proposition

Soit
∑
n≥0

anz
n une série entière de rayon de convergence Ra.

Soit
∑
n≥0

bnz
n une série entière de rayon de convergence Rb.

On suppose :
an = O(bn)
Alors Ra ≥ Rb.

Démonstration
Si Rb = 0 le résultat est clair donc on suppose Rb > 0.
an = O(bn) donc :
∃(M,n0) ∈ R∗+ × N tq ∀n ≥ n0 |an| ≤M |bn| = |Mbn|
Il est clair que le rayon de convergence de

∑
n≥0

Mbnz
n est égal à Rb.

Soit r ∈ [0;Rb[.
On a :

• ∀n ≥ n0 0 ≤ |an|rn ≤ |bn|rn
• la série

∑
n≥0
|bn|rn converge (car r < Rb).

Donc la série
∑
n≥0
|an|rn converge et Ra ≥ r.

En faisant tendre r vers Rb on obtient Ra ≥ Rb.

Remarque
Le résultat s’applique en particulier si an = o(bn) puisqu’on a alors an = O(bn).

1.8.2 Proposition

Soit
∑
n≥0

anz
n une série entière de rayon de convergence Ra.

Soit
∑
n≥0

bnz
n une série entière de rayon de convergence Rb.

On suppose : |an| ∼ |bn|
Alors Ra = Rb.

Démonstration
Si |an| ∼ |bn| alors an = O(bn) et Ra ≥ Rb.
Si |an| ∼ |bn| alors bn = O(an) et Rb ≥ Ra.
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1.9 Exemple : CCP 99

Pour tout n ∈ N∗, soit an la nième décimale de π.
Soit α ∈ R∗+.
Rayon de convergence de la série entière

∑
n≥1

an
nα
xn ?

Correction
π = 3, 1415 . . .
a1 = 1, a2 = 4 . . .
∀n ∈ N∗

∣∣∣∣ annα
∣∣∣∣ = an

nα
≤ 9
nα

Donc an
nα

= O

( 1
nα

)
.

Donc R ≥ RCV

∑
n≥1

xn

nα

 = RCV

∑
n≥1

n−αxn

 = 1.

D’où R ≥ 1.
Dans l’autre sens c’est plus compliqué car an peut être nul.
Ceci dit :
{n ∈ N∗ tq an 6= 0} est infini.
Sinon π serait décimal donc rationnel, ce qui est faux.
Je suppose ici qu’on considère comme acquis : π 6∈ Q.
Donc il existe ϕ de N∗ dans N∗ strictement croissante telle que :
∀n ∈ N∗ aϕ(n) 6= 0.
Mais les ap sont des entiers positifs donc :
∀n ∈ N∗ aϕ(n) ≥ 1
Soit x > 1.
∀n ∈ N∗

aϕ(n)
ϕ(n)αx

ϕ(n) ≥ xϕ(n)

ϕ(n)α

La suite
(
xn

nα

)
n≥1

diverge vers +∞ donc la suite extraite
(
xϕ(n)

ϕ(n)α

)
n≥1

aussi.

Donc
aϕ(n)
ϕ(n)αx

ϕ(n) −−−−−→
n→+∞

+∞.

Une des suites extraites de
(
an
nα
xn
)

diverge donc cette suite diverge.
D’où R ≤ x.
En faisant tendre x vers 1, on obtient R ≤ 1.
Finalement, R = 1.

Mines 2022
Pour tout n ∈ N∗, soit an la nième décimale de π.
Rayon de convergence de la série entière

∑
n≥1

anx
n ?

1.10 Linéarité

• Produit par un scalaire 2

Soient
∑
n≥0

anz
n une série entière et R son rayon de convergence.

2. Il s’agit plus d’un rappel de bon sens que d’un théorème
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Pour tout λ ∈ C∗, le rayon de convergence de la série entière
∑
n≥0

λanz
n est égal à R.

De plus si R > 0 on a pour tout z ∈ C de module strictement inférieur à R :
+∞∑
n=0

λanz
n = λ

+∞∑
n=0

anz
n

• Somme
Soient

∑
n≥0

anz
n une série entière et Ra son rayon de convergence.

Soient
∑
n≥0

bnz
n une série entière et Rb son rayon de convergence.

Soit R le rayon de convergence de la série entière
∑
n≥0

(an + bn)zn.

On a : R ≥ min (Ra, Rb).
De plus :
— Si Ra 6= Rb alors R = min (Ra, Rb).
— Si min (Ra, Rb) > 0, on a pour tout z ∈ C tel que |z| < min (Ra, Rb) :

+∞∑
n=0

(an + bn)zn =
+∞∑
n=0

anz
n +

+∞∑
n=0

bnz
n

Démonstration
— Si min (Ra, Rb) = 0 il est clair que R ≥ min (Ra, Rb).

Supposons min (Ra, Rb) > 0.
Soit z ∈ C tel que |z| < min (Ra, Rb).
Les séries

∑
n≥0

anz
n et

∑
n≥0

bnz
n convergent donc :

— la série
∑
n≥0

anz
n + bnz

n ie
∑
n≥0

(an + bn)zn converge et par conséquent R ≥ |z|.

—
+∞∑
n=0

(an + bn)zn =
+∞∑
n=0

anz
n +

+∞∑
n=0

bnz
n

On en déduit en particulier :
∀r ∈ [0; min (Ra, Rb)[ R ≥ r
D’où R ≥ min (Ra, Rb).

— On suppose Ra 6= Rb, par exemple Ra < Rb
(on ne fait plus l’hypothèse : ”min (Ra, Rb) > 0”).
Pour tout r ∈]Ra;Rb[ la série

∑
n≥0

anr
n diverge et la série

∑
n≥0

bnr
n converge donc la

série
∑
n≥0

(an + bn)rn diverge.

Donc :
∀r ∈]Ra;Rb[ r ≥ R
D’où Ra ≥ R ≥ min (Ra, Rb) = Ra.
Donc R = Ra = min (Ra, Rb).

Remarque
Si Ra = Rb = +∞ alors R = +∞ mais si Ra = Rb ∈ R+ il peut se passer n’importe
quoi :
— Si pour tout n ∈ N bn = −an on a R = +∞.
— Si pour tout n ∈ N bn = an on a R = Ra = Rb = min (Ra, Rb).
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— Si pour tout n ∈ N bn = −an + cn avec RCV

∑
n≥0

cnz
n

 = Rc réel > Ra on a bien

Rb = Ra à cause de la proposition et R = Rc.

1.11 Produit de deux séries entières

1.11.1 Introduction

Considérons deux polynômes : P =
p∑

n=0
anX

n et Q =
q∑

n=0
bnX

n. Leur produit est le polynôme

p+q∑
n=0

cnX
n où :

∀n ∈ {0; . . . ; p+ q} cn =
∑

k+l=n
0≤k≤p
0≤l≤q

akbl

Se pose alors naturellement la question suivante :
étant données deux séries entières

∑
n≥0

anx
n et

∑
n≥0

bnx
n,

si on définit pour tout n ∈ N cn =
∑

k+l=n
akbl

a-t-on :
+∞∑
n=0

anx
n ×

+∞∑
n=0

bnx
n =

+∞∑
n=0

cnx
n et si oui pour quels x ?

1.11.2 Produit de Cauchy de deux séries de nombres

Soient
∑
n≥0

un et
∑
n≥0

vn deux séries à termes dans K.

On appelle produit de Cauchy des deux séries
∑
n≥0

un et
∑
n≥0

vn la série
∑
n≥0

wn où :

∀n ∈ N wn =
∑

p+q=n
upvq =

n∑
p=0

upvn−p =
n∑
q=0

un−qvq

1.11.3 Théorème

Soient
∑
n≥0

un et
∑
n≥0

vn deux séries à termes dans K et
∑
n≥0

wn leur produit de Cauchy.

Si les séries
∑
n≥0

un et
∑
n≥0

vn convergent absolument alors la série
∑
n≥0

wn converge absolument et

on a :
+∞∑
n=0

wn =
(+∞∑
n=0

un

)
.

(+∞∑
n=0

vn

)
Remarque
Le théorème s’applique en particulier si

∑
n≥0

un et
∑
n≥0

vn sont deux séries à termes réels positifs

convergentes.
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Exemple

Considérons la série entière
∑ zn

n! dite série exponentielle.

∀n ∈ N an = 1
n! > 0

|an+1|
|an|

= n!
(n+ 1)! = 1

n+ 1 −−−−−→n→+∞
0 donc R = +∞.

Donc pour tout z ∈ C, la série
∑ zn

n! converge absolument.
Sa somme est notée exp. :

∀z ∈ C exp (z) =
+∞∑
n=0

zn

n!

Soient z1 et z2 ∈ C.
Pour tout n ∈ N, soient un = zn1

n! et vn = zn2
n! .

∀n ∈ N wn =
n∑
p=0

zp1
p!

zn−p2
(n− p)! = 1

n!

n∑
p=0

(
n

p

)
zp1z

n−p
2

= 1
n! (z1 + z2)n

Le produit de Cauchy de
∑ zn1

n! et de
∑ zn2

n! est
∑ (z1 + z2)n

n! .

Or, pour tout z ∈ C, la série
∑ zn

n! converge absolument donc :

∀(z1, z2) ∈ C
+∞∑
n=0

(z1 + z2)n

n! =
+∞∑
n=0

zn1
n! ×

+∞∑
n=0

zn2
n!

ou encore
∀(z1, z2) ∈ C exp (z1 + z2) = exp (z1)× exp (z2)

En particulier :

∀z ∈ C exp (z)× exp (−z) = exp (0) =
+∞∑
n=0

0n

n! = 1

On en déduit :
∀z ∈ C exp (z) 6= 0
et
∀z ∈ C

1
exp (z) = exp (−z)

Démonstration 3

• Cas de deux séries à termes positifs
On suppose :
∀n ∈ N un ∈ R+ et vn ∈ R+
Pour tout n ∈ N, on pose :

3. La démonstration est mentionnée comme ”non exigible” dans le programme.
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An =
n∑
k=0

uk, Bn =
n∑
k=0

vk et Cn =
n∑
k=0

wk

∀n ∈ N Cn =
n∑
k=0

∑
p+q=k

upvq =
∑

0≤p+q≤n
upvq

∀n ∈ N An.Bn =
(

n∑
k=0

uk

)
.

(
n∑
k=0

vk

)
=

∑
0≤p≤n
0≤q≤n

upvq

Pour tout n ∈ N, on pose Dn =
{
(p, q) ∈ N2 tq p+ q ≤ n

}
et ∆n =

{
(p, q) ∈ N2 tq 0 ≤ p ≤ n et 0 ≤ q ≤ n

}
.

∀n ∈ N Dn ⊂ ∆n ⊂ D2n
Pour tout (p, q) ∈ N2, upvq ≥ 0 donc :
∀n ∈ N Cn =

∑
(p,q)∈Dn

upvq ≤
∑

(p,q)∈∆n

upvq = AnBn ≤
∑

(p,q)∈D2n

upvq = C2n

ie : ∀n ∈ N Cn ≤ AnBn ≤ C2n

Soient A =
+∞∑
n=0

un et B =
+∞∑
n=0

vn.

Comme on a affaire à des séries à termes positifs, on a :
∀n ∈ N 0 ≤ An ≤ A et 0 ≤ Bn ≤ B
Donc :
∀n ∈ N Cn ≤ AnBn ≤ AB
La suite des sommes partielles de la série à termes réels positifs

∑
n≥0

wn est majorée donc

la série
∑
n≥0

wn converge.

Soit C sa somme.
∀n ∈ N Cn ≤ AnBn ≤ C2n
D’où, en passant à la limite :
C ≤ AB ≤ C ie C = AB.

• Cas général
Soit

∑
n≥0

ωn le produit de Cauchy de
∑
n≥0
|un| et de

∑
n≥0
|vn|.

∀n ∈ N |wn| =

∣∣∣∣∣∣
n∑
p=0

upvn−p

∣∣∣∣∣∣ ≤
n∑
p=0
|up||vn−p| = ωn

D’après ce qui précède, la série
∑
n≥0

ωn converge donc la série
∑
n≥0

wn converge absolument.

Si on conserve les notations précédentes, on a :
∀n ∈ N AnBn − Cn =

∑
(p,q)∈∆n

upvq −
∑

(p,q)∈Dn

upvq =
∑

(p,q)∈∆n\Dn

upvq

D’où :

∀n ∈ N |AnBn − Cn| ≤
∑

(p,q)∈∆n\Dn

|up||vq|

≤
∑

(p,q)∈∆n

|up||vq| −
∑

(p,q)∈Dn

|up||vq| −−−−−→
n→+∞

0 d’après ce qui précède

D’où : AnBn − Cn −−−−−→
n→+∞

0.

12
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Or AnBn − Cn −−−−−→
n→+∞

AB − C.
Finalement C = AB.

1.11.4 Produit de Cauchy de deux séries entières

Soient
∑
n≥0

anz
n une série entière et Ra son rayon de convergence.

Soient
∑
n≥0

bnz
n une série entière et Rb son rayon de convergence.

