ALGEBRE LINEAIRE
TD
20235-2026
Chapitre 6
Correction

941

Exercice 1 (Mines 2011)

R” x R" - R
(X, Y) 1<.Z i+j

B est-il un produit scalaire sur R™?

Correction
e B est symétrique :

V(X,Y)eR" xR" B(X,Y) = Z Tilli = Z yj - par commutation des réels.

1<i,5<n +‘7 1<z_7<n
V(X,Y)eR" xR" B(X,Y) Z ity par changement d’indices.
1<i,5<n ‘7 ¢
Donc :
V(X,Y)eR" xR" B(X,Y) =B(Y, X)
e B est linéaire & droite :
Soit X, Y, Z € R" et A\, u € R.
BOXAY +p7) = 3 DHAWEIG) s S, T
1<i,j<n vty 1<i,j<n ¥ 7 1<ij<n +J

e B est linéaire a gauche :
découle de la linéarité a droite et de la symétrie.
e Soit X € R".

B(X,X) = Y ff;— S /t’ﬂ Lat

1<i,j<n 1<ij<n

Lfn ) )
= / Zmitlfl/zxzxjtﬂfm dt
0 \i=1 j=1

1/n 2
= / <Z it =Y 2) dt
0 \i=1

1
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La fonction ¢ zn:miti_l/ 2 est continue sur [0;1] (Pintégrale n’est pas impropre) donc :
BX.X)>0ct:

B(X,X) =0<«=Vte[0;1] zn:xiti_lﬂ =0

Donc si B(i(, X)=0,en mulzt:ill)liant par \/t, on a :

Vi€ [0;1] Y @i’ =0

i=1
On a un polynoéme avec une infinité de racines donc c’est le polynéme nul. Tous ses
coefficients sont donc nuls ie X = 0.

B bien un produit scalaire sur R™.
Exercice 2

Soient £ un ev euclidien et Fq, Fs 2 sev de E.
Montrer que (Ey + E2)*t = Ei- N Ey et (E1 N Fy)* = Ef + Ey.

Correction

1. (By+E2)* =E{f NE;.

By C E1 + By donc (Ey + E2)* C Ef-.
Ey C Ey + E3 donc (E + E'z)L C EQL
Dot (Ey + E2)* C Ef N E5.
Réciproquement soit z € Ff- N Ey .
Soit y € Fq1 + Es.

I(y1,92) € E1 x Ex tqy = y1 + 12
(@ly1 +y2) = (z[y1) + (#[y2) =0+ 0=0
Donc = € (Ey + Ep)*

D'ou : (Ey + Fo)* = Ef NEy
Remarque

On n’a pas eu besoin de dim F < +o0.

2. ExNEp = (BEy)" N (By)" = (B +By)*
Dot : (Ey N Ey)t = (Bf + B3 )t = Ef + Ey
En dimension infinie cela peut étre faux quoiqu’on ait toujours
Ei + Ef C (B1NEy)t
En effet By N FEy C By = Ef C (E1N Ey)*...

Exercice 3 (Centrale 2015, maths 1)

Soit E un espace euclidien de dimension n > 2 et a et b deux vecteurs unitaires orthogonaux de
E.
Pour x dans F, on pose u(z) = (alz)b — (b|z)a.
1. Montrer que v est un endomorphisme de F.
2. Trouver le noyau de u et son image.
3. u est-il diagonalisable 7
Correction

1. Ne présente pas de difficulté.
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2. (a,b) étant une famille ON de E, (a,b) est libre. Donc :
u(z) =0 <= (a|x) (blz) =0
ker(u) = Vect(a, b)* est de dimension n — 2.
On en déduit que 'image de u est de dimension 2. Mais elle est incluse dans Vect(a, b)
donc Im (u) = Vect(a, b).

3. On peut regarder si u est symétrique.
Un calcul simple donne :

V(w,y) € B (u(@)ly) = (alz)(bly) - (blz)(aly)
(zlu(y)) = (blx)(aly) — (alz)(bly)

u n’est pas symétrique (mais antisymétrique).

On déduit du calcul précédent :

Vz € E (u(z)|r) =0 (la premiére ligne du calcul suffit)

Soit A une valeur propre de u et x un vecteur propre associé.
0 = (u(x)|z) = (Aafa) = Az

On en déduit A = 0, si A est valeur propre.

ker(u) = Vect(a,b)* est de dimension n — 2 donc :

Sin =2, un’apas de valeur propre.

Sin > 2, ua une et une seule valeur propre : 0.

Dans les deux cas, u n’est pas diagonalisable.

On peut également compléter (a,b) en une BON B de E. La matrice de u dans B est :
R O 0 -1
<0 0) avec R = (1 0 )
Exercice 4 (CCP 2019)

Soit E un espace préhilbertien réel.
Soit (z1,...,xp) une famille de vecteurs unitaires telle que :
(i, 5) € [Lipl* i # = |z + 2l = V3

1. Calculer (x;|z;).

2. Montrer que la famille (z1,...,z),) est libre.

Correction

1. Sii=j, (ziz;) = 1.

Sii#j:

3= [lzi + 2517 = llwall + [l + 2(wilay) = 2+ 2(wila;) et (wilay) = %
2. Soit (a1,...,ap) € RP tq iaimi =0.

On fait le produit Scalairé:zivec T

Vi € [1;p] Xp:aj(xih:j) =0

j=1
Ce qui donne avec les valeurs des produits scalaires de I’énoncé :
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n
1
Vi € [1;p] aH—ZiW =0
j=1
J#i
Ce qui peut aussi s’écrire :

Vi € Hl;p]] ai—l—Zaj =0

j=1
On ajoute toutes les lignes :

(n—}—l)Zaj:O
j=1

n
On en déduit Z a; puis :
j=1
Vi e [1;p] a; =0
La famille (z1,...,z;,) est donc libre.

Exercice 5

Soient E un ev euclidien de dimension n € N* et B = (eq,...,e,) une BON de E.
n

SoitH:{:E:inei6thx1+---+$n:0}.
=1

Donner une BOZN de H.

Correction
1 1
1 1 ! 1
—1 _9 1
Onprend V; = | 0 | 15 = o |:Vs= =3, Ve = .
: 0
0 : z ~(n—1)
0

OI] norme alors ces vecteurs :
IVill® =k + k2 = k(k + 1)
k

R/~

Exercice 6 (Mines 2022)

On se place dans R* muni de sa structure euclidienne canonique.

Soit F = {(z,y,2,t) ER*tqx —y+ 2z —t = 0}.
1. Déterminer la matrice dans la base canonique de la projection orthogonale sur F'.
2.7

Correction
1. De nombreuses méthodes sont possibles :

e F est 'orthogonal du vecteur v = (1,—1,1, —1).

p est donc défini par :

v v (v]x)
VmER”p(m):x—<|x>:x— v
ol =/ vl lo]?

On en déduit pour chaque vecteur e; de la base canonique :
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2.

