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Exercice 1 (Mines 2011)

Soit B


Rn × Rn → R
(X,Y ) 7→

∑
1≤i,j≤n

xiyj
i+ j

.

B est-il un produit scalaire sur Rn ?

Correction
• B est symétrique :
∀(X,Y ) ∈ Rn × Rn B(X,Y ) =

∑
1≤i,j≤n

xiyj
i+ j

=
∑

1≤i,j≤n

yjxi
i+ j

par commutation des réels.

∀(X,Y ) ∈ Rn × Rn B(X,Y ) =
∑

1≤i,j≤n

yixj
j + i

par changement d’indices.

Donc :
∀(X,Y ) ∈ Rn × Rn B(X,Y ) = B(Y,X)
• B est linéaire à droite :
Soit X,Y, Z ∈ Rn et λ, µ ∈ R.

B(X,λY + µZ) =
∑

1≤i,j≤n

xi(λyj + µzj)
i+ j

= λ
∑

1≤i,j≤n

xiyj
i+ j

+ µ
∑

1≤i,j≤n

xizj
i+ j

= λB(X,Y ) + µB(X,Z)

• B est linéaire à gauche :
découle de la linéarité à droite et de la symétrie.
• Soit X ∈ Rn.

B(X,X) =
∑

1≤i,j≤n

xixj
i+ j

=
∑

1≤i,j≤n
xixj

∫ 1

0
ti+j−1 dt

=
∫ 1

0

 n∑
i=1

xit
i−1/2 ×

n∑
j=1

xjt
j−1/2

 dt

=
∫ 1

0

(
n∑
i=1

xit
i−1/2

)2

dt
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La fonction t 7→
n∑
i=1

xit
i−1/2 est continue sur [0; 1] (l’intégrale n’est pas impropre) donc :

B(X,X) ≥ 0 et :

B(X,X) = 0⇐⇒ ∀t ∈ [0; 1]
n∑
i=1

xit
i−1/2 = 0

Donc si B(X,X) = 0, en multipliant par
√
t, on a :

∀t ∈ [0; 1]
n∑
i=1

xit
i = 0

On a un polynôme avec une infinité de racines donc c’est le polynôme nul. Tous ses
coefficients sont donc nuls ie X = 0.

B bien un produit scalaire sur Rn.

Exercice 2

Soient E un ev euclidien et E1, E2 2 sev de E.
Montrer que (E1 + E2)⊥ = E⊥1 ∩ E⊥2 et (E1 ∩ E2)⊥ = E⊥1 + E⊥2 .

Correction
1. (E1 + E2)⊥ = E⊥1 ∩ E⊥2 .
E1 ⊂ E1 + E2 donc (E1 + E2)⊥ ⊂ E⊥1 .
E2 ⊂ E1 + E2 donc (E1 + E2)⊥ ⊂ E⊥2 .
D’où (E1 + E2)⊥ ⊂ E⊥1 ∩ E⊥2 .
Réciproquement soit x ∈ E⊥1 ∩ E⊥2 .
Soit y ∈ E1 + E2.
∃(y1, y2) ∈ E1 × E2 tq y = y1 + y2
(x|y1 + y2) = (x|y1) + (x|y2) = 0 + 0 = 0
Donc x ∈ (E1 + E2)⊥
D’où : (E1 + E2)⊥ = E⊥1 ∩ E⊥2
Remarque
On n’a pas eu besoin de dimE < +∞.

2. E1 ∩ E2 = (E⊥1 )⊥ ∩ (E⊥2 )⊥ = (E⊥1 + E⊥2 )⊥
D’où : (E1 ∩ E2)⊥ = (E⊥1 + E⊥2 )⊥⊥ = E⊥1 + E⊥2
En dimension infinie cela peut être faux quoiqu’on ait toujours
E⊥1 + E⊥2 ⊂ (E1 ∩ E2)⊥
En effet E1 ∩ E2 ⊂ E1 ⇒ E⊥1 ⊂ (E1 ∩ E2)⊥...