Soit (cn)n∈N la suite à valeurs complexes définie par :

∀n ∈ N cn =
∑

p+q=n
apbq =

n∑
p=0

apbn−p =
n∑
q=0

an−qbq

Soit Rc le rayon de convergence de la série entière
∑
n≥0

cnz
n.

On a : Rc ≥ min (Ra, Rb).
De plus, si min (Ra, Rb) > 0, on a pour tout z ∈ C tel que |z| < min (Ra, Rb) :(+∞∑
n=0

anz
n

)
.

(+∞∑
n=0

bnz
n

)
=

+∞∑
n=0

cnz
n =

+∞∑
n=0

 ∑
p+q=n

apbq

 zn
Démonstration
Si min (Ra, Rb) = 0 le résultat est clair.
On suppose donc min (Ra, Rb) > 0.
Soit z ∈ C tel que |z| < min (Ra, Rb).

∀n ∈ N cnz
n =

 ∑
p+q=n

apbq

 zn =
∑

p+q=n
(apbqzn) =

∑
p+q=n

(apzpbqzq)

ie : la série
∑
n≥0

cnz
n est le produit de Cauchy des séries

∑
n≥0

anz
n et

∑
n≥0

bnz
n.

Or les séries
∑
n≥0

anz
n et

∑
n≥0

bnz
n convergent absolument donc :

• La série
∑
n≥0

cnz
n converge absolument et par conséquent R ≥ |z|.

•
+∞∑
n=0

cnz
n =

(+∞∑
n=0

anz
n

)
.

(+∞∑
n=0

bnz
n

)
On en déduit en particulier :
∀r ∈ [0; min (Ra, Rb)[ Rc ≥ r
D’où Rc ≥ min (Ra, Rb).

Remarque
Même si Ra 6= Rb on peut avoir Rc > min (Ra, Rb).

Exemple
Soit (an)n∈N définie par : ∀n ∈ N an = 1.

Ra = RCV

∑
n≥0

anz
n

 = RCV

∑
n≥0

zn

 = 1.

Soit (bn)n∈N définie par : b0 = 1, b1 = −1 et ∀n ≥ 2 bn = 0.

13
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Rb = RCV

∑
n≥0

bnz
n

 = +∞.

c0 = a0.b0 = 1 et :

∀n ∈ N∗ cn =
n∑
q=0

an−qbq = b0 + b1 = 0

Donc Rc = +∞.

1.11.5 Centrale 2003

a0 = 1
∀n ∈ N∗ an = −1

2

(
a0
n! + · · ·+ an−2

2! + an−1

)
1. Montrer : ∀n ∈ N∗ |an| ≤ 1

Montrer : ∀n ∈ N∗ |an| ≤
( 1

ln 3

)n
Qu’en déduire ? (sur R rayon de convergence de

+∞∑
n=0

anx
n)

2. Montrer : ∀x ∈]−R;R[ ( ex + 1).
+∞∑
n=0

anx
n = 2

3. En déduire : ∀n ∈ N∗ a2n = 0
4. Calculer a0, . . . , a6 à l’aide de Maple.

def a(n):
from math import factorial
tab=[1.0]*(n+1)
for i in range(1,n+1):

tab[i]=-0.5*sum(tab[k]/factorial(i-k) for k in range(i))
return(tab)

print(a(6))
[1.0, -0.5, -0.0, 0.04166666666666667, -3.469446951953614e-18, \\
-0.004166666666666667, 4.336808689942018e-19]

Une solution récursive est envisageable. Sa complexité est très mauvaise mais cela ne pose pas
de problème pour les premiers termes de la suite.

def a_rec(n):
from math import factorial
if n==0:

return 1.0
return(-0.5*sum(a_rec(k)/factorial(n-k) for k in range(n)))

for i in range(7):
print(a_rec(i))

1.0
-0.5
-0.0

14
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0.0416666666667
-3.46944695195e-18
-0.00416666666667
4.33680868994e-19

Correction
1. Pour tout n ∈ N, soit P(n) : ∀k ∈ [[0;n]] |ak| ≤ 1.
P(0) est vraie.
On suppose P(n) vraie.

|an+1| ≤
1
2

n+1∑
k=1

|an+1−k|
k! ≤ 1

2

n+1∑
k=1

1
k!

≤ 1
2

+∞∑
k=1

1
k! = e− 1

2 ≤ 3− 1
2 = 1

Pour tout n ∈ N, soit P(n) : ∀k ∈ [[0;n]] |ak| ≤
( 1

ln 3

)k
.

P(0) est vraie.
On suppose P(n) vraie.

|an+1| ≤
1
2

n+1∑
k=1

|an+1−k|
k! ≤ 1

2

n+1∑
k=1

1
(ln 3)n+1−kk!

≤ 1
2(ln 3)n+1

n+1∑
k=1

(ln 3)k

k! ≤ 1
2(ln 3)n+1

+∞∑
k=1

(ln 3)k

k!

≤ eln 3 − 1
2(ln 3)n+1 ≤

1
(ln 3)n+1

On a donc prouvé par récurrence :
∀n ∈ N |an| ≤

( 1
ln 3

)n
.

On en déduit an = O

(( 1
ln 3

)n)
puis R ≥ RCV

(∑ zn

(ln 3)n
)

= ln 3

2. ∀x ∈ R ex + 1 = 2 +
+∞∑
n=1

xn

n! =
+∞∑
n=0

bnx
n (R = +∞)

∀x ∈ R ( ex + 1)
+∞∑
n=0

anx
n =

+∞∑
n=0

cnx
n

avec :
∀n ∈ N cn =

n∑
k=0

bkan−k

c0 = a0b0 = 2

∀n ∈ N∗ cn = 2an +
n∑
k=1

an−k
k! = 0

Donc ∀x ∈]−R;R[ ( ex + 1).
+∞∑
n=0

anx
n = 2 avec ex + 1 6= 0

Donc :

∀x ∈]−R;R[
+∞∑
n=0

anx
n = 2

ex + 1

15
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3.

∀x ∈]−R;R[
+∞∑
n=1

anx
n = 2

ex + 1 − a0 = 2
ex + 1 − 1

= 1− ex

1 + ex noté f(x)

∀x ∈ R f(−x) = 1− e−x

1 + e−x = ex(1− e−x)
ex(1 + e−x) = ex − 1

ex + 1 = −f(x)
f est impaire donc :
∀n ∈ N∗ a2n = 0
Remarque

∀x ∈]−R;R[ f(x) = 1− ex

ex + 1 =
− ex/2

(
ex/2 − e−x/2

)
ex/2

(
ex/2 + e−x/2

)
= − tanh

(
x

2

)

2 Les séries entières comme fonctions : continuité, dérivation,
intégration

2.1 Modes de convergence d’une série entière

Soit
∑
n≥0

anz
n une série entière de rayon de convergence R > 0.

Il y a convergence normale sur tout segment de ]−R;R[.

En effet, considérons [a; b] (−R < a < b < R) un segment inclus dans ]−R;R[.
Soit c = max (|a| , |b|) = max

x∈[a;b]
|x|.

c < R donc la série
∑
n≥0
|an|cn converge.

∀x ∈ [a; b] ∀n ∈ N |anxn| = |an||x|n ≤ |an|cn
On en déduit que la série entière

∑
n≥0

anx
n converge normalement sur [a; b].

Il n’y a pas en général convergence normale sur ]−R;R[.

Exemple :
∑
n≥0

xn

sup
x∈]−1;1[

|xn| = 1 qui est le terme général d’une série divergente.

On en déduit que la série entière
∑
n≥0

xn ne converge pas normalement sur ]− 1; 1[.

Il n’y a pas en général convergence uniforme sur ]−R;R[.

Si on reprend l’exemple précédent, sup
x∈]−1;1[

|xn| ne tend pas vers 0 et la condition nécessaire

de convergence uniforme vue en ? du chapitre précédent n’est pas vérifiée.
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2.2 Continuité de la somme d’une série entière

• Cas de la variable complexe
Soient

∑
n≥0

anz
n une série entière de rayon de convergence R > 0 et D son disque (ouvert)

de convergence.

La fonction S


D → C

z 7→
+∞∑
n=0

anz
n est continue.

Le programme signale que ce théorème est admis.

• Cas de la variable réelle
Soient

∑
n≥0

anx
n une série entière de rayon de convergence R > 0 et ]−R;R[ son intervalle

(ouvert) de convergence.

La fonction S


]−R;R[→ C

x 7→
+∞∑
n=0

anx
n est continue.

Démonstration

Pour tout n ∈ N, soit fn

{
]−R;R[→ C
x 7→ anx

n
.

— Pour tout n ∈ N, fn est continue sur ]−R;R[.
— La série de fonctions

∑
fn convergence uniformément sur tout segment de ]−R;R[ :

en effet, il y a convergence normale sur tout segment et la convergence normale en-
traîne la convergence uniforme.

On en déduit que la fonction S est continue sur ]−R;R[.

• Remarque
Je cite le programme :

L’étude des propriétés de la somme au bord de l’intervalle ou du disque de
convergence n’est pas un objectif du programme.

2.3 Intégration terme à terme des séries entières

2.3.1 A propos du rayon de convergence

Le résultat qui suit n’est pas explicitement au programme.
Soit (an)n∈N une suite à valeurs dans C.

Les séries entières
∑
n≥0

anz
n et

∑
n≥0

an
zn+1

n+ 1 =
∑
n≥1

an−1
zn

n
ont le même rayon de convergence.

Démonstration
Soit R1 le rayon de convergence de la série entière

∑
n≥0

anz
n.

Soit R2 le rayon de convergence de la série entière
∑
n≥0

an
zn+1

n+ 1.

Pour tout z ∈ C∗ on a :

17
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la série
∑
n≥0

an
zn+1

n+ 1 converge ⇐⇒ la série
∑
n≥0

an
zn

n+ 1 converge

Donc R2 est aussi le rayon de convergence de la série entière
∑
n≥0

an
n+ 1z

n.

∀n ∈ N
∣∣∣∣ an
n+ 1

∣∣∣∣ = |an|
n+ 1 ≤ |an|

donc R2 ≥ R1.
Supposons R2 > R1.
Soient r1 et r2 deux réels tels que R1 < r1 < r2 < R2.
r2 < R2 donc la suite

(
an
n+ 1r

n
2

)
est bornée et :

an
n+ 1r

n
1 = an

n+ 1r
n
2

(
r1
r2

)n
= O

((
r1
r2

)n)
.

D’où |an|rn1 = O

(
n

(
r1
r2

)n)
.

On a de plus :
• ∀n ∈ N n

(
r1
r2

)n
≥ 0

• la série
∑
n≥0

n

(
r1
r2

)n
converge (en effet r1

r2
∈]0; 1[ et le rayon de convergence de la série

entière
∑
n≥0

nzn est égal à 1, cf ).

On en déduit que la série
∑
n≥0
|an|rn1 converge (absolument), ce qui contredit r1 > R1.

Donc on a bien R1 = R2.

2.3.2 Proposition

Soit
∑
n≥0

anx
n une série entière de rayon de convergence R > 0.

Soit S


]−R;R[→ C

x 7→
+∞∑
n=0

anx
n .

Soit T une primitive de S sur ]−R;R[.
On a :

∀x ∈]−R;R[ T (x) = T (0) +
+∞∑
n=0

an
n+ 1x

n+1 = T (0) +
+∞∑
n=1

an−1
n

xn

En d’autres termes, les primitives de S s’obtiennent en intégrant terme à terme.

Démonstration
Soit x ∈]−R;R[\ {0} (le cas x = 0 est clair).
S étant continue, on a :

T (x) = T (0) +
∫ x

0
S(t) dt = T (0) +

∫ x

0

(+∞∑
n=0

ant
n

)
dt

Soit J = [min (0, x),max (0, x)].

Pour tout n ∈ N, soit fn

{
J → C
t 7→ ant

n
.
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On a :
• Pour tout n ∈ N fn est continue sur J .
• La série de fonctions

∑
n≥0

fn converge normalement sur J .

On a alors d’après le théorème d’intégration terme à terme des séries de fonctions vu au para-
graphe 5.3.1 du chapitre précédent :

T (x) = T (0) +
+∞∑
n=0

an

∫ x

0
tn dt = T (0) +

+∞∑
n=0

an
xn+1

n+ 1

2.3.3 Exemple

∀x ∈]− 1; 1[
+∞∑
n=0

(−1)nxn = 1
1 + x

(R = 1)

En intégrant terme à terme :

∀x ∈]− 1; 1[ ln (1 + x) =
+∞∑
n=1

(−1)n−1x
n

n

D’après le théorème spécial sur la convergence des séries alternées, la série
∑
n≥1

(−1)n−1 1n

n
converge.

Il est évidemment tentant d’écrire ln (2) =
+∞∑
n=1

(−1)n−1

n

C’est vrai mais cela doit être justifié.

Pour tout n ∈ N∗, soit fn

[0; 1[→ R

x 7→ (−1)n−1x
n

n

.

• Pour tout n ∈ N∗, fn(x) −−−→
x→1
x<1

(−1)n−1

n
.

•
∑

fn converge uniformément sur [0; 1[ :
D’après le calcul initial, il y a convergence simple.
A x ∈ [0; 1[ fixé :
—

∑
(−1)n−1x

n

n
est alternée

— (−1)n−1x
n

n
−−−−−→
n→+∞

0

—
(∣∣∣∣(−1)n−1x

n

n

∣∣∣∣)
n≥1

=
(
xn

n

)
n≥1

décroît.