(1! 1),

plei) = ei— g —v=ei+
La matrice de p dans la base canonique est donc :

-1 1 -1 1 3 1 -1 1

171 -1 1 -1 1171 3 1 -1

P=L+yl .y 1 1 1 |Tal-1 1 3 1

1 -1 1 -1 1 -1 1 3

¢ Deuxieme méthode
Soit x = (z,y, z,t) € R%.
p(x) est caractérisé par p(z) € F et p(x) —x L F.
On en déduit :
INeRtq p(z) =+ A(1,-1,1,-1).
Donc p(z) = (x + Ny — A\, z+ N\t — A).
p(z) € F donc :
T+A—(yY—AN)+(=z+AN)—-(t—XN)=0

-1
Onendéduit)\zj(a}—y—kz—t) et :

()_<3 +1 1+1t1 3+1 1 1+1 +3 +1t1 1+1 —|—3t)
PROO=\g" Ty~ x4y ATyt T TRy
1 1
1 3 1 -1
On en déduit la matrice cherchée : 1 1 3 1
1 3

Exercice 7 (X 2019)

Soit M € M,, ,(R) de rang p.

1. Montrer :

Vy € R" lxg € RP tq [|[Mzo — y|| = mg}? (|Mz —yl)
xe

ou ||.|| désigne la norme euclidienne canonique de R™.

2. Montrer que MT M est inversible.
En déduire une relation entre Im (M) et Ker (M7).

Correction

1. Soit ¢ la projection orthogonale sur Im (M) (endomorphisme de R™).
Soit y € R™.
Soit zp = q(y).
Vz € Im (M) ||z —y|| > ||z0 — y|| avec égalité si, et seulement si, z = z.
M représente dans les bases canoniques une application linéaire de RP dans R”.
Si on suppose que M est de rang p alors cette application est injective et :
dlaxg € RP tel que Mzg = zg.
Soit x € RP.
Mz € Im (M) donc :
Mz =yl = |lz0 —yl = | Mzo -y
De plus si [|[Mz — y|| = [[Mxzo — y|| = [|20 — y|| alors Mz = z.
Donc Mx = Mzq puis x = xg.

2. MTM est une matrice symétrique réelle & p lignes et p colonnes.

Soit z € Ker (MTM) (x € RP).
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|Mz|? = (Mz)" Mz = 2" MT Mz = 0 donc Mz = 0 puis = = 0.
On en déduit que M7 M est inversible.
C’est la méthode habituelle, peut-étre y a-t-il moyen d’utiliser ce qui précede.

Im (M) et Ker (M7) sont des sev de R".

Soit y € Im (M) : Jz € RP tq y = M.

Soit z € Ker (MT).

(ylz) = Mz)Tz=2TMT2=0

On en déduit que Im (M) L Ker (M7T).

Mais :

dim (Ker (M7T)) = n — rg(MT) = n — rg(M) = n — dim (Im (M)) donc Ker (M7T) et
Im (M) sont deux supplémentaires orthogonaux de R".

Exercice 8 (X 2015)

Soit P € My(R) telle que :
V(X,Y)eR?x R? XTPY = -YTPX
Montrer que P & GLg(R).

Correction

Vue sa taille P a au moins une valeur propre réelle \.
Soit X un vecteur propre (réel) associé.
Onprend Y =X et on a:

XTPX = -XTPX donc XTPX =0.

Mais XTPX = XT(AX) = M| X

D’ou A = 0.

0 est valeur propre de P donc P n’est pas inversible.

Exercice 9 (X 2021)

Soient E un espace euclidien de dimension n et (ey,...,e,) une famille de vecteurs de E telle
que :
2\ 2
Vo€ B |lal® = Y (eilo)
i=1

Montrer que (e, ...,e,) est une BON de E.

Correction
Soit x € Vect(el, . en)l.

HxH —Zel\x 202—0

i=1
Donc Vect(eq, .. ) = {0}.
i
Comme F est de dimension finie, Vect(eq,...,e,) = (Vect(el, . ,en)l) = {0}t =
En d’autres termes, la famille (e, ..., e,) est génératrice.

Au vu de son cardinal, c’est une base de FE.
Il reste & montrer que c’est une famille orthonormée.
Soit i € [1;n].
On prend = =¢; :
leill® = lleall* + 3 (eile;)? = llesl?
J#i
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Or e; # 0 car e; fait partie d’'une base donc [|e;]|* < 1.
Vect ((ej);-i) est de dimension n — 1 donc son orthogonal est de dimension 1 et il existe un
vecteur z non nul orthogonal a tous les e; pour j différent de 7.
On a : ||z]|* = (e;]z)? < ||es||* ||z||* par Cauchy-Schwarz
x est non nul donc ||e;]| > 1.
On a donc |le;|| = 1.
llesl|? = [les]|* + Z(ei|ej)2 donne alors :
J#i
> (eile;)* =0
J#
donc (e;lej) est nul pour j # i.
Exercice 10 (Mines 2022)

Soit £ un espace euclidien et f une forme linéaire sur E.
1. Montrer :
dla € E tqVz € E f(x) = (a|z)

2. Soit n € N.
Montrer :

314 € R, [X] tq VP € Ry[X] /0 " A()P(t) dt = P(0)

3. Montrer que le degré de A vaut n et que A(0) > 0.
Correction

1. Soit (ey,...,e,) une BON de E.

n
Soit a = Z arer un vecteur quelconque de F.
=l
f est linéaire donc :

(Ve € E f(z) = (alz)) < (Vi€ [L;n] f(ei) = (ales) = ai)

= a=Y flerer
k=1

2. Il suffit d’appliquer ce qui précede avec E = R, [X] et f : P+~ P(0), le produit scalaire
1
étant défini par : (P|Q) = / P(t)Q(t) dt
0

3. Supposons A de degré inférieur ou égal a n — 1.
P =XAeR,[X] donc :
1

/ tA(t)?dt =0

0
Mais la fonction ¢ +— tA(t)? est continue et positive donc :
vt € [0;1] tA(t)?2 =0
Le polynéme A a donc une infinité de racines. C’est le polynéme nul : c’est absurde, on
aurait :
VP e R,[X] P(0) =0
On a donc montré que A est de degré n.

1
A(0) = / A(t)2dt = || A2 > 0 car A est non nul.
0

7
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Exercice 11 (Mines 2022)

Soit £ un espace euclidien de dimension n € N*,
Soit B = (e, ..., €e,) une base orthonormée de E.

Soit (fi1,..., fn) une famille de vecteurs de E telle que :

Vk € [[1;77,]] Hek — ka < —=
Montrer que (f1,..., f,) est une base de E.

Que se passe-t-il si il y a égalité?

Correction
e Premiére méthode

Au vu du nombre de vecteurs, il suffit de montrer que la famille (fi,..., f,) est libre.

Pour tout k € [1;n], soit ox = fr — eg.

1

Soit (A1,...,An) €ER™ tq > Apfe =0
k=1

On a donc : Z)\k(ek +0;)=0
k=1

et : Z A€k = Z A
k=1

On en dedult

Z /\kek

=1
> A
k=1

Z [ Ak [0k ]|

>N
k=1

IN

IN

car (eq,...

IN

k=1

END PP
k=1

k=1

Y

Z Al —= f f Z Ak

en) base orthonormée de E

1 n n
\/EJ > 12¢ > |Ax|* par Cauchy-Schwarz

Donc toutes les inégalités écrites sont en fait des égalités. En particulier :

VE € [1:n] | M| ||0k] =

Si on suppose :

1
)\7
\k!\/ﬁ

1
Vk € [Lin] e — fill < —=

NLD
on a donc :
Vk € [1;n] |Ax| =0 donc A =0
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et la famille (f1,..., fn) est libre.