Donc par le théorème sur la convergence des séries alternées :

∀x ∈ [0; 1[ ∀p ∈ N∗ |Rp(x)| ≤ |fp+1(x)| = xp+1

p+ 1 ≤
1

p+ 1 indépendant de x et −−−−→
p→+∞

0
Donc (Rp) converge uniformément vers 0 sur [0; 1[.
Donc

∑
fn converge uniformément sur [0; 1[.

Par le théorème de la double limite :
+∞∑
n=1

(−1)n−1x
n

n
−−−→
x→1
x<1

+∞∑
n=1

(−1)n−1

n
.

Mais :

∀x ∈]− 1; 1[ ln (1 + x) =
+∞∑
n=1

(−1)n−1x
n

n
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Donc :
+∞∑
n=1

(−1)n−1x
n

n
−−−→
x→1
x<1

ln (2)

Par unicité de la limite :
+∞∑
n=1

(−1)n−1

n
= ln (2)

Finalement :

∀x ∈]− 1; 1] ln (1 + x) =
+∞∑
n=1

(−1)n−1x
n

n
(R = 1)

qu’on peut également écrire :

∀x ∈ [−1; 1[
+∞∑
n=1

xn

n
= − ln (1− x)

2.3.4 Exemple

arctan est C∞ sur R et :
∀x ∈ R arctan′ (x) = 1

1 + x2
Donc :

∀x ∈]− 1; 1[ arctan′(x) =
+∞∑
n=0

(−1)nx2n (R = 1)

D’où :

∀x ∈]− 1; 1[ arctan (x) =
+∞∑
n=0

(−1)n x
2n+1

2n+ 1 (R = 1)

La série
∑
n≥0

(−1)n

2n+ 1 vérifie les hypothèses du théorème spécial sur la convergence des séries

alternées :
• La série

∑
n≥0

(−1)n

2n+ 1 est alternée.

• La suite
(∣∣∣∣ (−1)n

2n+ 1

∣∣∣∣)
n∈N

=
( 1

2n+ 1

)
n∈N

est décroissante.

• (−1)n

2n+ 1 −−−−−→n→+∞
0

Donc la série
∑
n≥0

(−1)n

2n+ 1 converge.

Donc, comme dans l’exemple précédent :

∀x ∈ [0; 1]
+∞∑
n=0

(−1)n x
2n+1

2n+ 1 = arctan x

Finalement, compte tenu de la parité, on a :

∀x ∈ [−1; 1] arctan x =
+∞∑
n=0

(−1)n x
2n+1

2n+ 1 formule de Gregory (1638-1675)

En prenant x = 1, ce que Gregory n’a jamais fait, on a :

π

4 =
+∞∑
n=0

(−1)n

2n+ 1
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formule proposée par Leibniz (1646-1716) en 1674, mais déjà connue par le mathématicien indien
Madhava en 1410 et demeurée inconnue en Occident.
Cette formule est inutilisable en pratique pour calculer une valeur approchée de π : la convergence
est trop lente :
4
(

1− 1
3 + 1

5 · · ·+
1

100001

)
= 3, 141 612 . . .

Mais on dispose de la formule de John Machin (1680-1752) :
π = 4

(
4 arctan

(1
5

)
− arctan

( 1
239

))
D’où :

π = 4
+∞∑
n=0

( 4(−1)n

(2n+ 1)52n+1 −
(−1)n

(2n+ 1)2392n+1

)
Machin est, grâce à cette formule, le premier à calculer 100 décimales de π.

2.4 Dérivation terme à terme des séries entières

2.4.1 A propos du rayon de convergence

Soit (an)n∈N une suite à valeurs dans C.
Les séries entières

∑
n≥0

anz
n et

∑
n≥1

nanz
n−1 =

∑
n≥0

(n+1)an+1z
n ont le même rayon de convergence.

Démonstration

RCV

∑
n≥0

(n+ 1)an+1z
n

 = RCV

∑
n≥0

(n+ 1)an+1
zn+1

n+ 1

 = RCV

∑
n≥0

an+1z
n+1


= RCV

∑
n≥1

anz
n

 = RCV

∑
n≥0

anz
n


2.4.2 Corollaire

Soit (an)n∈N une suite à valeurs dans C.
Pour tout k ∈ N∗, la série entière∑
n≥k

n(n−1) . . . (n−k+1)anzn−k =
∑
n≥0

(n+1) . . . (n+k)an+kz
n =

∑
n≥0

(n+ k)!
n! an+kz

n a le même

rayon de convergence que la série entière
∑
n≥0

anz
n.

(Il suffit de raisonner par récurrence sur k)

2.4.3 Le résultat du programme

Soit (an)n∈N une suite à valeurs dans C.
Les séries entières

∑
n≥0

anz
n et

∑
n≥0

nanz
n ont le même rayon de convergence.
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2.4.4 Théorème

Soit
∑
n≥0

anx
n une série entière de rayon de convergence R > 0.

Soit S


]−R;R[→ C

x 7→
+∞∑
n=0

anx
n .

S est de classe C∞ sur ]−R;R[ et :

∀k ∈ N∗ ∀x ∈]−R;R[ S(k)(x) =
+∞∑
n=k

n(n− 1) . . . (n− k + 1)anxn−k

=
+∞∑
n=0

(n+ 1) . . . (n+ k)an+kx
n

=
+∞∑
n=0

(n+ k)!
n! an+kx

n

En d’autres termes, les dérivées de S s’obtiennent en dérivant terme à terme.

Démonstration

Pour tout n ∈ N, soit fn

{
]−R;R[→ C
x 7→ anx

n
.

Pour tout k ∈ N, soit P(k) : S =
+∞∑
n=0

fn est de classe Ck et S(k) =
+∞∑
n=0

f (k)
n .

D’après le paragraphe sur la continuité, P(0) et vraie.
On suppose P(k) vraie.

• Pour tout n ∈ N, f (k)
n est C1 sur ]−R;R[.

•
∑

f (k)
n CVS sur ]−R;R[ : implicite dans l’hypothèse de récurrence.

•
∑(

f (k)
n

)′
=
∑

f (k+1)
n CVU sur tout segment de ]−R;R[.

∀n ∈ N ∀x ∈]−R;R[ f (k+1)
n (x) =

{
0 si k + 1 > n

ann(n− 1) . . . (n− k)xn−k−1 si n ≥ k
Donc

∑
f (k+1)
n est une série entière de rayon de convergence R.

Donc
∑

f (k+1)
n CVN donc CVU sur tout segment de ]−R;R[.

D’après le théorème de dérivation terme à terme des séries de fonctions, la fonction
+∞∑
n=0

f (k)
n est

de classe C1 ie S =
+∞∑
n=0

fn est de classe Ck+1.

De plus :

S(k+1) =
(
S(k)

)′
=
(+∞∑
n=0

f (k)
n

)′
=

+∞∑
n=0

(
f (k)
n

)′
=

+∞∑
n=0

f (k+1)
n

et P(k + 1) est vraie.
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2.4.5 Exemple

Soient z ∈ C et :

ez


R→ C

t 7→
+∞∑
n=0

(tz)n

n! =
+∞∑
n=0

tnzn

n!
La fonction ez est de classe C∞ sur R et e′z = z ez.
Démonstration
Pour tout t ∈ R, la série

∑ (tz)n

n! converge absolument.

Donc R
(∑ tnzn

n!

)
= +∞ (la variable est t).

Donc ez est C∞ sur R et :

∀t ∈ R e′z(t) =
+∞∑
n=1

n
zn

n! t
n−1 =

+∞∑
n=1

zntn−1

(n− 1)! = z
+∞∑
n=1

(zt)n−1

(n− 1)!
= z ez(t)

2.4.6 Expression des coefficients en fonction de la somme

Soit
∑
n≥0

anx
n une série entière de rayon de convergence R > 0.

Soit S


]−R;R[→ C

x 7→
+∞∑
n=0

anx
n .

On a :
∀k ∈ N ak = 1

k!S
(k)(0)

Démonstration

∀k ∈ N ∀x ∈]−R;R[ S(k)(x) =
+∞∑
n=0

(n+ k)!
n! an+kx

n

En particulier, si on prend x = 0 on en déduit :
∀k ∈ N S(k)(0) = (0 + k)!

0! a0+k = k!ak.
D’où le résultat.

Corollaire
Soit

∑
n≥0

anx
n une série entière de rayon de convergence Ra > 0.

Soit
∑
n≥0

bnx
n une série entière de rayon de convergence Rb > 0.

On suppose qu’il existe r ∈]0; min (Ra, Rb)] tel que :

∀x ∈]− r; r[
+∞∑
n=0

anx
n =

+∞∑
n=0

bnx
n

Alors :
∀n ∈ N an = bn
En particulier, si il existe ρ ∈]0;Ra] tel que :

∀x ∈]− ρ; ρ[
+∞∑
n=0

anx
n = 0

23



Analyse 1, chapitre 4 2025 - 2026

alors :
∀n ∈ N an = 0

Démonstration

Soient Sa


]−Ra;Ra[→ C

x 7→
+∞∑
n=0

anx
n et Sb


]−Rb;Rb[→ C

x 7→
+∞∑
n=0

bnx
n .

On a, par hypothèse :
∀x ∈]− r; r[ Sa(x) = Sb(x)
Les fonctions Sa et Sb sont C∞ sur ]− r; r[ donc :
∀x ∈]− r; r[ ∀k ∈ N S

(k)
a (x) = S

(k)
b (x)

En particulier pour x = 0 on a :
∀k ∈ N k!ak = S

(k)
a (0) = S

(k)
b (0) = k!bk

D’où le résultat.

2.4.7 Exemple : Centrale 99

f(x) =
+∞∑
n=1

vnx
3n où vn = (n+ 2)!

1× 3× 6× · · · × (3n) .

• Rayon de convergence R.
• Comportement pour x = R.
• Trouver une équation différentielle du premier ordre linéaire vérifiée par f .

(Indication : calculer vn
vn−1

)
• Calculer f .

Correction
∀n ∈ N∗ vn = (n+ 2)!

3nn! = (n+ 1)(n+ 2)
3n

• Soit r ∈ R∗+.
— ∀n ∈ N∗ vnr3n > 0

— ∀n ∈ N∗
vn+1r

3(n+1)

vnr3n = · · · = n+ 3
3(n+ 1)r

3 −−−−−→
n→+∞

r3

3
Par la règle de d’Alembert :
— Si r < 3√3 alors la série de terme général vnr3n converge.
— Si r > 3√3 alors la série de terme général vnr3n diverge grossièrement.
On en déduit R = 3√3
•
∑

vnR
3n =

∑
(n+ 1)(n+ 2) est grossièrement divergente.

Peut-être l’examinateur voulait-il le comportement de f(x) : ce n’est pas clair mais l’ex-
pression de f(x) permettra de conclure.
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• ∀n ≥ 2 vn
vn−1

= n+ 2
3n

∀x ∈]−R;R[ f ′(x) =
+∞∑
n=1

3nvnx3n−1 =
+∞∑
n=2

(n+ 2)vn−1x
3n−1 + 3v1x

2

= 6x2 +
+∞∑
l=1

(l + 3)vlx3l+2 = 6x2 + x3
+∞∑
l=1

lvlx
3l−1 + 3x2

+∞∑
l=1

vlx
3l

= 6x2 + x3

3 f
′(x) + 3x2f(x)

∀x ∈]−R;R[
(

1− x3

3

)
f ′(x)− 3x2f(x) = 6x2

On travaille sur ]− 3√3; 3√3[ donc 1− x3

3 ne s’annule pas.

ESSM : y′ = 3x2

1− x3/3y

Solution générale : y = C

(1− x3/3)3

Variation de la constante : C ′(x)
(1− x3/3)2 = 6x2

C(x) = −2
(

1− x3

3

)3

+ Cte

D’où la solution générale : y(x) = −2 + C

(1− x3/3)3

En particulier g


]−R;R[→ R

x 7→ 2
(1− x3/3)3 − 2 est solution sur ]−R;R[ du problème de Cauchy


(

1− x3

3

)
y′ − 3x2y = 6x2

y(0) = 0
tout comme f .

Or les fonctions x 7→ 1 − x3

3 , x 7→ −3x2 et x 7→ 6x2 sont continues, la première ne
s’annulant pas sur ]−R;R[ donc f = g ie :

∀x ∈]− 3√3; 3√3[
+∞∑
n=1

vnx
3n = 2

( 1
(1− x3/3)3 − 1

)
= 2x3(27− 9x3 + x6)

(3− x3)3

Remarque
Il y a une méthode plus rapide pour calculer f(x).

∀x ∈]−R;R[ f(x) =
+∞∑
n=1

(n+ 1)(n+ 2)x
3n

3n =
+∞∑
n=1

(n+ 1)(n+ 2)
(
x3

3

)n
.

On pose :
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∀x ∈]− 1; 1[ S(x) =
+∞∑
n=1

(n+ 1)(n+ 2)xn (R = 1 par d’Alembert)

S(x) = d2

dx2

(+∞∑
n=1

xn+2
)

= d2

dx2

(+∞∑
n=3

xn
)

= d2

dx2

(
x3

1− x

)
lourd

= d2

dx2

(+∞∑
n=0

xn − 1− x− x2
)

= d2

dx2

( 1
1− x − 1− x− x2

)
= d

dx

( 1
(1− x)2 − 1− 2x

)
= 2

(1− x)3 − 2 = 2
( 1

(1− x)3 − 1
)

∀x ∈]− 3√3; 3√3[ f(x) = 2
( 1

(1− x3/3)3 − 1
)

2.4.8 Exemple : Mines 2009

f(x) =
+∞∑
n=0

(
2n
n

)
xn.

Déterminer Sn =
n∑
p=0

(
2p
p

)(
2n− 2p
n− p

)
.

Correction
On note an =

(
2n
n

)
.

Soit r ∈ R∗+.
∀n ∈ N anr

n > 0
an+1r

n+1

anrn
= (2n+ 2)!

(n+ 1)!(n+ 1)!
n!n!
(2n)!r = (2n+ 2)(2n+ 1)

(n+ 1)(n+ 1) r = 22n+ 1
n+ 1 r −−−−−→n→+∞

4r

On en déduit classiquement R = 1
4.

∀x ∈
]
−1

4; 1
4

[
f(x)2 =

+∞∑
n=0

 n∑
p=0

(
2p
p

)(
2n− 2p
n− p

)xn =
+∞∑
n=0

Snx
n

mais que vaut f(x) ?
Dans la recherche du rayon de convergence, on a obtenu :
∀n ∈ N

an+1
an

= 22n+ 1
n+ 1ou encore :

∀n ∈ N (n+ 1)an+1 = 2(2n+ 1)an

∀x ∈
]
−1

4; 1
4

[
f ′(x) =

+∞∑
n=1

nanx
n−1 =

+∞∑
n=0

(n+ 1)an+1x
n

= 2
+∞∑
n=0

(2n+ 1)anxn = 4x
+∞∑
n=1

nanx
n−1 + 2

+∞∑
n=0

anx
n

= 4xf ′(x) + 2f(x)

f est solution de l’équation différentielle (1− 4x)y′ = 2y et f(0) = 1.
La résolution est standard et :
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∀x ∈
]
−1

4; 1
4

[
f(x) = 1√

1− 4x

∀x ∈
]
−1

4; 1
4

[ +∞∑
n=0

Snx
n = f(x)2 = 1

1− 4x

=
+∞∑
n=0

4nxn

Finalement :
∀n ∈ N Sn =

n∑
p=0

(
2p
p

)(
2n− 2p
n− p

)
= 4n

3 Fonctions développables en série entière

3.1 Définitions

Soit I un intervalle de R tel que 0 ne soit pas une extrémité de I.
Soit f : I → C.

• Soit r ∈]0; +∞] tel que ]− r; r[⊂ I.
On dit que f est développable en série entière sur ]− r; r[ si et seulement si il existe une
série entière

∑
n≥0

anx
n de rayon de convergence R ≥ r telle que :

∀x ∈]− r; r[ f(x) =
+∞∑
n=0

anx
n

Exemples

— La fonction f

]−∞; 1[ ou R \ {1} → R

x 7→ 1
1− x

est développable en série entière sur

]− 1; 1[ et on a :

∀x ∈]− 1; 1[ f(x) = 1
1− x =

+∞∑
n=0

xn (R = 1)

Le programme mentionne également le développement de 1
1− z sur le disque ouvert :

Pour tout nombre complexe z de module strictement inférieur à 1, 1
1− z =

+∞∑
n=0

zn.

— La fonction exponentielle est développable en série entière sur R et on a :

∀x ∈ R ex =
+∞∑
n=0

xn

n! (R = +∞)

Démonstration

On fixe z dans C et on considère de nouveau ez


R→ C

t 7→
+∞∑
n=0

tnzn

n!
.

ez est C∞ sur R et : e′z = z ez ie ez est solution de y′ = zy.
Donc :
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∃C ∈ C tq ∀t ∈ R ez(t) = C exp (zt) = C e(zt)

où exp (a+ ib) = ea+ib est défini par e(a+ib) = ea (cos b+ i sin b)
t = 0 donne C = 1.

∀(z, t) ∈ C× R
+∞∑
n=0

tnzn

n! = ezt

t = 1 donne :

∀z ∈ C
+∞∑
n=0

zn

n! = ez

Le programme mentionne explicitement ce résultat.
En particulier :

∀x ∈ R
+∞∑
n=0

xn

n! = ex

En particulier :
+∞∑
n=0

1
n! = e

Supposons e ∈ Q.
Il existe (p, q) ∈ N∗ × N∗ tels que e = p

q
.

p

q
= 1 + 1 + · · ·+ 1

q! +
+∞∑

n=q+1

1
n!

On multiplie tout par q!.

p(q − 1)!− (q! + q! + · · ·+ q + 1) =
+∞∑

n=q+1

q!
n!

p(q − 1)!− (q! + q! + · · ·+ q + 1) ∈ Z mais :

0 <
+∞∑

n=q+1

q!
n! =

+∞∑
k=0

q!
(q + k + 1)! =

+∞∑
k=0

1
(q + 1) . . . (q + k + 1)

<
+∞∑
k=0

1
(q + 1)k+1 = 1

q + 1
1

1− 1
q + 1

<
1
q
≤ 1

Donc
+∞∑

n=q+1

q!
n! ∈ Z∩]0; 1[.

On aboutit à une contradiction.
Donc e 6∈ Q.

• On dit que f est développable en série entière si et seulement si il existe r ∈]0; +∞] tel
que :{
− ]− r; r[⊂ I
− f est développable en série entière sur ]− r; r[

• Développer en série entière f , c’est déterminer (si c’est possible) r ∈]0; +∞] et
∑
n≥0

anx
n

série entière de rayon de convergence R ≥ r tels que :
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
− ]− r; r[⊂ I

− ∀x ∈]− r; r[ f(x) =
+∞∑
n=0

anx
n

Il résulte immédiatement de 2.4.4 que si f est développable en série entière sur ]− r; r[ alors :
• f est de classe C∞ sur ]− r; r[.

• ∀n ∈ N an = f (n)(0)
n!

Définition
Soient I un intervalle de R tel que 0 ne soit pas une extrémité de I et f : I → C de classe C∞.

On appelle série de Taylor (en 0) de f la série entière
∑
n≥0

f (n)(0)
n! xn.

On a donc :
f est développable en série entière ⇐⇒ la série de Taylor de f est convergente de somme f sur
un intervalle ]− r; r[⊂ I avec r ∈]0; +∞]

3.2 Remarques

Soient I un intervalle de R tel que 0 ne soit pas une extrémité de I et f : I → C de classe
C∞.
Il peut se passer beaucoup de choses :

• La série de Taylor de f peut avoir un rayon de convergence nul. Dans ce cas f n’est pas
développable en série entière.
On cherche F ∈ C∞(R+,R) telle que ;

∀n ∈ N F (n)(0) = (−1)n (n!)2 (1)

1. Définition d’une fonction développable en 0, d’une série de Taylor en 0.
2. Une fonction F vérifiant (1) est-elle développable en série entière en 0 ?

3. Tracer les 7 premières sommes partielles de la série de Taylor de F entre 0 et 1
2.

4. Pourquoi ne peut-on pas résoudre directement ce problème :
{
x2y′ + (x+ 1)y = 1
y(0) = 1

?

Le transformer en problème de Cauchy approchant sur
[
10−3; 1

2

]
.

Tracer les solutions et comparer les tracés avec ceux de la question 3).
5. Résoudre le problème de 4) sur R∗+.
6. 4 autres questions
Correction
1. f est développable en série entière en 0 si, et seulement si, il existe r > 0 et une série

entière
∑
n≥0

anx
n de rayon de convergence R ≥ r telle que :

∀x ∈]− r; r[ f(x) =
+∞∑
n=0

anx
n

Soient I un intervalle de R tel que 0 ne soit pas une extrémité de I et f : I → C de
classe C∞.
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On appelle série de Taylor (en 0) de f la série entière
∑
n≥0

f (n)(0)
n! xn.

On a donc :
f est développable en série entière ⇐⇒ la série de Taylor de f est convergente de
somme f sur un intervalle ]− r; r[⊂ I avec r ∈]0; +∞]

2. La réponse est non.
En effet la série de Taylor de f est

∑
n≥0

anx
n avec an = (−1)nn!.

|an+1|
|an|

= n+ 1 −−−−−→
n→+∞

+∞ donc le rayon de convergence de la série de Taylor de F
est nul.

3. import numpy as np
import matplotlib.pyplot as plt
from math import factorial

les_x=np.arange(0,0.51,0.01)
def F(N,x):

return(sum(factorial(n)*((-1)*x)**n for n in range(N+1)))

for N in range(7):
les_y=[F(N,x) for x in les_x]
plt.plot(les_x,les_y,color=’black’)

plt.show()

0.0 0.1 0.2 0.3 0.4 0.5
2

0

2

4

6

8

Plus N est grand, plus la valeur en 1
2 est grande en valeur absolue.

4. Le théorème Cauchy linéaire ne s’applique pas car le coefficient de y′ est nul en 0. A
priori, on ne peut rien dire sur l’existence ou l’unicité d’une solution.
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Sur R∗+, l’équation différentielle s’écrit : y′ = −x+ 1
x2 y + 1

x2 .
Je propose de prendre comme condition initiale : y(0, 001) = y(0) = 1.
import scipy.integrate as integr

def f(y,x):
return ((-1)*(x+1)*y+1)/x**2

X=np.arange(0.001,0.501,0.001)
Y=integr.odeint(f,1,X)
plt.plot(X,Y,color=’black’)
plt.show()

0.0 0.1 0.2 0.3 0.4 0.5

0.75

0.80

0.85

0.90

0.95

1.00

Le tracé est très différent de ceux de la question précédente, ce qui peut paraître sur-
prenant.
En fait le tracé de la question 3, suppose que la formule de Taylor-Young approche
F jusque 1

2 alors que Taylor-Young dit seulement qu’on approche F sur un intervalle
de la forme [0; δ] avec δ > 0 mais sans donner d’ordre de grandeur pour δ.

5. On commence par résoudre l’équation sans second membre :∫
−x+ 1

x2 dx = − ln (x) + 1
x

Donc la solution générale de l’équation sans second membre est : y = C
e1/x

x
.

On cherche ensuite une solution particulière avec la variation de la constante :

C ′(x) e1/x

x
= 1
x2

C(x) =
∫ e−1/x

x
dx
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D’où la solution générale :

y(x) = e1/x

x

∫ x

0,001

e−1/t

t
dt+ C

e1/x

x
et on prend C = 0, 001 e−1000 pour avoir la solution du problème de Cauchy appro-
chant de la question 4).
On remarque que C est très proche de 0.

Dans la suite de l’exercice, on s’intéresse naturellement à la fonctionG


R∗+ → R

x 7→ e1/x

x

∫ x

0

e−1/t

t
dt

.

La fonction g


R+ → R

x 7→ e−1/x

x
si x > 0

0 7→ 0

est continue sur R+ donc G est bien définie sur

R+.
G est clairement de classe C1 sur R∗+ et :

∀x > 0 x2G′(x) + (x+ 1)G(x)

= x2 e1/x

x

e−1/x

x
+ x2−1/x e1/x − e1/x

x2

∫ x

0

e−1/t

t
dt+ x+ 1

x
e1/x

∫ x

0

e−1/t

t
dt

= 1

Donc G est solution de (1) sur R∗+.
Il faut maintenant préciser le comportement de G en 0, ce qui revient à déterminer

un équivalent de
∫ x

0

e−1/t

t
dt.

Comme souvent, on fait une intégration par parties :
u(t) = t, u′(t) = 1

v′(t) = e−1/t

t2
v(t) = e−1/t

u et v sont de classe C1 sur ]0;x] et u(t)v(t) −−−→
t→0+

0
Donc :
∀x > 0 G(x) = e1/x

x

(
x e−1/x −

∫ x

0
e−1/t dt

)
= 1− e1/x

x

∫ x

0
e−1/t dt

0 ≤
∫ x

0
e−1/t dt ≤ x e−1/x

Donc G(x) = 1 +O(1).
Il faut être plus précis donc on va devoir procéder à des intégrations par parties suc-
cessives.
Pour tout n ∈ N, soit P(n) : G(x) =

n∑
k=0

(−1)kk!xk+(−1)n+1(n+1)! e1/x

x

∫ x

0
tn e−1/t dt.