Le résultat subsiste si on suppose :
1
Vk € [1;n] llex — fill < %
et : 1
ko € [1;n] tq [ler, — froll < NG
En effet, toutes les inégalités étant en fait des égalités, il y a égalité dans Cauchy-Schwarz
de sorte que :
vk € [1;n] il = Adf
et on a toujours :

1
Vk € [L;n] | Al |6kl = [ Akl 7n

ce qui donne pour k = kg :

1 1
M| |0k || = || —= avec [|0g, || < —=
Ml | = 2] 7 avee | <

On en déduit || = 0 donc A\; = 0 et on conclut facilement.

Reste le cas ou : 1
Vk € [L;n] [lex — fill = —=

Le cas d’égalité de I'inégalité de Cauchy-Schwarz donne :

vk € [1;n] il = Al

Le cas d’égalité dans I'inégalité du milieu ne donne plus rien.

Le cas d’égalité de l'inégalité triangulaire permet d’affirmer que les vecteurs Apd; sont
colinéaires et de méme sens.

Les d, ayant la méme norme et les A\; la méme valeur absolue, les vecteurs Ay sont

1 n
égaux, égaux a —— PYRI
gaux, ég -

k=1 |
On est ainsi amené a essayer les vecteurs fr = e — — » ;.
=1
VE € [inl [fe— el = -\ >o12 =
3N k— €kl = — =—
n\ = vn

n
et Z fr = 0.
k=1

e Deuxieme méthode
Soit & un vecteur orthogonal & tous les f.

vk €N [(ex | )] = [(ex = ful)l < llex — fill Il
Mais x = Z(ek | x)ey et :

k=1
n n
2 2 2
2l =D (ex | 2)* < 2] Y llex — fil
k=1 k=1

Donc :

<1 =D llex = ka2> lz]* < 0
k=1
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n n
1
avec Y lex — ful? <Y = =1
k=1 =1

Donc ||z||* <0 et 2 = 0.

On a donc montré : (Vect(fy, ..., f2))" = {0}.

On en déduit, F étant de dimension finie, Vect(f1,..., fn) = E ie (fi1,..., fn) est une
famille génératrice de E. Vu le nombre de vecteurs et la dimension de E, (fi,..., fn) est
une base de F.

On suppose désormais :

1
Vk € [[l;n]] Hek - fk“ < %

Jko € [1;n] tq llex, — froll = =

EIkl S [[1an]] tq Helﬂ - fk’1|| <

SESE

Soit x un vecteur orthogonal a tous les fy.
Vk € N [(ex | 2)| = (e — frlx)] < llex — full =]
n

Mais = = Z(ek | z)ey et :

k=1
n n
2 2 2
ll* =D (ex [ 2)* < [l2* D llew — fll
k=1 k=1

Donc :

n
2 2
(1 =D llex = fxl ) l]I* <0
k=1
n n 1
avec Z lew — fel® < Z — =1: on somme n inégalités dont une au moins est stricte
k=1 f=1"

Donc ||z||* <0 et 2 = 0.

On a donc montré : (Vect(fi, ..., fa))* = {0}.

On en déduit, F étant de dimension finie, Vect(f1,..., fn) = E ie (f1,..., fn) est une
famille génératrice de E. Vu le nombre de vecteurs et la dimension de F, (f1,..., fn) est
une base de F.

Enfin, on traite le cas :
1
Vk € [Lin] llex — full = —=

On suppose qu’il existe un vecteur x non nul et orthogonal a tous les fg.
Quitte a diviser x par sa norme, on peut supposer x unitaire.

VEk € [L;n] [(ex [ )| = [(ex — frlz)| < llex — fill Il

n

Mais x = Z(ek | z)ey et :

2 nk:l 2w 2 2xn 1 2
Izl = (ew | 2)* < =12 llew — ful® = llzl* D o= [Eal
k=1 k=1 k=1
On a donc :

Vk € [1;n] (ex | 2)2 = (ex — fr | 2)% = |[«|* lex — fill?
D’apres le cas d’égalité de 'inégalité de Cauchy-Schwarz :
VkEe NIy € Rtqep — fr = Agx

10
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1
En prenant la norme, on obtient A\ = £—.

NG
On pose € = \pyv/n € {—1;1}.
n n 1 n
Tr = Z(ek ‘ :z)ek = Z(ek — fk | x)ek = — Zekek
Vi S

k=1 k=1 ]
k
Vk € [1;n =ep — AT =€ — ——X
[Ln] fx =er — M NG
Réciproquement, on suppose qu'il existe (€1, ...,€,) € {—1;1}" tel que :

1 n
Vk € [1;n] fk:ek—%x oﬁx:ﬁz%ek
k=1

vk e [Lin] (frl2) =

€k €k 1 &
= — - — X - 1
=0

On en déduit que Vect(f1,..., fn) C x*. La famille (fi,..., f,) n’est pas génératrice, ce
n’est donc pas une base de E.

1 Endomorphismes d’un espace euclidien

1.1 Isométries vectorielles et matrices orthogonales

Exercice 12 (Mines 2017)

Soient E un espace euclidien et a et b deux vecteurs non nuls.
Soit  I'ensemble des automorphismes orthogonaux s de E tels que s(a) = b.

1. Donner une CNS pour que €2 soit non vide.

2.7
Correction
1. Si © est non vide, on a facilement ||a| = ||b]|.
Réciproquement, on suppose ||a|| = ||b||.

Si a = b c’est trivial.
On suppose a # b.
Soit s la réflexion d’hyperplan (a — b)=*.

|la]| = ||b]| entraine a — b L a + b.

_a+b a-0 ‘ ()_a—i-b a—b_b
T 2 YT Ty 2
2.7

Exercice 13 (CCP 2019)

Soit A = € Ms(R).

o o
Q@ o o
QO

Onnote S=a+b+cet o=ab+ bc+ ca.

11
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1. Montrer :
A€ O3(R)«<—= S==xletoc=0
2. Préciser une condition pour que A € SO3(R).
Correction

1. Une matrice de M3(R) est orthogonale si et seulement si ses trois colonnes sont unitaires
et deux a deux orthogonaux.
Les trois colonnes de A ont la méme norme : a? + b% + 2.
Le produit scalaire de deux colonnes (distinctes) vaut toujours ab + bc + ac
On en déduit :
2 4 p2 4 2
a®+b+c" =1
Ae0O(3)
ab+ac+bc=0
(@ +b+c)?—2(ab+ac+bec) =1
ab+ ac+bc =0

52 =1
<

c=0

S ==+1
R

oc=20

2. Les matrices de SO(3) sont caractérisées parmi les matrices de O(3) par : det (A) = 1.

a b c a+b+c b ¢
det(A) = |b ¢ a|=la+b+c ¢ a| L1+ L1+ Ly+ L3
c a b a+b+c a b
1 b ¢
= (a+b+c)|l ¢ a
1 a b
1 b c
= (a+b+c)0 c—b a—c LQ(—LQ—L1L3<—L3—L1
0 a—b b—c
c—b a—c
= (a—l—b—l—c)a_b b o

— b0l a0+ 0 o)
= —(a+b+c)(a® +bc—ab—ac+b* — 2bc+ c?)
= —(a+b+c)((a®+0*+ — (ab+ac+be))

Si A est une matrice orthogonale alors son déterminant vaut —(a + b + ¢)(1 — 0) =
—(a+ b+ c) donc si A appartient a SO(3) alors S = —1 et 0 = 0.