On vient de montrer que P(0) est vraie.
On suppose P(n) vraie.∫ x

0
tn e−1/t dt =

∫ x

0
tn+2 e−1/t

t2
dt

= xn+2 e−1/x − (n+ 2)
∫ x

0
tn+1 e−1/t dt

On en déduit facilement que P(n+ 1) est vraie.
∀x > 0 ∀n ∈ N 0 ≤

∫ x

0
tn+1 e−1/t dt ≤

∫ x

0
xn+1 e−1/x dt = xn+2 e−1/x
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On en déduit :

∀n ∈ N G(x) =
n+1∑
k=0

(−1)kk!xk+O(xn+1) =
n∑
k=0

(−1)kk!xk+O(xn+1) =
n∑
k=0

(−1)kk!xk+

o(xn)
G a des développements limités de tous en ordre en 0 mais cela ne permet pas d’af-
firmer que G est de classe C∞.
On peut quand même dire que G se prolonge par continuité en 0 avec G(0) = 1 et
que G est alors dérivable avec G′(0) = −1.
G est une solution de (1) : 02G′(0) + (0 + 1)G(0) = 1.
C’est la seule. En effet, si H en est une autre, G −H est solution de l’équation ho-
mogène associée et G−H est nulle en 0.
La résolution de l’ESSM a déjà été faite :

∃C ∈ R tq ∀x > 0 G(x)−H(x) = C
e1/x

x
En faisant tendre x vers 0, on obtient C = 0. G et H coïncident sur R∗+.
Comme elles sont continues sur R+, elles sont égales.

Pour tout n ∈ N, soit P(n) : G(n) possède un développement limité à tout ordre.
On vient de montrer que P(0) est vraie.
On suppose P(k) vraie pour tout k compris entre 0 et n avec n ∈ N.
∀x > 0 G′(x) = −x−2G(x)− x−1G(x)− x−2

On dérive n fois :

∀x > 0 G(n+1)(x) = −
n∑
k=0

(
n− 1
k

)
(−2)(−3) . . . (−2− k + 1)x−2−kG(n−k)(x)

−
n∑
k=0

(
n− 1
k

)
(−1)(−2) . . . (−1− k + 1)x−2−kG(n−k)(x)

−(−2) . . . (−2− (n− 1))x−2−n

et en multipliant par xn+1 :

∀x > 0 xn+2G(n+1)(x) = −
n∑
k=0

(−1)k(k + 1)!xn−kG(n−k)(x)

−
n∑
k=0

(−1)kk!xn−kG(n−k)(x)− (−1)n(n+ 1)!

Pour tout k compris entre 0 et n, n− k est compris entre 0 et n et G(n−k) possède un
développement limité à tout ordre.
On en déduit que xn+2G(n+1)(x) a un développement limité à tout ordre.

Mais au vu des hypothèses de récurrence, G(n) a une limite en 0 donc
∫ 1

0
G(n+1)(t) dt

converge. On en déduit que le terme de plus bas degré du développement de xn+2G(n+1)(x)
est de degré supérieur ou égal à n + 2 et G(n+1) a bien un développement limité à
tout ordre.
On en déduit que P(n+ 1) est vraie puis que P(n) est vraie pour tout n.
Il en résulte alors que toutes les dérivées de G ont une limite finie en 0.
Par conséquent, G est de classe C∞.
Par Taylor-Young et unicité du DL, on a bien :
∀n ∈ N G(n)(0) = (−1)n (n!)2
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• Si la série de Taylor de f a un rayon de convergence R > 0, il est possible que pour tout

x ∈ (I \ {0})∩]−R;R[, f(x) 6=
+∞∑
n=0

f (n)(0)
n! xn.

Exemple

Soit f


R→ R
x 7→ e−1/x2 si x 6= 0
0 7→ 0

.

f est de classe C∞ sur R et :
∀n ∈ N f (n)(0) = 0
Le rayon de convergence de la série de Taylor de f est +∞ mais :

∀x ∈ R∗ f(x) 6= 0 =
+∞∑
n=0

f (n)(0)
n! xn

Démonstration
Les théorèmes généraux assurent que f est C∞ sur R∗.
Un examen des premières dérivées suggère l’hypothèse de récurrence :
P(n) : ∃Pn ∈ R[X] tq ∀x ∈ R∗ f (n)(x) = Pn

(1
x

)
e−1/x2 .

P(0) est vraie avec P0 = 1.
On suppose P(n) vraie.

∀x ∈ R∗ f (n+1)(x) = − 1
x2P

′
n

(1
x

)
e−1/x2 + Pn

(1
x

) 2
x3 e−1/x2

=
(
− 1
x2P

′
n

(1
x

)
+ 2
x3Pn

(1
x

))
e−1/x2

= Pn+1

(1
x

)
e−1/x2

avec Pn+1(X) = 2X3Pn(X)−X2P ′n(X)
Donc :
∀n ∈ N ∃Pn ∈ R[X] tq ∀x ∈ R∗ f (n)(x) = Pn

(1
x

)
e−1/x2 .

Il est notoire que :
∀α ∈ R tα e−t −−−−→

t→+∞
0

∀k ∈ N ∀x ∈ R∗
∣∣∣∣ 1
xk

e−1/x2
∣∣∣∣ = 1
|x|k

e−1/x2 =
( 1
x2

)k/2
e−1/x2

1
x2 −−−→x→0

x 6=0
+∞ donc :

∀k ∈ N
1
xk

e−1/x2 −−−→
x→0
x 6=0

0

Donc :
∀P ∈ R[X] P

(1
x

)
e−1/x2 −−−→

x→0
x 6=0

0

Donc :
∀n ∈ N f (n)(x) −−−→

x→0
x 6=0

0

f(x) = e−1/x2 −−−→
x→0
x 6=0

0
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Donc f est continue sur R.
Pour tout n ∈ N∗, soit P(n) : f est n fois dérivable en 0 et f (n)(0) = 0.
f(x)− f(0)

x− 0 = 1
x

e−1/x2 −−−→
x→0
x 6=0

0

Donc P(1) est vraie.
On suppose P(n) vraie.
f (n)(x)− f (n)(0)

x− 0 = 1
x
Pn

(1
x

)
e−1/x2 −−−→

x→0
x 6=0

0

Donc P(n+ 1) est vraie.
Donc f est indéfiniment dérivable sur R ie f est C∞ sur R avec :
∀n ∈ N f (n)(0) = 0
• Si la série de Taylor de f a un rayon de convergence R > 0, il est possible qu’on ait

f(x) =
+∞∑
n=0

f (n)(0)
n! xn pour tout x ∈ I∩] − r; r[ avec 0 < r < R mais pas pour tout

x ∈ I∩]−R;R[.

3.3 Utilisation des formules de Taylor

3.3.1 Formule de Taylor-Young

La formule de Taylor-Young ne peut pas servir à montrer qu’une fonction de classe C∞ est
développable en série entière.

3.3.2 Inégalité de Taylor-Lagrange

Soit I un intervalle de R tel que 0 ne soit pas une extrémité de I.
Soit f : I → C de classe C∞.
On calcule pour tout n ∈ N f (n)(0).
On a :
∀x ∈ I ∀p ∈ N

∣∣∣∣∣f(x)−
p∑

n=0

f (n)(0)
n! xn

∣∣∣∣∣ ≤ |x|p+1

(p+ 1)! sup
θ∈[0;1]

∣∣∣f (p+1)(θx)
∣∣∣

On en déduit :
Si il existe r ∈]0; +∞] tel que :
− ]− r; r[⊂ I

− ∀x ∈]− r; r[ |x|
p+1

(p+ 1)! sup
θ∈[0;1]

∣∣∣f (p+1)(θx)
∣∣∣ −−−−→
p→+∞

0

alors f est développable en série entière (sur ]− r; r[).

Exemple
Soit z ∈ C.

Soit f
{
R→ C
t 7→ etz

.

D’après le cours de SUP, f est de classe C∞ sur R et :
∀t ∈ R ∀n ∈ N f (n)(t) = zn etz
En particulier :
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∀n ∈ N f (n)(0) = zn

∀t ∈ R ∀p ∈ N
∣∣∣∣∣f(t)−

p∑
n=0

f (n)(0)
n! tn

∣∣∣∣∣ ≤ |t|p+1

(p+ 1)! sup
θ∈[0;1]

∣∣∣zp+1 eθtz
∣∣∣

≤
(
|t|p+1

(p+ 1)! |z|
p+1 −−−−→

p→+∞
0(à t fixé)

)
.(

sup
θ∈[0;1]

eθt<e(z) indep de p
)

Donc :
∀t ∈ R

p∑
n=0

f (n)(0)
n! tn −−−−→

p→+∞
f(t)

Donc f est développable en série entière sur R et :

∀t ∈ R etz =
+∞∑
n=0

tnzn

n! (avec évidemment R = +∞)

On a en particulier :

∀z ∈ C ez =
+∞∑
n=0

zn

n!

∀t ∈ R et =
+∞∑
n=0

tn

n! (R = +∞)

En particulier : e =
+∞∑
n=0

1
n!

On peut déterminer de la même manière le développement en série entière des fonctions co-
sinus, sinus, cosinus hyperbolique ou sinus hyperbolique.
Les calculs sont laissés aux lecteurs en exercice.

Exemple :
Centrale 99
Soit f ∈ C∞(R,R) telle que :
∀n ∈ N ∀x ∈]− 2; 2[

∣∣∣f (n)(x)
∣∣∣ ≤ n!

2n
Montrer que f est développable en série entière sur ]− 2; 2[.

Correction
∀x ∈]− 2; 2[ ∀p ∈ N

∣∣∣∣∣f(x)−
p∑

n=0

f (n)(0)
n! xn

∣∣∣∣∣ ≤ |x|p+1

(p+ 1)! sup
θ∈[0;1]

∣∣∣f (p+1)(θx)
∣∣∣

θx ∈]− 2; 2[ donc
∣∣∣f (p+1)(θx)

∣∣∣ ≤ (p+ 1)!
2p+1 et :

∀x ∈]− 2; 2[ ∀p ∈ N
∣∣∣∣∣f(x)−

p∑
n=0

f (n)(0)
n! xn

∣∣∣∣∣ ≤ |x|p+1

(p+ 1)!
(p+ 1)!

2p+1 =
( |x|

2

)p+1
−−−−→
p→+∞

0 (à x fixé).

D’où :
∀x ∈]− 2; 2[

p∑
n=0

f (n)(0)
n! xn −−−−→

p→+∞
f(x).

Donc :

∀x ∈]− 2; 2[ f(x) =
+∞∑
n=0

f (n)(0)
n! xn (la série converge bien sûr).

Donc f est développable en série entière sur ]− 2; 2[ et R ≥ 2.
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3.3.3 Formule de Taylor avec reste intégral

Cette formule n’est pas exigible dans le programme de première année.
Elle figure explicitement au programme en seconde année dans le chapitre sur les séries entières.
Cette formule s’énonce ainsi :
Soit I un intervalle de R.
Soit n ∈ N.
Soit f : I → R de classe Cn+1.
Soit a et b deux éléments de I.
f(b) =

n∑
k=0

f (k)(a)
k! (b− a)k +

∫ b

a

(b− t)n

n! f (n+1)(t) dt

Cette formule se démontre par récurrence sur n.
La propriété est vraie au rang n = 0 :
On suppose ici f de classe C1.
n∑
k=0

f (k)(a)
k! (b− a)k +

∫ b

a

(b− t)n

n! f (n+1)(t) dt = f(a) +
∫ b

a
f ′(t) dt = f(t) car f est de classe C1.

On suppose la propriété vraie au rang n.
Soit f : I → R de classe Cn+1.
La propriété est vraie au rang n donc :

f(b) =
n∑
k=0

f (k)(a)
k! (b− a)k +

∫ b

a

(b− t)n

n! f (n+1)(t) dt

=
n∑
k=0

f (k)(a)
k! (b− a)k +

[
−(b− t)n+1

(n+ 1)! f (n+1)(t)
]b
a

−
∫ b

a

−(b− t)n+1

(n+ 1)! f (n+2)(t) dt

=
n+1∑
k=0

f (k)(a)
k! (b− a)k +

∫ b

a

(b− t)n+1

(n+ 1)! f
(n+2)(t) dt

et la formule est vraie au rang n+ 1.

Remarque
L’inégalité de Taylor-Lagrange se déduit de la formule de Taylor avec reste intégral :
Soit f : I → R de classe Cn+1.
Dans le cas a ≤ b :∣∣∣∣∣f(b)−

n∑
k=0

f (k)(a)
k! (b− a)k

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

(b− t)n

n! f (n+1)(t) dt
∣∣∣∣∣

≤
∫ b

a

(b− t)n

n!

∣∣∣f (n+1)(t)
∣∣∣ dt b− t ≥ 0

≤ sup
y∈[a;b]

∣∣∣f (n+1)(y)
∣∣∣ ∫ b

a

(b− t)n

n! dt

≤ sup
y∈[a;b]

∣∣∣f (n+1)(y)
∣∣∣ [−(b− t)n+1

(n+ 1)!

]b
a

≤ sup
y∈[a;b]

∣∣∣f (n+1)(y)
∣∣∣ (b− a)n+1

(n+ 1)! = |b− a|
n+1

(n+ 1)! sup
y∈[min (a,b);max (a,b)]

∣∣∣f (n+1)y)
∣∣∣
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Dans le cas a > b :∣∣∣∣∣f(b)−
n∑
k=0

f (k)(0)
k! (b− a)n

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

(b− t)n

n! f (n+1)(t) dt
∣∣∣∣∣ =

∣∣∣∣∫ a

b

(b− t)n

n! f (n+1)(t) dt
∣∣∣∣

≤
∫ a

b

(t− b)n

n!