Réciproquement, si S = —1 et ¢ = 0, A est une matrice orthogonale d’apres la premieére
question.
Son déterminant vaut alors —S =1 et A € SO(3).
Finalement :
S=-1
AeSOQ3) =
c=0

12
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Exercice 14 (D’aprés Centrale 2017 maths 2)

On dit que deux matrices A et B de M, (R) vérifient la propriété (N) si, et seulement si,

|Az|| = || Bx|| pour tout x € R™ (ou ||.|| est la norme euclidienne canonique).
1. Montrer :
A et B vérifient (N) <= V(i,5) € [1;n]? (4i|A;) = (Bi|Bj) ot A, est la k®™ colonne
de A.

2. On suppose A € GL,(R). Montrer :
A et B vérifient (N) <= 3C € O(n) tq A=CB

3. Soient u = (u1,...,up) et v = (v1,...,vp) deux familles libres de R" telles que G, = G,
ou Gy est la matrice ((uilu;));<; i<,
On note U = Vect(uy,...,up) et V = Vect(vy,...,vp).

(a) Montrer :
Af € LU, V) tq Vi € [1;p] f(wi) = v

ontrer que f est une isométrie vectorielle.
b) Mont t i btri toriell
(c) Montrer qu’il existe une isométrie vectorielle g de R™ telle que gu = f-

4. Montrer dans le cas général :
A et B vérifient (N) <= 3C € O(n) tq A=CB

Correction
On note (ey,...,e,) la base canonique de R™.
Vi € [[1,71]] A; = Ae; et B; = Be;.
1. o =
W(i,j) € [Lin]? |Ales +e)|I* = [IBlei +¢))|”
| Ae; + Aej||> = || Be; + Bejl|®
[Acil? + [ Acs|? + 2(AeilAe;) = |Beil + | Besll® +2(Bei| Be)
D’out le résultat aprés simplification : ||Aeg||? = || Be;||?
o <—
Soit z € R™. .
x1,...,zn) ER" tqz = inei
i=1
|Az|> = D zides|| =D zi4;
=1 =1
n n
= ZZ 27 ( A Aj)
=1 :
n n
= szz% (Bi|B;)
i=1j=1
2
= [|Bz|
2. o —

Ve € Ker (B) || Az|| = || Bz[| = (0] = 0
Vz € Ker (B) Az =0

13
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()

Mais A est inversible donc x = 0.

B est donc inversible.

On pose C = AB~%.

Ve e R" ||Cx| =

C est bien une matrice orthogonale.

P —

V(i,j) € [L;n]? (Ai]4;) =
A et B vérifient la propriété (

(CB;

|CB;) =

u est une famille libre donc c’est une base de U = Vect(u).
Une application linéaire étant parfaitement définie par la donnée des images des vec-
teurs d’une base de 'espace de départ :

Afe LU, V) tqVie[L;p] flu

Vz e U |f(z)|?

i) = v

2

p

> wif(u)
=1 i=17=1
p

=1j=

p

>

=1

p p

Yo wiwg(uiluy) =
=1 5=1

Bl

J
2

f est bien une isométrie vectorielle.

Soit (Up+17 .
Soit (Vp41,-- -,

,up) une BON de U+,
vy,) une BON de V+.

dlg € L(R™) tq Vi € [1;n] g(ui) = v;

Soit x = Z:c,uz e R".

=1

_ (z)(

Par Pythagore :

lg(@)l* =

p
D v
i=1

p 2 n
f (Z xzu2> + Z :UZQ car (Upti,-..,Un
i=1

p
> wiu;
=1

n
> wiu;
=1

14

Z T;v; € VJ‘>.

i=p+1

2

n
E Z;V;

i=p+1

=3l

p
D> wius
i=1

(B;|Bj) car C est une matrice orthogonale.
N) d’apres 1).

(ug) | £( u]))

xix;(vilvy) car f(u;) = v
1

2

) est ON
i=p+1
9 2
Z ziui||  car (Upyi,...,u,) est ON
i=p+1
2
= ||#||* par Pythagore
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g est bien un automorphisme orthogonal de R™ dont la restriction a U est f.

4. Si A= CB avec C € O(n) alors A et B vérifient (N) comme en 5).
On suppose désormais que A et B vérifient (IV) sans étre inversibles (si l'une ne 'est pas,
l’autre non plus).
D’apres (N), Ker (A) = Ker (B) et rg(A) = rg(B).
Soit (u1,...,up) p colonnes de B formant une base de Im (B).
Soient (v1,...,vp) les colonnes de A de mémes indices.
D’apres 1), G, = G,.
D’apres 6), il existe g automorphisme orthogonal de R™ tel que :
Vi € [1;p] g(ui) = vi.

Soit x € R"™. »

I(y1,...,yp) € RP tq Bz = z:yZuZ

Soit C' la matrice canoniquelzdle g:CeO(n).

CBx = i YiV;

11 existeiezll, ..., €p, p vecteurs de la base canonique tels que u; = Be; et v; = Ae;.
P

P
Bxr = Zyzuz ZyiBfi donc z — Zyiei € Ker (B)
i=1 i=1
Mais Ker (A) =Ker (B) et :

p
Ax = Z y;Ae; = Zywi = CBuz.
Dot A = CB.

Exercice 15 (Centrale 2015, rapport du jury)

Soit f un automorphisme orthogonal d’un espace euclidien F.
On pose g = f —idg.
1. Montrer que Im (g) = Ker (g)*.

1
2. Pour tout n € N*, on considere p, = — (idg + f + f2+ -+ f*°1).
n
Montrer que pour tout x € E, la suite (p,(z)) converge vers p(z) le projeté orthogonal
sur Ker (g).

Correction

1. Soit x € Kerg et y € Im (g).
z € Ker (g) donc f(z) =
y€lIm(g)donc: 3Iz€ Etqy=g(z) = f(z) — 2

(zly) = (2|f(2) — 2) = (2| f(2)) = (z]z) = (f(2)|f(2)) — (x]z) = 0 car f € O(E)
Donc Ker (g) L Im(g ) et Im (g ) C Ker (g)*

Mais dim (Ker ) = dim (F) — dim (Ker (g)) = dim (Im (g)) avec la formule du rang.
Donc Im (g) = Ker (g)*.

15
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S|

. 1 . n—1
VneN“gop, = E(f—sz)tok:
k=0

<T§ fk+1 o nil fk)
k=0 k=0

(4~

n—1 n—1
(f S f’“)
k=0 k=0

Sl— 3=

1

g et p, commutent (ce sont des polyndmes en f) donc p, o g = — (f*! —idg).
n

Soit x € E. ) )

vn € N* [lpa(g(@))ll < — (1" (@)l + l2ll) = — ]

En effet f € O(F) qui est stable par o donc les puissances de f sont toutes dans O(FE).

Donc :

Va € Epn(9(z)) —— 0

n—-+00

ou encore :

vy € Im (g) pu(y) ———0

Soit € Ker (g).

f(x) = z donc par une récurrence facile :

VneN fi(z)=2x

Donc : 1
Vn € N* p,(x) = E(nz) =Tz
Soit x € E.

Soit y son projeté orthogonal sur Ker (g).
x —y € Ker (g)* = Im(g)

Vn € N* pp(z) = pu(y) + pu(z — y)

D’apres ’étude des cas particuliers ci-dessus, p,(x) —+> y+0=y.
n——+0oo

Exercice 16 (X 2022)
A quelle condition sur n existe-t-il A € M, (R) telle que A% 4+ 1, =07

Correction

Si A existe alors A2 = —I,, et en prenant le déterminant (det (A))? = (—1)".

On en déduit que n est pair.

Réciproquement, si n = 2p la matrice diagonale par blocs A = Diag(B,...,B) avec B =

0 -1 convient

10 vient.
Exercice 17 (Mines 2023)
Soit M € O(n).

Montrer que
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Correction
1

Soit U= |[:]¢€ Mml(R).
1

n
>oma,
=1

MU =
n
> My
j=1

Donc Z m; ;| = (MU, U) et par Cauchy-Schwarz :

1<i,j<n

> miy| < [IMU| U]
1<i,j<n
M étant une matrice orthogonale, | MU|| = ||U|| et :

2
> mig| < IUJF =

1<i,j<n

Vj e [1;n] Zm

On en dedult

Y(i,7) € [1;n]? 12] <1 puis |m; ;| <1
Donc :

Y(i,7) € [1;n]? m? i < |ma gl

En sommant, on obtlent
n:tr(I)—tr (MTM) = Z mdg Z |mi
1<i,5<n 1<i,5<n

M, (R) x M,(R) - R
(A, B) — tr (AT B)

Il a été vu en cours que { est un produit scalaire.

Pour ce produit scalaire :

VM € O(n) |M|? =tr (MTM) =tr(I,) =n

Soit J la matrice telle que J; ; = 1 si m;; > 0, -1 sinon.
L’inégalité de Cauchy-Schwarz donne :

> dmigl= O 0) < M) = vnoxn

1<i,j<n

2 Endomorphismes et matrices symétriques
Exercice 18 (CCP 2018,2019)

Soit E un espace préhilbertien réel.
Soient f et g deux applications de E dans FE telles que :

Y(z,y) € E* (f(2)ly) = (zlg(y))

1. Montrer que f et g sont linéaires.
2. Que dire de 'image de g et du noyau de f7

Correction

17
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1. Soit z1 et 29 € E et (A1, \2) € R2.

Soit y € E.

(f(A1z1 + Aaxo) — A1 f(z1) — Ao f(22)|y) (f(A1m1 + Aazo)ly) — M (f(z1]y) — Aa(f(z2)|y)
(A1 + Aawalg(y)) — M(z1lg(y)) — Ae(z2l9(y))
= ()\11'1 + Xoxy — A1x1 + )\2562|g(y))

=0

Comme c’est vrai pour tout y, f(Az1 + Aexa) = M f(x1) + Ao f(z2).
f est donc linéaire.
On montre de méme que g est linéaire.

. Soit x € Ker (f) et y € Im (g).

Il existe z dans E tel que y = g(2).

(zly) = (z]g(2)) = (f(z)]z) = (0]z) =0
Ker (f) et Im (g) sont donc orthogonaux.
On a donc Ker (f) C Im (g)*.

La réciproque est vraie.

Soit x € Tm (g)*.

1f @))° = (f(@)|f(2)) = (z]g(f(x))) = 0.
Donc Ker (f) = Im (g)*.

. Remarque

On suppose E de dimension finie ie E euclidien.

Soit n la dimension de E, qu’on suppose strictement positive.
Soit B = (eq,...,e,) une base orthonormée de E.

Soit A la matrice de f dans la base B.

Soit B la matrice de g dans la base B.

V(z,y) € E* (f(2)ly) = («]g(y))

donne :

V(X,Y) € M,u1(R)? (AX)TY = XT(BY)
ou encore :

V(X,Y) € M1 (R)?2 XTATY = XTBY
Donc B = AT.

Exercice 19 (Mines 2017)

1—-7 —4 ) -7
-4 2—-3 14 37

La matrice A = est-elle inversible ?

) 14 3—-¢ =21
-7 37 =21 4—q

Correction
1 -4 5 -7
. -4 2 14 37 . , .
La matrice B = 5 14 3 _91 est symétrique réelle donc 7 n’est pas valeur propre de
-7 371 =21 4
B.

A = B — il est donc inversible.

Exercice 20 (Centrale 2019)

18
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Soit E un espace euclidien de dimension n.
Soient a et b deux vecteurs linéairement indépendants de E.

. E— FE
Soit f
z +— (alz)b+ (blz)a
1. Montrer que f est un endomorphisme symétrique de FE.
2. Déterminer les valeurs propres et les sous-espaces propres de f.
Correction

1. f est un endomorphisme de E : trivial.
Un calcul simple donne :

V(@,y) € B (f(2)ly) = (al)(bly) + (blz)(aly)
(f(y)) = (aly)(lz) + (alz)(blz)

f est symétrique.

2. D’apres le théoréme spectral, f est diagonalisable.
(a,b) est libre donc :
F(2) = 0 <= (alz) = (blz) = 0
ker(f) = Vect(a,b)* est de dimension n — 2 > 0.
0 est valeur propre de multiplicité n — 2 de f.
Il manque deux valeurs propres de f. Les vecteurs propres associés sont dans (ker(f))+ =
Vect(a,b).

2
La matrice dans (a, b) de 'endomorphisme de Vect(a, b) induit par f, noté g, est ( ‘(|a\|l|)2) (H b”)))
a a

et on utilise la méthode habituelle :

Xg = X% —tr(9)X + det (g)
= X*—2(alb)X + (afb)® — [|a|* [1b]
(X — (alp)® = [la]* [1B]?
= (X —(alb) — l[al [[bl]) (X — (alb) + [[a]l [[b]])

Les valeurs propres manquantes de f sont donc (a|b) + |lal| ||b]| et (a|b) — ||a|| ||b]-

a et b sont linéairement indépendants donc non nuls et ces deux valeurs propres sont
distinctes.

Le cas d’égalité de Cauchy-Schwarz assure qu’elles sont non nulles.

Passons aux sous-espaces propres :

(alb)z + [[b]* y = (a|b)z + ||al| |[b]| x
za + yb € Eajp)+|ap) (f) {

lal® & + (alb)y = (alb)y + [lall [|b]| y

N ]
1]
Donc le sous-espace propre de f associé a la valeur propre (a|b) + |lal| ||b]| est la droite
a b
dirigée par — + —.
lall o]

19
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alb)x + be: alb)x — ||al| ||b]| =
vt b € oy ot (F) {< D)+ b2y = (@lb)z ~ [l ||

lal® @ + (alb)y = (alb)y — [lall [|b]| y

Donc le sous- espace propre de f associé & la valeur propre (a|b) — ||al| ||b]| est la droite

|| Il

dirigée par

Exercice 21 (CCP 2019)

0 ... 01
0 ... 01
Soit A = | : o] e Mp(R).
0 ... 01
1 ... 10

Quel est le rang de A?
A est-elle diagonalisable ?
Quelles sont les valeurs propres de A7

Correction

On suppose que n > 2.

Le rang de A est égal au rang de la famille (C1,...,C),) de ses colonnes. Mais Cy = Cy = -+ - =
Cp—1 et (C1,C,) est libre donc A est de rang 2.