∣∣∣f (n+1)(t)
∣∣∣ dt b− t ≤ 0

≤ sup
y∈[b;a]

∣∣∣f (p+1)(y)
∣∣∣ ∫ a

b

(t− b)n

n! dt

≤ sup
y∈[b;a]

∣∣∣f (p+1)(y)
∣∣∣ [(t− b)n+1

(n+ 1)!

]a
b

≤ sup
y∈[b;a]

∣∣∣f (p+1)(y)
∣∣∣ (a− b)n+1

(n+ 1)! = |b− a|
n+1

(n+ 1)! sup
y∈[min (a,b);max (a,b)]

∣∣∣f (n+1)(y)
∣∣∣

Si on revient au développement en série entière, on a la méthode suivante :
Soit I un intervalle de R tel que 0 ne soit pas une extrémité de I.
Soit f : I → C de classe C∞.
On calcule pour tout n ∈ N f (n)(0).
On a :
∀x ∈ I ∀p ∈ N f(x)−

p∑
n=0

f (n)(0)
n! xn =

∫ x

0

(x− t)p

p! f (p+1)(t) dt

f est développable en série entière⇔ ∃r ∈]0; +∞] tq


− ]− r; r[⊂ I

− ∀x ∈]− r; r[
∫ x

0

(x− t)p

p! f (p+1)(t) dt −−−−→
p→+∞

0

3.3.4 Exemple : Mines 2003

f(x) =
+∞∑
n=1

(−1)n

x+ n
, (x ∈]− 1; 1[)

1. Définition de la somme.
2. Montrer que f est continue.
3. Montrer que f est C∞.
4. Montrer que f est développable en série entière (et montrer que RCV = 1).

5. Montrer que : f(x) =
∫ 1

0

−tx

1 + t
dt

Correction
Il s’agit d’un exercice classique dont il existe de nombreuses versions. Je n’en ai gardé qu’une.

1. Soit x ∈]− 1; 1[ fixé.
• ∀n ∈ N∗ x+ n ≥ n− 1 ≥ 0
Donc

∑ (−1)n

x+ n
est alternée.

•
(∣∣∣∣(−1)n

x+ n

∣∣∣∣)
n≥1

=
( 1
n+ x

)
n≥1

est décroissante.

• (−1)n

x+ n
−−−−−→
n→+∞

0
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D’après le TSCSA,
∑ (−1)n

x+ n
converge.

Donc, si on note pour tout n ∈ N∗, fn


]− 1; 1[→ R

x 7→ (−1)n

n+ x

alors
∑

fn CVS sur ]− 1; 1[.

f est bien définie sur ]− 1; 1[.
2. • Pour tout n ∈ N∗, fn est continue sur ]− 1; 1[.
•
∑

fn CVU sur tout segment de ]− 1; 1[.

Comme
∑

fn CVS sur ]− 1; 1[, on peut définir Rp =
+∞∑

n=p+1
fn.

Soit [a; b] (−1 < a < b < 1) un segment de ]− 1; 1[.

∀n ∈ N ∀x ∈ [a; b] |Rn(x)| ≤ |fn+1(x)| d’après le TSCSA cf 1)

≤ 1
n+ 1 + x

≤ 1
n+ 1 + a

indépendant de x et −−−−−→
n→+∞

0

Donc (Rp) CVU vers 0 sur [a; b].
Donc (Rp) CVU vers 0 sur tout segment de ]− 1; 1[.
Donc

∑
fn CVU sur tout segment de ]− 1; 1[.

Donc f est continue sur ]− 1; 1[.
3. On calcule d’abord f (p)

n .
∀p ∈ N ∀n ∈ N ∀x ∈]− 1; 1[ f (p)

n (x) = (−1)n (−1)pp!
(x+ n)p+1

Pour tout p ∈ N, soit P(p) :
f est Cp sur ]− 1; 1[ et :

∀x ∈]− 1; 1[ f (p)(x) =
+∞∑
n=1

(−1)n+pp!
(x+ n)p+1

P(0) est vraie.

On suppose P(p) vraie.

Pour tout n ∈ N, soit gn


]− 1; 1[→ R

x 7→ (−1)n+pp!
(x+ n)p+1

.

• Pour tout n ∈ N∗, gn est C1 sur ]− 1; 1[.
•
∑

gn CVS sur ]− 1; 1[ (implicite dans P(p))
•
∑

g′n CVU sur tout segment de ]− 1; 1[.
Soit [a; b] (−1 < a < b < 1) un tel segment.

∀n ∈ N ∀x ∈ [a; b] |g′n(x)| = (p+ 1)!
(x+ n)p+2 ≤

(p+ 1)!
(a+ n)p+2 indépendant de x et terme

général d’une série convergente.
Donc

∑
g′n CVN sur tout segment de ]− 1; 1[.

Donc
∑

g′n CVU sur tout segment de ]− 1; 1[.

Donc f (p) est C1 ie f est Cp+1 et :

f (p+1) =
(
f (p)

)′
=

+∞∑
n=1

g′n et P(p+ 1) est vraie.
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Donc f est C∞ sur ]− 1; 1[ et

∀p ∈ N ∀x ∈]− 1; 1[ f (p)(x) = (−1)pp!
+∞∑
n=1

(−1)n

(n+ x)p+1

4. ∀p ∈ N ∀x ∈]− 1; 1[ f(x)−
p∑

n=0

f (n)(0)
n! xn =

∫ x

0

(x− t)p

p! f (p+1)(t) dt

Le cas x = 0 est clair.
Supposons x ∈]0; 1[.

∀p ∈ N
∣∣∣∣∣f(x)−

p∑
n=0

f (n)(0)
n! xn

∣∣∣∣∣ ≤
∫ x

0

(x− t)p

p!

∣∣∣f (p+1)(t)
∣∣∣ dt =

∫ x

0

(x− t)p

p!

∣∣∣∣∣
+∞∑
n=1

(−1)n+p+1(p+ 1)!
(t+ n)p+2

∣∣∣∣∣ dt

Donc :

∀p ∈ N
∣∣∣∣∣f(x)−

p∑
n=0

f (n)(0)
n! xn

∣∣∣∣∣ ≤
∫ x

0
(p+ 1)(x− t)p

∣∣∣∣∣
+∞∑
n=1

(−1)n

(t+ n)p+2

∣∣∣∣∣ dt

Pour tout t ∈ [0; 1[, la série
∑
n≥1

(−1)n

(t+ n)p+2 vérifie les hypothèses du TSCSA (facile à

vérifier) donc :

∀p ∈ N
∣∣∣∣∣f(x)−

p∑
n=0

f (n)(0)
n! xn

∣∣∣∣∣ ≤
∫ x

0
(p+ 1)(x− t)p 1

(t+ 1)p+2 dt

Comme x > 0, t > 0 donc :

∀p ∈ N
∣∣∣∣∣f(x)−

p∑
n=0

f (n)(0)
n! xn

∣∣∣∣∣ ≤
∫ x

0
(p+1)(x− t)p dt =

[
−(x− t)p+1

]x
0

= xp+1 −−−−→
p→+∞

0.

Supposons x ∈]− 1; 0[.

∀p ∈ N
∣∣∣∣∣f(x)−

p∑
n=0

f (n)(0)
n! xn

∣∣∣∣∣ ≤
∫ 0

x

(t− x)p

p!

∣∣∣f (p+1)(t)
∣∣∣ dt =

∫ x

0

(t− x)p

p!

∣∣∣∣∣
+∞∑
n=1

(−1)n+p+1(p+ 1)!
(t+ n)p+2

∣∣∣∣∣ dt

Donc :
Donc :

∀p ∈ N
∣∣∣∣∣f(x)−

p∑
n=0

f (n)(0)
n! xn

∣∣∣∣∣ ≤
∫ 0

x
(p+ 1)(t− x)p

∣∣∣∣∣
+∞∑
n=1

(−1)n

(t+ n)p+2

∣∣∣∣∣ dt

Pour tout t ∈] − 1; 0], la série
∑
n≥1

(−1)n

(t+ n)p+2 vérifie les hypothèses du TSCSA (facile à

vérifier) donc :

∀p ∈ N
∣∣∣∣∣f(x)−

p∑
n=0

f (n)(0)
n! xn

∣∣∣∣∣ ≤
∫ 0

x
(p+ 1)(t− x)p 1

(t+ 1)p+2 dt

≤ 1
(1 + x)2

∫ 0

x
(p+ 1)

(
t− x
1 + t

)p
dt

d
dt

(
t− x
1 + t

)
= x+ 1

(1 + t)2 > 0 donc :

∀p ∈ N
∣∣∣∣∣f(x)−

p∑
n=0

f (n)(0)
n! xn

∣∣∣∣∣ ≤ 1
(1 + x)2

∫ 0

x
(p+1)

(0− x
1 + 0

)p
dt = (p+ 1) |x|p+1

(1 + x)2 −−−−→
p→+∞

0
On a donc montré que f est DSE sur ]− 1; 1[ et que R ≥ 1.
Si R était strictement supérieur à 1, f aurait une limite finie en -1 mais :
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∀x ∈]− 1; 1[ f(x) = − 1
1 + x

+
+∞∑
n=2

(−1)n

x+ n
= − 1

1 + x
− f(x+ 1)

et on arrive à une absurdité en utilisant la continuité de f en 0.
5. On fixe x ∈]− 1; 1[.

∀t ∈]0; 1[ tx

1 + t
= tx

+∞∑
n=0

(−1)ntn =
+∞∑
n=0

(−1)ntn+x

A première vue, aucun des deux théorèmes du cours ne s’applique.
Soit N ∈ N.

∀t ∈]0; 1]
N∑
n=0

(−1)ntn+x = tx
N∑
n=0

(−1)ntn = tx
1− (−t)N+1

1 + t

Pour tout n ∈ N, x+ n > −1 donc t 7→ tn+x est intégrable sur ]0; 1].
D’où :
N∑
n=0

(−1)n
∫ 1

0
tn+x dt =

∫ 1

0

(
tx

1 + t
+ (−1)N t

N+1+x

1 + t

)
dt

Donc :
N∑
n=0

(−1)n

n+ 1 + x
=
∫ 1

0

tx

1 + t
dt+ (−1)N

∫ 1

0

tN+1+x

1 + t
dt (pas de problème)

Or :
0 ≤

∫ 1

0

tN+1+x

1 + t
dt ≤

∫ 1

0
tN+1+x dt = 1

N + 2 + x
−−−−−→
N→+∞

0
Donc :∫ 1

0

tx

1 + t
dt =

+∞∑
n=0

(−1)n

n+ 1 + x
=

+∞∑
n=1

(−1)n−1

n+ x

Finalement :
∀x ∈]− 1; 1[ f(x) = −

∫ 1

0

tx

1 + t
dt

3.4 Combinaisons linéaires de développements connus

∀x ∈ R cosx = eix + e−ix

2 = 1
2

(+∞∑
n=0

inxn

n! +
+∞∑
n=0

(−i)nxn

n!

)
( cf la fonction ez)

= 1
2

+∞∑
n=0

in (1 + (−1)n) x
n

n! = 1
2

+∞∑
p=0

i2p.2. x
2p

(2p)!

=
+∞∑
p=0

(−1)p x
2p

(2p)!

On raisonne de même pour sin.

∀x ∈ R cosx =
+∞∑
p=0

(−1)p x
2p

(2p)! (R = +∞)

∀x ∈ R sin x =
+∞∑
p=0

(−1)p x2p+1

(2p+ 1)! (R = +∞)
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On démontre de même :

∀x ∈ R cosh x =
+∞∑
p=0

x2p

(2p)! (R = +∞)

∀x ∈ R sinh x =
+∞∑
p=0

x2p+1

(2p+ 1)! (R = +∞)

3.5 Intégration et dérivation de développements connus

• Intégration
Soit I un intervalle de R tel que 0 ne soit pas une extrémité de I.
Soit f : I → C dérivable sur I.
On suppose que f ′ est développable en série entière ie : il existe r ∈]0; +∞] tel que
]− r; r[⊂ I et

∑
n≥0

anx
n une série entière de rayon de convergence R ≥ r tels que :

∀x ∈]− r; r[ f ′(x) =
+∞∑
n=0

anx
n

Alors :

∀x ∈]− r; r[ f(x) = f(0) +
+∞∑
n=0

an
xn+1

n+ 1
et f est développable en série entière sur ]− r; r[.

Exemples

— Soit f
{

]− 1; +∞[→ R
x 7→ ln (1 + x)

.

f est C∞ sur ]− 1; +∞[.

∀x ∈]− 1; 1[ f ′(x) = 1
1 + x

=
+∞∑
n=0

(−1)nxn (R = 1)

D’où :

∀x ∈]− 1; 1[ ln (1 + x) =
+∞∑
n=0

(−1)n x
n+1

n+ 1 =
+∞∑
n=1

(−1)n−1x
n

n
(R = 1)

On sait que la série
∑
n≥1

(−1)n 1n

n
converge donc aussi la série

∑
n≥1

(−1)n−1 1n

n
.

Il est alors tentant de prendre x = 1 dans la formule précédente et d’écrire :

ln 2 =
+∞∑
n=1

(−1)n−1

n
= 1− 1

2 + 1
3 −

1
4 + . . .