A est diagonalisable car symétrique réelle.

On va supposer n > 3, le cas n = 2 ne présentant pas de difficulté particuliere.

n —2 > 0 donc 0 est valeur propre. La multiplicité de 0 est la méme que la dimension du noyau
car A est diagonalisable.

Il manque deux valeurs propres.Leur somme est égale a tr (A) = 0 donc elles sont opposées.

A est donc semblable a une matrice de la forme Diag(\, —\,0,...,0) avec A > 0.

A? est donc semblable & Diag(\2,A2,0,...,0).

On en déduit tr (A42) = 2)2.

1 ... 1 0
1 ... 1 0
Mais A% = | : : : donc A =+v/n—1
1 ... 1 0
0 ... 0 n—-1

Exercice 22 (Centrale 2016)

On note S ={X € R" tq || X]| = 1} ou ||.|| est la norme euclidienne canonique de R".
Soit M € M, (R).

Montrer que {(MX|X), X € S} est un segment de R.

On pourra commencer par supposer que M est symétrique.

20
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Correction

On commence par supposer que M est symétrique.

On note A\; < --- < A\, ses valeurs propres.

On a classiquement :

VX eSAN < (MX|X)<\ie{(MX|X), X €S} CI[ ;]

Soit €; un vecteur propre unitaire de M associé a la valeur propre Aj.
Soit €, un vecteur propre unitaire de M associé a la valeur propre A,.
V0 € R cosfe; + sinfe, € S

Soit f: 6 — (M(cosOey + sin fey,)| cos ey + sin Oe,,)

f est continue, f(0) = A\ et f(1) =\,

D’apres le TVI [A\; \,] C {(MX|X), X € S}.

On en déduit : {(MX|X), X € S} = [A1; \n].

Autre solution

Soit y € [A1; Ap].

Jte0;1] tqy = (1 —t)\ + tA,.

y=(MX|X) avec X = /1 — tey + Vtey.

Dans le cas général, on remarque :
(MX|X)=(MX)TX =XTMTX = (X|MTX) = (MTX|X)
On en déduit :

(MX|X) = ((MZMT> X]X)

ce qui nous ramene au cas d’une matrice symétrique.
Exercice 23 (Mines 2011, 2019)

Déterminer les A € M, (R) telles que A AT A = I,,.

Correction

A (AT A) = I,, donc A est inversible et A~! = AT A qui est symétrique.
On en déduit que A est symétrique réelle.

On a donc A = PDPT avec P orthogonale et D diagonale.

AAT A =1, donne A3 = I,, puis D? = I,,.

On en déduit facilement D = I,, puis A = I,,.

La réciproque est triviale.

Exercice 24 (Mines 2021)

Soit A € M, (R) telle que A3 + A% + A = 0.

1. On suppose en plus A symétrique.
Montrer que A est nulle.

2. Montrer que tr (A) € Z.
3. Donner un encadrement de tr (A).
Correction

1. On montre classiquement que si A est une valeur propre complexe de A alors A3+A24+X =0
ie A=0,j ou j2.
Mais si A est symétrique réelle, ses valeurs propres complexes sont en fait réelles : 0 est
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la seule valeur propre de A.
Mais une matrice symétrique réelle est diagonalisable donc A est semblable a la diagonale
nulle ie la matrice nulle. On en déduit facilement que A est nulle.

2. tr (A) est la somme des valeurs propres complexes de A comptées avec leurs multiplicités
donc tr (A) = a1 x 04 ag x j + azj? avec ai + as + a3z = n.
Mais A est réelle donc as = a3 et :
tr(A) =a(j+j%) = —ax € Z
n
3. a1 +2a9 =ndonc 0 < ayg < 5

Avec une matrice diagonale par blocs de la forme Diag(0,...,0,R,...,R)ou R = (\_/%g —_\{?é?) 7

n
on montre que ao peut prendre comme valeur tous les entiers de 0 a { 2J .

On conclut facilement.
Exercice 25 (Mines 2011,2019)

Soit £ un espace euclidien.
Si w est un endomorphisme symétrique de E, on note a(w) sa plus petite valeur propre et 5(w)
sa plus grande valeur propre.

1. Si w est un endomorphisme symétrique de E et x un vecteur de E, encadrer (w(x) | x)
a l'aide de a(w) et de f(w).

2. Soient u et v deux endomorphismes symétriques de E.
Montrer B(u + v) > a(u) + B(v).

Correction
2 2
L Vz e Ea(w)|lz]” < (w(z) | z) < B(w) ||z
Démonstration
D’apres le théoreme spectral, il existe B = (eq,...,e,) BON de E formée de vecteurs

propres de w.

Pour tout i € [1;n], on note \; la valeur propre associée au vecteur propre e; de sorte
que :

Vi € [1;n] w(e;) = Aie;

Quitte a permuter les vecteurs de cette base, on peut supposer Ay < ... \,.

On a alors A\; = a(w) et A\, = f(w).

Soit x € E.

n
z1,...,zn) ER" tqz = kaek.
k=1

n n n n
(w(x)|z) = (w (Z xkek) | Zfﬂkek) = <Z zrw(eg) | Zwkek>
k=1 k=1 k=1 k=1
n n n
= (Z TpAker | Z $k€k> = Z /\k:):% car B est orthonormée
k=1 k=1 k=1

On en déduit . .
Azl =20 27 < (w(@) |2) < A Y 2f = M ||z
k=1 k=1

22
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2. Soit y un vecteur propre de v pour la valeur propre 3(v).

x y est un vecteur unitaire tel que v(z) = f(v)x.

~

Blutw) = Bw) 2 (w(z)|2) = (ulz) | 2) + (v(2) | 2) = (u(z) | ) + B(v) ||z
> a(u) ||z + Bv) = a(u) + B(v)

Exercice 26 (Centrale 2019)

Soit A € M, (R) symétrique dont toutes les valeurs propres sont strictement positives.
Etant donné un vecteur x de R"™, on pose fa(r) = XTAX ou X est le vecteur colonne canoni-
quement associé a .

1. Montrer que la fonction L(f4) : p — max ((p|z) — fa(x)) est bien définie.
reR™

2. Montrer que la fonction L(f4) est de la forme fp pour une matrice B a préciser.
Correction
1. e La question vue depuis le cours d’algébre linéaire
A est symétrique réelle donc :
3Q € O(n) tq A = QDQT avec D = Diag(A1, ..., \n).
Par hypothese :
Vie[l;n] A >0

Z1
Soit x € R" et X = | : | la matrice colonne canoniquement associée.
Tn
P
Soit p € R" et P = | : | la matrice colonne canoniquement associée. Attention :

n
contrairement aux notations habituelles, P est une colonne et non une matrice carrée.

(plz) — fa(z) = P'X - XTAX =PT(QQ")X - X"(QDQ")X
(PTQ)(Q"X) - (XTQ)D(Q"X)
= (@"P)"(Q"X) - (Q"X)"'D(Q"X)

Y1 21
Onpose Y =QTX =] : |et Z=Q"TP=
Yn Zn
n Ay
(pl2) = fal@) = ZTY =YTDY =% zmi— (v - wa)|
i=1 At

n

n n
= D zyi— Yy Ayi=), (Ziyi - )\zyzz)
i=1 i=1

i=1

Une étude de fonction élémentaire donne pour z € R et A € RY :
2

o z
Vy e R zy — Ay < 1), avee égalité pour y = Zx
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[\V]

On en déduit : .
Z.

(ple) — fa(a) < 3 1+

i=1 ¢

z1/(2A1) . .

avec égalité pour = tel que Y = : ie X = QQD_IZ = §QD_1QTP =
zn/(22n)

Lip

Donc la fonction L(f4) est bien définie.

e La question vue depuis le cours sur les fonctions de plusieurs variables
On va justifier I'existence du maximum avec le théoréeme des bornes atteintes.
La fonction g : # € R™ — (p|z) — fa(x) est continue (car polynomiale) et R™ est un
fermé non vide mais R™ n’est pas borné.
On doit tout de méme avoir recours a I’algebre linéaire.
A est symétrique réelle donc :
3Q € O(n) tq A = QDQT avec D = Diag(A1,...,\y).
Par hypothese :
Vie [l;n] A >0
et on peut supposer (quitte a permuter les colonnes de Q) que A\; < ...\,
1
Soit x € R" et X = [ : | la matrice colonne canoniquement associée.

In

fa@) = XTAX = XT(QDQT)XT = (X" Q)D(Q" X)
— (Q"X)"D(Q"X)

Y1
Onpose Y =QTX =

Yn

fa@) = YIDY => \y?

=1

n

> MDDy =MYTY =MXTQTX = MXTX
=1

> Az

On en déduit :

vz € R™ g(z) < |lp|| |z]] — M ||z]|* ——— —o0 car Ay > 0
[|z]|]—+o0

Donc :

IR > 0 tq ||o] = R — g(x) < g(0) = 0

La boule fermée de centre 0 et de rayon R est fermée et bornée donc :
dzg € B(0, R) tq Ya € B(0, R) g(x) < g(zo)

En particulier, g(0) < g(xo).

Donc si ||z|| > R alors g(x) < ¢g(0) < g(x0)

On a donc :
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Vr € R" g(x) < g(x0)

La fonction g a bien un maximum sur R".

La fonction L(f4) est bien définie.

Par contre contrairement & la premiere méthode, on n’a pas a ce stade la valeur du

maximum.
Comme c’est un maximum sur R”, il n’y a pas d’effet de bord et Vg(zy) = 0.
g(zo+h) = (plro+h) — (Xo+ H)"A(Xo + H)

= (plzo) + (p|h) — (XOTAXO +HTAXy+ XTAH + HTAH)

= g(z0) + (plh) — (HTAXo + X ATH) + o(H) car A™ = A
T

= g(zo) + (p|h) — <X0T ATH + (X§ATH) ) +o(H)

= g(xo) + (p|h) — 2XTATH 4 o(h) car XTATH € M;(R)
= g(zo) + (p — 2Az0|h) + o(h)

1
Donc Vg(zg) = p — 2Azg et g = §A_1p
2. On a montré a la question précédente que le maximum est atteint en x € R" tel que

1
X = §A*1P, P étant la matrice colonne des coordonnées de p dans la base canonique

L(fa)(p) = %PTA”P - %PT(A*)TAA*P = iPTA—lp

= f1/4A*1(p)
1
Donc L(fa) = fp avec B = ZA_l

Exercice 27 (Mines 2021)

Soit A € M,,(R).
Montrer que AAT et AT A sont semblables.

Correction
e Premiére méthode
On commence par montrer :
Soient A et B € M,,(K).
Les matrices AB et BA ont le méme polynoéme caractéristique.

Démonstration

Soit A, B € M, (K).

— Premier cas : A € GL,(K)
BA=A"1(AB)A=A"1(AB) (A™!)”
Les matrices AB et BA sont semblables donc ont le méme polynéme caractéristique.

— Deuxiéme cas : A ¢ GL,(K)

Il existe une suite (A,)pen de matrices inversibles qui converge vers A.
VA € KVp e N det (A, — AyB) = det (A, — BA,) cf le premier cas.
On fixe A et on fait tendre p vers +o0.

VA € K det (A, — AB) = det (AI,, — BA)

D’ou le résultat car K est infini.

1
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Néanmoins, I'’examinatrice a demandé de montrer que toute matrice est la limite d’une
suite de matrices inversibles :

Soit A € M, (K).

Si A est inversible, (A)pen est une suite de matrices inversibles qui converge vers A.

On suppose donc que A n’est pas inversible.

A n’a qu'un nombre fini de valeurs propres, dont 0.

Donc :

Jda > 0 tq VA € [—a;a] \ {0} A— A, € GL,(K)

1
— ——— 0 donc :
p p—+too

1
dpo € N* tq Vp > po » € [~a;a] \ {0}
On a:
1
iVp>pygA— an € GL,(K)

ii A— EIn — A
p p——+00
On peut passer a ’exercice :
D’apres ce qui précede, AAT et AT A ont le méme polyndme caractéristique.
Mais AAT et AT A sont symétriques réelles donc leur polynéme caractéristique est scindé

sur R : .
XATA = XAAT = H(X - i)
i=1
et AAT et AT A sont toues les deux semblables & Diag(\1, ..., \,), elles sont donc sem-
blables.

e Deuxiéme méthode
On va montrer que AAT et AT A ont les mémes valeurs propres sans passer par le poly-
noéme caractéristique.
Soit A une valeur propre non nulle de AAT.
VX € E\(AAT) (ATA)(ATX) = AT(AATX) = AT(AX) = \ATX
Donc : AT(E\(AAT)) C Ker (ATA — \L,).
De plus dim (AT(Ex(AAT))) = dim (Ex(AAT)) — dim (Ker (AT) 0 (E)(AAT))
Mais si X € Ker (A7) N (Ex(AAT), A X = AATX = A x 0 = 0 donc Ker (A7) N
(Ex(AAT) = {0} et dim (AT(E)(AAT))) = dim (Ez(AAT)).
On en déduit que X est valeur propre de AT A et que la dimension de Ey(AT A) est supé-
rieure ou égale a celle de Ey(AAT).
Les deux matrices jouant des roles symétriques, on a en fait prouvé qu’elles ont les mémes
valeurs propres non nulles avec des sous-espaces propres de méme dimension.
Mais il s’agit de matrices symétriques réelles donc diagonalisables en BON et leurs noyaux
sont les supplémentaires orthogonaux de la somme des sous-espaces propres associés aux
valeurs propres non nulles. Ils sont donc de méme dimension.
Les matrices AAT et AT A ont donc le méme spectre, avec pour chaque valeur propre
(commune) égalité des dimensions des sous-espaces propres. De plus les sommes de ces
sous-espaces propres sont égales a R”.En prenant des BON adaptées a ces sommes, on
montre que AAT et AT A sont semblables & la méme matrice diagonale donc semblables
entre elles.
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2.1 Endomorphismes et matrices symétriques positifs

Exercice 28 (X 2019, 2021)

Soit A € S,(R) telle que : VX € R® XTAX > 0.
Montrer que  max (lasj]) = max (ai;).
<ij<n

1<i<n
Correction
e Premiére méthode
On note (e, ..., e,) la base canonique de R™.

Soit i et j € [1;n].