C’est légitime mais il faut le justifier rigoureusement.

Pour tout n ∈ N∗, soit fn


[0; 1]→ R

x 7→ (−1)n−1xn

n

.

— Pour tout n ∈ N∗, fn est continue sur [0; 1].
— La série de fonctions

∑
fn converge uniformément sur [0; 1].

Par propriété des séries entières, on sait que la série de nombres
∑

fn(x) converge
pour tout x ∈ [0; 1[ et comme remarqué ci-dessus, elle converge pour x = 1.
La série de fonctions

∑
fn est donc simplement convergente sur [0; 1], ce qui
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permet de définir la suite de ses restes.
Montrer que la série de fonctions

∑
fn converge uniformément sur [0; 1] revient

à montrer que la suite de fonctions (Rn) converge uniformément vers la fonction
nulle sur [0; 1].
Pour x positif fixé, la série de terme général fn(x) est alternée.
A x ∈ [0; 1] fixé, la suite (|Rn(x)|)n∈N∗ =

(
xn

n

)
n∈N∗

est décroissante et converge
vers 0. On en déduit :

∀n ∈ N∗ ∀x ∈ [0; 1] |Rn(x)| =
∣∣∣∣∣
+∞∑
n=1

(−1)n−1xn

n

∣∣∣∣∣ ≤ xn

n
≤ 1
n

indépendant de x et

−−−−−→
n→+∞

0
Donc la suite de fonctions (Rn) converge uniformément vers 0 sur [0; 1].

La fonction
+∞∑
n=1

fn


[0; 1]→ R

x 7→
+∞∑
n=1

(−1)n−1xn

n

est donc continue sur [0; 1] et :

+∞∑
n=1

(−1)n−1

n
= lim

x→1
x<1

(+∞∑
n=1

(−1)n−1xn

n

)
= lim

x→1
x<1

(ln (1 + x))

= ln (2)

Finalement :

∀x ∈]− 1; 1] ln (1 + x) =
+∞∑
n=1

(−1)n−1x
n

n
(R = 1)

qu’on peut également écrire :

∀x ∈ [−1; 1[
+∞∑
n=1

xn

n
= − ln (1− x)

— arctan est C∞ sur R et :
∀x ∈ R arctan′ (x) = 1

1 + x2
Donc :

∀x ∈]− 1; 1[ arctan′(x) =
+∞∑
n=0

(−1)nx2n (R = 1)

D’où :

∀x ∈]− 1; 1[ arctan x =
+∞∑
n=0

(−1)n x
2n+1

2n+ 1 (R = 1)

La série
∑
n≥0

(−1)n

2n+ 1 vérifie les hypothèses du théorème spécial sur la convergence des

séries alternées :
— La série

∑
n≥0

(−1)n

2n+ 1 est alternée.

— La suite
(∣∣∣∣ (−1)n

2n+ 1

∣∣∣∣)
n∈N

=
( 1

2n+ 1

)
n∈N

est décroissante.

— (−1)n

2n+ 1 −−−−−→n→+∞
0
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Donc la série
∑
n≥0

(−1)n

2n+ 1 ie
∑
n≥0

(−1)n 12n+1

2n+ 1 converge.

Comme pour la fonction précédente, on peut justifier :

∀x ∈ [0; 1]
+∞∑
n=0

(−1)n x
2n+1

2n+ 1 = arctan x

Finalement, compte tenu de la parité, on a :

∀x ∈ [−1; 1] arctan x =
+∞∑
n=0

(−1)n x
2n+1

2n+ 1 formule de Gregory (1638-1675)

• Dérivation
Soit I un intervalle de R tel que 0 ne soit pas une extrémité de I.
Soit f : I → C continue.
On suppose que f possède une primitive F développable en série entière :
il existe r ∈]0; +∞] tel que ]− r; r[⊂ I et

∑
n≥0

anx
n une série entière de rayon de conver-

gence R ≥ r tels que :

∀x ∈]− r; r[ F (x) =
+∞∑
n=0

anx
n

Alors :

∀x ∈]− r; r[ f(x) =
+∞∑
n=1

nanx
n−1 =

+∞∑
n=0

(n+ 1)an+1x
n

et f est développable en série entière sur ]− r; r[.

Exemple

Soit f


]− 1; 1[→ R

x 7→ 1
(1− x)2

.

f est la dérivée de F

]− 1; 1[→ R

x 7→ 1
1− x

.

∀x ∈]− 1; 1[ F (x) =
+∞∑
n=0

xn (R = 1)

Donc :

∀x ∈]− 1; 1[ f(x) =
+∞∑
n=1

nxn−1 =
+∞∑
n=0

(n+ 1)xn (R = 1)
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Plus généralement, on a :

∀p ≥ 2 ∀x ∈]− 1; 1[ 1
(1− x)p = F (p−1)(x)

(p− 1)!

=
+∞∑

n=p−1

n(n− 1) . . . (n− p+ 2)
(p− 1)! xn−p+1

=
+∞∑
n=0

(n+ 1) . . . (n+ p− 1)
(p− 1)! xn

=
+∞∑
n=0

Cp−1
n+p−1x

n (R = 1)

=
+∞∑
n=0

(
n+ p− 1
p− 1

)
xn (R = 1)

3.6 Produit de développements connus

∀x ∈]− 1; 1[ 1
(1− x)2 = 1

1− x.
1

1− x

=
(+∞∑
n=0

xn
)
.

(+∞∑
n=0

xn
)

avec RCV = 1 pour les 2 séries

=
+∞∑
n=0

 ∑
p+q=n

1.1

xn
=

+∞∑
n=0

Card
({

(p, q) ∈ N2 tq p+ q = n
})

xn

=
+∞∑
n=0

(n+ 1)xn et R ≥ 1

On a R = 1 car la série diverge pour x = 1 vu que (n+ 1)n∈N ne converge pas vers 0.
L’avantage de cette technique (dans le cadre du programme) est qu’elle s’applique au cas où
z ∈ C avec |z| < 1. On a donc :

∀z ∈ D(0; 1) 1
(1− z)2 =

+∞∑
n=0

(n+ 1)zn (R = 1)

On a en fait :

∀p ≥ 2 ∀z ∈ D(0; 1) 1
(1− z)p =

+∞∑
n=0

Cp−1
n+p−1z

n (R = 1)

Pour le démontrer (dans la cadre du programme) on utilise le produit pour prouver que


D(0; 1)→ C

z 7→ 1
(1− z)p

est développable en série entière sur D(0; 1) et on utilise 3.3.3 et 3.4.5 pour calculer les coeffi-
cients.
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3.7 Utilisation d’une équation différentielle

Soit I un intervalle de R tel que 0 ne soit pas une extrémité de I.
Soit f : I → C de classe C∞.
On suppose qu’on a trouvé un problème de Cauchy en 0 : (P) dont f est solution sur I.
On suppose avoir déterminé une série entière

∑
n≥0

anx
n de rayon de convergence R > 0 dont la

somme est solution sur ]−R;R[ de (P).
Si (P) possède une et une seule solution sur I∩]−R;R[ alors :

∀x ∈ I∩]−R;R[ f(x) =
+∞∑
n=0

anx
n

Remarque
Il est écrit dans le programme :
Les étudiants doivent savoir développer une fonction en série entière à l’aide d’une équation
différentielle linéaire.
L’unicité de la solution d’un problème de Cauchy adapté sera explicitement admise.

Je ne vois pas ce que cela signifie au juste.
Il a été vu en Sup le résultat suivant :
Soit I un intervalle de R et x0 ∈ I.
Soient a, b, c trois fonctions de I dans K continues.
On suppose que a ne s’annule pas sur I.

Alors pour y0 ∈ K, le problème de Cauchy
{
a(x)y′ + b(x)y + c(x) = 0
y(x0) = y0

possède une et une

seule solution définie sur I.

Il a également été vu en Sup :
Soit I un intervalle de R et x0 ∈ I.
Soient a, b, c trois nombres et d une fonction de I dans K continue.

Alors pour (y0, y
′
0) ∈ K2, le problème de Cauchy


ay′′ + by′ + cy + d(x) = 0
y(x0) = y0

y′(x0) = y′0

possède une et

une seule solution définie sur I.

Le résultat suivant, hors-programme, semble être celui qui est évoqué par le programme :
Soit I un intervalle de R et x0 ∈ I (en pratique on aura x0 = 0).
Soient a, b, c, d quatre fonctions de I dans K continues.
On suppose que a ne s’annule pas sur I.

Alors pour (y0, y
′
0) ∈ K2, le problème de Cauchy


a(x)y′′ + b(x)y′ + c(x)y + d(x) = 0
y(x0) = y0

y′(x0) = y′0

possède

une et une seule solution définie sur I.

Exemple

∀α ∈ R \ N ∀x ∈]− 1; 1[ (1 + x)α = 1 +
+∞∑
n=1

α(α− 1) . . . (α− n+ 1)
n! xn (R = 1)
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Démonstration

Soit f
{

]− 1; +∞[→ R
x 7→ (1 + x)α

.

Si α ∈ Z∗−, f est définie sur ]−∞;−1[ mais on ne peut pas espérer dépasser −1.
Si α ∈ N, f est une fonction polynômiale qu’on développe par la formule du binôme. Dans ce
cas, f est développable en série entière sur R.
f est C∞ sur ]− 1; +∞[ et :
∀x ∈]− 1; +∞[ f ′(x) = α(1 + x)α−1

Donc :
∀x ∈]− 1; +∞[ (1 + x)f ′(x) = α(1 + x)α = αf(x)
De plus f(0) = 1.
f est solution sur ]− 1; +∞[ du problème de Cauchy :

(P)
{

(1 + x)y′ − αy = 0
y(0) = 1

Il a été vu en Sup que (P) a une et une seule solution sur tout intervalle ne contenant pas −1.
Soit alors

∑
n≥0

anx
n une série entière de rayon de convergence R > 0 et S sa somme.

∀x ∈]−R;R[ S(x) =
+∞∑
n=0

anx
n

S′(x) =
+∞∑
n=1

nanx
n−1

S solution de (P) sur ]−R;R[

⇐⇒


a0 = 1

∀x ∈]−R;R[ (1 + x)
+∞∑
n=1

nanx
n−1 − α

+∞∑
n=0

anx
n = 0

⇐⇒


a0 = 1

∀x ∈]−R;R[
+∞∑
n=1

nanx
n−1 +

+∞∑
n=1
n=0

nanx
n − α

+∞∑
n=0

anx
n = 0

⇐⇒


a0 = 1

∀x ∈]−R;R[
+∞∑
n=0

((n+ 1)an+1 + (n− α)an)xn = 0

⇐⇒

a0 = 1
∀n ∈ N an+1 = α− n

n+ 1 an

⇐⇒


a0 = 1

∀n ∈ N∗ an = (α− n+ 1)(α− n+ 2) . . . α
n(n− 1) . . . 1 a0

⇐⇒

a0 = 1

∀n ∈ N∗ an = α(α− 1) . . . (α− n+ 1)
n!
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On détermine ensuite le rayon de convergence de 1 +
∑
n≥1

α(α− 1) . . . (α− n+ 1)
n! xn.

Soit r ∈ R∗+.

• ∀n ∈ N∗
∣∣∣∣α(α− 1) . . . (α− n+ 1)

n!

∣∣∣∣ rn > 0

•

∣∣∣∣α(α− 1) . . . (α− (n+ 1) + 1)
(n+ 1)!

∣∣∣∣ rn+1∣∣∣∣α(α− 1) . . . (α− n+ 1)
n!

∣∣∣∣ rn = |α− n|
n+ 1 r = n− α pour n >> 1

n+ 1 r −−−−−→
n→+∞

r.

On en déduit classiquement R = 1.

Donc S


]− 1; 1[→ R

x 7→ 1 +
+∞∑
n=1

α(α− 1) . . . (α− n+ 1)
n! xn

est solution sur ]− 1; 1[ de (P).

Donc f|]−1;1[ = S ie :

∀x ∈]− 1; 1[ (1 + x)α = 1 +
+∞∑
n=1

α(α− 1) . . . (α− n+ 1)
n! xn

Remarques
• La formule est en fait valable pour α ∈ N et x ∈ Rmais c’est alors une écriture compliquée

de la formule du binôme.
En effet, si α ∈ N, on a :
∀n > α

α(α− 1) . . . (α− n+ 1)
n! = 0

et
∀n ∈ [[0;α]] α(α− 1) . . . (α− n+ 1)

n! =
(
α

n

)
• Supposons α = −1

2

∀n ∈ N∗
α(α− 1) . . . (α− n+ 1)

n! = (−1/2)(−3/2) . . . (−(2n− 1)/2)
n! = (−1)n 1× 3× · · · × (2n− 1)

2nn!

= (−1)n 1× 3× · · · × (2n− 1)
2× 4× · · · × 2n = (−1)n (2n)!

(2nn!)2

= (−1)n (2n)!
22n(n!)2 = (−1)n

(
2n
n

)
22n égal 1 pour n = 0

∀x ∈]− 1; 1[ 1√
1 + x

=
+∞∑
n=0

(−1)n(2n)!
(2nn!)2 xn (R = 1)

On en déduit par exemple :

∀x ∈]− 1; 1[ 1√
1− x2

=
+∞∑
n=0

(2n)!
(2nn!)2x

2n (R = 1)

et :

∀x ∈]− 1; 1[ arcsin x =
+∞∑
n=0

(2n)!
(2nn!)2

x2n+1

2n+ 1 (R = 1)

(2n)!
(2nn!)2

1
2n+ 1 ∼

1
2
√
π

1
n3/2 .
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On peut montrer qu’il y a convergence normale sur [−1; 1] et obtenir :
π

2 =
+∞∑
n=0

(2n)!
(2nn!)2

1
2n+ 1

4 Quelques exemples d’utilisation des séries entières
• Mines 2019

u0 = 1

un+1 =
n∑
k=0

ukun−k

On donne la série entière
∑

unx
n.

Calcul de un, pour tout n ∈ N.

Correction
La suite existe et est unique.
— Analyse

Formellement, on pose S(x) =
+∞∑
n=0

unx
n.

S(x)2 =
+∞∑
n=0

(
n∑
k=0

ukun−k

)
xn =

+∞∑
n=0

un+1x
n

xS(x)2 =
+∞∑
n=0

un+1x
n+1 =

+∞∑
n=1

unx
n = S(x)− u0 = S(x)− 1

xS(x)2 − S(x) + 1 = 0
∆ = 1− 4x
S(x) = 1±

√
1− 4x

2x
— Synthèse

Soit f


]− 1/4; 1/4[→ R

x 7→ 1−
√

1− 4x
2x si x 6= 0

0 7→ 1

∀t ∈]− 1; 1[
√

1 + t = 1 +
+∞∑
n=1

(1/2)(−1/2) . . . (1/2− n+ 1)
n! tn R = 1

= 1 + t

2 +
+∞∑
n=2

(1/2)(1/2) . . . (2n− 3)/2
n! (−1)n−1tn

= 1 + t

2 +
+∞∑
n=2

(−1)n−1 1× 3× · · · × (2n− 3)
2nn! tn

= 1 + t

2 +
+∞∑
n=2

(−1)n−1 (2n− 2)!
22n−1n!(n− 1)! t

n

= 1 +
+∞∑
n=1

(−1)n−1 (2n− 2)!
22n−1n!(n− 1)! t

n
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∀x ∈
]
−1

4; 1
4

[ √
1− 4x = 1+

+∞∑
n=1

(−1)n−1 (2n− 2)!
22n−1n!(n− 1)!(−1)n4nxn = 1−2

+∞∑
n=1

(2n− 2)!
n!(n− 1)!x

n

(R = 1/4)

∀x ∈
]
−1

4; 1
4

[
1−
√

1− 4x = 2
+∞∑
n=1

(2n− 2)!
n!(n− 1)!x

n (R = 1/4)

∀x ∈
]
−1

4; 1
4

[
\ {0} f(x) =

+∞∑
n=1

(2n− 2)!
n!(n− 1)!x

n−1 =
+∞∑
n=0

(2n)!
n!(n+ 1)!x

n (R = 1/4)

La dernière formule est valable pour x = 0 donc :

∀x ∈
]
−1

4; 1
4

[
f(x) =

+∞∑
n=0

(2n)!
n!(n+ 1)!x

n(R = 1/4)

On note an = (2n)!
n!(n+ 1)! .

∀x ∈
]
−1

4; 1
4

[
\ {0} xf(x)2 − f(x) + 1 = 0 : on a trouvé f(x) en résolvant cette

équation.
D’où, par continuité (f est DSE donc continue) :
∀x ∈

]
−1

4; 1
4

[
xf(x)2 − f(x) + 1 = 0

∀x ∈
]
−1

4; 1
4

[
x

(+∞∑
n=0

anx
n

)(+∞∑
n=0

anx
n

)
+ 1−

(
1 +

+∞∑
n=1

anx
n

)
= 0

x
+∞∑
n=0

(
n∑
k=0

akan−k

)
xn −

+∞∑
n=1

anx
n = 0

x
+∞∑
n=0

(
n∑
k=0

akan−k

)
xn − x

+∞∑
n=1

anx
n−1 = 0

x

(+∞∑
n=0

(
n∑
k=0

akan−k

)
xn −

+∞∑
n=0

an+1x
n

)
= 0

Donc :

∀x ∈
]
−1

4; 1
4

[
\{0}

+∞∑
n=0

(
n∑
k=0

akan−k

)
xn−

+∞∑
n=0

an+1x
n = 0, valable aussi en x = 0 par

continuité.
Donc :
∀n ∈ N an+1 =

n∑
k=0

akan−k.

Comme de plus a0 = 1, on a par une récurrence triviale :
∀n ∈ N un = an
Finalement :

∀n ∈ N un = (2n)!
n!(n+ 1)!

• Mines 2013
Soit, pour n ∈ N, an le cardinal de l’ensemble des couples (p, q) ∈ N2 tels que n = 3p+2q.

Soit f : x 7→
+∞∑
n=0

anx
n.

Montrer que le rayon de convergence de f est strictement positif.
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Donner une expression simple de f .

Correction
Si n = 2q + 3p avec p, q ≥ 0 alors p ≤ 3p = n− 2q ≤ n.
Donc 0 ≤ an ≤ n+ 1.
Donc R ≥ RCV

(∑
(n+ 1)zn

)
= 1.

Soit g


]− 1; 1[→ R

x 7→
+∞∑
n=0

x3n = 1
1− x3

∀x ∈]− 1; 1[ g(x) =
+∞∑
n=0

αnx
n avec α3p = 1 et α3p+1 = α3p+2 = 0

Soit h


]− 1; 1[→ R

x 7→
+∞∑
n=0

x2n = 1
1− x2

∀x ∈]− 1; 1[ h(x) =
+∞∑
n=0

βnx
n avec β2p = 1 et β2p+1 = 0

∀x ∈]− 1; 1[ g(x)h(x) =
+∞∑
n=0

αnx
n ×

+∞∑
n=0

βnx
n =

+∞∑
n=0

γnx
n

∀n ∈ N γn =
∑

k+l=n
αkβl

=
∑

3p+l=n
α3pβl car αk = 0 si k n’est pas un multiple de 3

=
∑

3p+2q=n
α3pβ2q car βl = 0 si l n’est pas un multiple de 2

=
∑

3p+2q=n
1 = an

Donc :
∀x ∈]− 1; 1[ f(x) = 1

1− x2
1

1− x3
f(x) −−−→

x→1
+∞ donc R ≤ 1 puis R = 1.

La décomposition en éléments simples n’étant pas au programme, on ne peut pas aller
plus loin.

1
(1−X2)(1−X3) = 1

(1−X)2(1 +X)(j −X)(j2 −X)

= a

1−X + b

(1−X)2 + c

1 +X
+ d

j −X
+ e

j2 −X

On multiplie par j2 −X et on évalue en j2 :

e = 1
(1− j)2(1 + j)(j − j2) = −j

3(1− j)3

=
−1

1− 3j + 3j2 − 1 = −1
3(−i

√
3)

= −i
3
√

3
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On en déduit d = i

3
√

3
On multiplie par X + 1 et on évalue en −1 :
c = 1

4(1− 1 + 1) = 1
4 ((j −X)(j2 −X) = X2 +X + 1)

On multiplie par (X − 1)2 et on évalue en 1 :
b = 1

6
On multiplie par X et on fait tendre X vers +∞ :
−a+ c− (d+ e) = 0 donc a = 1

4

∀x ∈]− 1; 1[
+∞∑
n=0

anx
n

= 1
4(1− x) + 1

6(1− x)2 + 1
4(1 + x) + i

√
3

9

( 1
j − x

− 1
j2 − x

)

= 1
4

+∞∑
n=0

xn + 1
6

+∞∑
n=0

(n+ 1)xn + 1
4

+∞∑
n=0

(−1)nxn + i
√

3
9

+∞∑
n=0

( 1
jn+1 −

1
j2(n+1)

)
xn

= 1
4

+∞∑
n=0

xn + 1
6

+∞∑
n=0

(n+ 1)xn + 1
4

+∞∑
n=0

(−1)nxn + i
√

3
9

+∞∑
n=0

(
e−i(n+1)2π/3 − ei(n+1)2π/3

)
xn

On en déduit :
∀n ∈ N an = n+ 1

6 + 1
4 + (−1)n

4 − 2
√

3
9 sin

(2(n+ 1)π
3

)
• X
Soit Hn,k le nombre de permutations d’un ensemble à n éléments ayant k points fixes.
On pose hk = Hk,0.

Prouver : Hn,k =
(
n

k

)
hn−k.

Calculer
n∑
k=0

(
n

k

)
hk.

On considère la série entière D(z) =
∑
k≥0

hkz
k

k! .

Minorer la rayon de convergence R de cette série entière.
Calculer D(z) pour |z| < R (Indication : considérer ezD(z)).
En déduire que hk est la partie entière de k!

e + 1
2.

Correction
Soit E un ensemble ayant n éléments.
Pour fabriquer une permutation de E ayant exactement k points fixes on choisit ces k

points :
(
n

k

)
choix possibles, puis on choisit une permutation sans point fixe des n − k

éléments restant de E.
D’où :
∀n ∈ N ∀k ∈ {0; . . . ;n} Hn,k =

(
n

k

)
Hn−k,0 =

(
n

k

)
hn−k
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∀n ∈ N
n∑
k=0

(
n

k

)
hk =

n∑
k=0

(
n

n− k

)
hn−k =

n∑
k=0

(
n

k

)
hn−k =

n∑
k=0

Hn,k = n!

∀k ∈ N hk = Hk,0 ≤ k!

Donc R ≥ RCV

∑
k≥0

zk

 = 1.

∀z ∈ C tq |z| < R ezD(z) =
(+∞∑
n=0

zn

n!

)
.

(+∞∑
n=0

hnz
n

n!

)

=
+∞∑
n=0

(
n∑
k=0

1
k! .

hn−k
(n− k)!

)
zn

RCV
∑
n≥0

zn

n!

 = +∞


=

+∞∑
n=0

1
n!

(
n∑
k=0

(
n

k

)
hn−k

)
zn

=
+∞∑
n=0

zn = 1
1− z

Si on avait R > 1, on aboutirait à une contradiction donc R = 1 et :

∀z ∈ C tq |z| < 1 D(z) = e−z

1− z

∀z ∈ C tq |z| < 1 D(z) =
(+∞∑
k=0

(−1)kzk

k!

)
.

(+∞∑
k=0

zk
)

=
+∞∑
k=0

(
k∑
l=0

(−1)l

l!

)
zk

D’où :

∀k ∈ N hk =
k∑
l=0

(−1)lk!
l! = k!

k∑
l=0

(−1)l

l!

∀k ∈ N
k!
e + 1

2 = 1
2 + k!

+∞∑
l=0

(−1)l

l! =
k∑
l=0

(−1)lk!
l! + 1

2 + k!
+∞∑
l=k+1

(−1)l

l!

Soit k ≥ 2.
On a :
— La série

∑
l≥0

(−1)l

l! est alternée.

— La suite
(∣∣∣∣∣(−1)l

l!

∣∣∣∣∣
)
l∈N

=
( 1
l!

)
l∈N

est décroissante.

— (−1)l

l! −−−−→
l→+∞

0
Donc, d’après le théorème des séries alternées :

k!

∣∣∣∣∣∣
+∞∑
l=k+1

(−1)l

l!

∣∣∣∣∣∣ ≤ k!
(k + 1)! = 1

k + 1 <
1
2

Donc :
1
2 + k!

+∞∑
l=k+1

(−1)l

l! ∈]0; 1[

De plus :
∀l ∈ {0; . . . ; k} k!

l! ∈ N
Donc :
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k∑
l=0

(−1)lk!
l! ∈ Z

D’où :

E

(
k!
e + 1

2

)
=

k∑
l=0

(−1)lk!
l! = hk

De plus, en revenant à la définition h1 = 0 et h0 = 1.
E

(0!
e + 1

2

)
= 0 et E

(1!
e + 1

2

)
= 0 donc :

∀k ∈ N∗ hk = E

(
k!
e + 1

2

)
Variante : Mines 2019
On note N(n, p) le nombre de permutations de [[1;n]] ayant exactement p points fixes.

On note D(n) = N(n, 0) (le nombre de dérangements de [[1;n]]) et f : x 7→
+∞∑
n=0

D(n)
n! xn.

1. Relation entre N(n, p) et D(n− p).
2. Montrer que f est définie sur ]− 1; 1[ et calculer f(x).
3. Calculer D(n).
4. Calculer N(n, p).

5 Exercices d’application directe du cours
Exercice 1 (Mines 2011)

Déterminer le rayon de convergence de la série entière de terme général x
n

nn
.

Exercice 2 (Mines 2011)

Déterminer le rayon de convergence de la série entière de terme général sinhn
n

xn.

Exercice 3 (Centrale 2019)

1. Soit (an)n∈N une suite bornée.
Montrer que le rayon de convergence de la série entière

∑
anx

n est supérieur ou égal à
1.

2. Soit (an)n∈N une suite de réels positifs telle que la série
∑

an converge.

Montrer que lim
x→1
x<1

+∞∑
n=0

anx
n =

+∞∑
n=0

an.
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