(62' + ej)TA(ei + ej) Z 0

eZTAeZ- + eiTAej + eJTAei + ejTAej >0
aij;+a;;+aj;+aj; >0

=205 < @i+ aj;

En considérant e; — e;, on obtient : 2a; ; < a;; + a; ;.

Donc 2|a; ;| < a;i +aj; <2 1o (i)

Ce majorant étant atteint lorsque j =i = i qui réalise le maximum de a; ;.

e Deuxiéme méthode

A est une matrice symétrique positive donc ses valeurs propres sont réelles positives.

On invoque le théoréeme spectral.

On note (e, ..., e,) la base canonique de R™.
On note (e1,...,€,) une BON de R"™ formée de vecteurs propres de A.
On note P la matrice de passage de (€1,...,€,) & (e1,...,6ey) ie:

V(Z .7) € [[1 TL sz,jez

On note \; la valeur propre associé a ;.
Soit (i,7) € [1;n]>.

laij| = |(ei|Aes)| = ‘(Zpklek|2kaAek>|
n

’(Z P i€k| Zpk,j)\kfk> ‘
k=1 k=1

= D Mebriprg| = | D VAkPkiV AP
k=1 k=1
1/2 / n 1/2
_ T \/T i
< max (a;;)
1<i<n

Ce majorant étant atteint lorsque j = i = i qui réalise le maximum de a; ;.

e Troisiéme méthode

On vérifie facilement que I'application ¢ T
(X,Y)— XTAY

27
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scalaire.
Si on note (eq,...,ey) la base canonique de My, 1(R), on a :

V(i,5) € [1;n]? |ai,

ef Aej| = |@(ei, )]

\/<I>(ei, ei) X \/<I)(ej, e;j) par Cauchy-Schwarz
Vi X A/Qj 5

max (i)

ININ A

Ce majorant étant atteint lorsque j = i = ig qui réalise le maximum de a; ;.
Exercice 29 (Centrale 2021)

Soit A € M, (R) une matrice symétrique réelle.
Soit B € M,,(R) une matrice symétrique réelle telle que Sp(B) C R% .

1. Soit A € M, (R) une matrice diagonale réelle dont tous les coefficients diagonaux sont
strictement positifs.
Soit P € M, (R) une matrice inversible.
Montrer que PTAP est symétrique.
Montrer que les valeurs propres de PTAP sont toutes réelles strictement positives.
2. Montrer qu'il existe P € GL,(R) et D € M,(R) diagonale telles que B = PPT et
A=PDPT.
3. Deux autres questions.
La question suivante est une application classique de la question précédente :
Montrer :
V(A, B) € S (R)? det (A + B) > det (A) + det (B)
Correction
T T
1. (PTAP) = PTAT (PT ) = PTAP donc PTAP est symétrique.
Soit X € R™\ {0}.
XT (PTAP) X = (PX)TA(PX)
n
Onnote PX =Y = | ! | et A = Diag(d1,...,0,).
Yn
X est non nul et P est inversible donc Y est non nul.
Il existe donc iy € [1;7n] tel que y;, # 0.
n

YIAY =3 0w? = (3ivd, > 0) + > (307> 0) >0
= o
On a donc prouvé que PTAP est symétrique définie positive.
Ses valeurs propres sont donc toutes réelles strictement positives.
2. D’apres le théoreme spectral, il existe Q@ € O(n) et A = Diag(dy,...,d,) telles que
B = QAQT".
Par hypothese, les valeurs propres de B sont strictement positives donc les §; sont stric-
tement positifs.
Soit R = Diag(v/31,...,v0,)Q".

C’est une matrice inversible réelle.

28



TD algebre linéaire 2025-2026 Chapitre 6, correction

R"R = QDiag(V/é1, ..., v/3,)Diag(Vé1, ..., v3,)Q" = QAQ" = B.
Soit Ry = R~
RT AR, est symétrique :
T T
(R?ARl) = RT AT (R{) = RT ARy donc RT ARy est symétrique (réelle).
Par conséquent, il existe S € O(n) telle que RT AR} = SDST avec D une matrice diago-
le.
o r\ 7! -1\T T 411 T T T T
Or (RT) " = (R;') = BT On en déduit A = RTSDSTR = PDPT avec P = RTS
inversible réelle.
Par ailleurs, B=R"R = RTI,R= RT"SSTR = PPT
3. On conserve les notations précédentes.
det (B) = (det (P))?
det (A) = (det (P))? det (D)
A+ B = P(I,, + D)PT donc det (A + B) = (det (P))?det (I,, + D)
On ajoute 'hypothese : A est symétrique positive.

—1 -1 T -1
VX € R XTDX = XTP1A(PT) X = ((PT> X) A(PT) X >0: D est elle
aussi symétrique positive.

Par conséquent ses coefficients sont positifs.

On en déduit (en développant le produit ou en raisonnant par récurrence) :
n

n
H(l +di;) > 1+ H d;;
i=1 =1
ie det (I, + D) > det (I,,) + det (D)
On multiplie ensuite par (det (P))? et on obtient det (A + B) > det (4) + det (B) pour
A symétrique positive et B symétrique définie positive.
Si B n’est que positive, on applique ce qui précede a B + —1I,, qui est définie positive et
p

on fait tendre p vers +oc.

Exercice 30 (Centrale 2022)

On munit M,,(R) de sa norme euclidienne usuelle : | M|| = \/tr (MTM).
On considere M € GL,(R).

1. Montrer qu'il existe (S,Q) € STT(R) x O, (R) tel que M = QS
2. Calculer d(M,0,(R)) = inf |[M —V]|.
VEOn(R)

n

Indication : montrer que pour tout V € O, (R), |MV | = |[VM] = || M||
Correction

1. MTM est symétrique. De plus si X € M, 1(R) \ {0} alors :
XTMTMX = (MX)T(MX) = ||[MX|*> > 0 car M est inversible donc M X est non nul.
Donc MTM € S;F+(R).
D’apres le théoréme spectral, il existe P € O(n) et D = Diag(A1, ..., \,) avec les \; tous
strictement positifs tels que MTM = PDPT.
S = PDiag(v/A1,..., V) PT € STT(R) et S = MTM
Soit Q = MS~L.
Q'O =S 'MTMS! = 5715251 = I,, donc Q € O(n)
Enfin M = QS.
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2. On commence par démontrer 'indication.
VM) € M, (R)YV € O(n) |MyV|* = tr VI MIM V) = tr (MTMVVT) = tr (M] M) =
M2
VM, € Mp(R)VV € On) |[VM|* = tr (MTVTV M) = tr (MEM;) = | My]|]?

Weom) [M-VIP = fas- V] =||as - o)
= IS =W|? avec W = QTV € O(n)
=t ((S=W)T(S=W)) =t (% = SW - WIS+ WTW)
= tr (MTM) —2tr (SW) + tr (I,,)

MTM) — 2tr (PDiag(v/ A1, .., V) PTW) +n

(
( )
= tr (MTM) - 2tr (Diag(v/ AL, - .., VA PTWP) +n
= tr (MTM) — 2tr (Diag(v/A1, ..., VAn)A) +n avec A= PTWP € O(n)

= tr

n
= tr(MTM) - 22\/)\7@1-71- +n
i=1

n
> tr(MTM) - 22 Vi +n avec égalité si A = 1T,
i=1

= tr(S?) —2tr (S) + tr (I,) = tr ((S — In)?)
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