Exercice 3 (Centrale 2015, maths 1)

Soit E un espace euclidien de dimension n ≥ 2 et a et b deux vecteurs unitaires orthogonaux de
E.
Pour x dans E, on pose u(x) = (a|x)b− (b|x)a.

1. Montrer que u est un endomorphisme de E.
2. Trouver le noyau de u et son image.
3. u est-il diagonalisable ?

Correction
1. Ne présente pas de difficulté.
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2. (a, b) étant une famille ON de E, (a, b) est libre. Donc :
u(x) = 0⇐⇒ (a|x) = (b|x) = 0
ker(u) = Vect(a, b)⊥ est de dimension n− 2.
On en déduit que l’image de u est de dimension 2. Mais elle est incluse dans Vect(a, b)
donc Im (u) = Vect(a, b).

3. On peut regarder si u est symétrique.
Un calcul simple donne :

∀(x, y) ∈ E2 (u(x)|y) = (a|x)(b|y)− (b|x)(a|y)
(x|u(y)) = (b|x)(a|y)− (a|x)(b|y)

u n’est pas symétrique (mais antisymétrique).
On déduit du calcul précédent :
∀x ∈ E (u(x)|x) = 0 (la première ligne du calcul suffit)
Soit λ une valeur propre de u et x un vecteur propre associé.
0 = (u(x)|x) = (λx|x) = λ ‖x‖2
On en déduit λ = 0, si λ est valeur propre.
ker(u) = V ect(a, b)⊥ est de dimension n− 2 donc :
Si n = 2, u n’a pas de valeur propre.
Si n > 2, u a une et une seule valeur propre : 0.
Dans les deux cas, u n’est pas diagonalisable.

On peut également compléter (a, b) en une BON B de E. La matrice de u dans B est :(
R 0
0 0

)
avec R =

(
0 −1
1 0

)
.

Exercice 4 (CCP 2019)

Soit E un espace préhilbertien réel.
Soit (x1, . . . , xp) une famille de vecteurs unitaires telle que :
∀(i, j) ∈ [[1; p]]2 i 6= j =⇒ ‖xi + xj‖ =

√
3

1. Calculer (xi|xj).
2. Montrer que la famille (x1, . . . , xp) est libre.

Correction

1. Si i = j, (xi|xj) = 1.
Si i 6= j :
3 = ‖xi + xj‖2 = ‖xi‖2 + ‖xj‖2 + 2(xi|xj) = 2 + 2(xi|xj) et (xi|xj) = 1

2

2. Soit (a1, . . . , ap) ∈ Rp tq
p∑
i=1

aixi = 0.

On fait le produit scalaire avec xi :

∀i ∈ [[1; p]]
p∑
j=1

aj(xi|xj) = 0

Ce qui donne avec les valeurs des produits scalaires de l’énoncé :

3
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∀i ∈ [[1; p]] ai +
n∑
j=1
j 6=i

1
2aj = 0

Ce qui peut aussi s’écrire :

∀i ∈ [[1; p]] ai +
n∑
j=1

aj = 0

On ajoute toutes les lignes :

(n+ 1)
n∑
j=1

aj = 0

On en déduit
n∑
j=1

aj puis :

∀i ∈ [[1; p]] ai = 0
La famille (x1, . . . , xp) est donc libre.

Exercice 5

Soient E un ev euclidien de dimension n ∈ N∗ et B = (e1, . . . , en) une BON de E.

Soit H = {x =
n∑
i=1

xiei ∈ E tq x1 + · · ·+ xn = 0}.

Donner une BON de H.

Correction

On prend V1 =


1
−1
0
...
0

 , V2 =



1
1
−2
0
...
0


, V3 =



1
1
1
−3
0
...
0


, . . . , Vn−1 =


1
...
1

−(n− 1)

.

On norme alors ces vecteurs :
‖Vk‖2 = k + k2 = k(k + 1)
εk = Vk√

k(k + 1)

Exercice 6 (Mines 2022)

On se place dans R4 muni de sa structure euclidienne canonique.
Soit F = {(x, y, z, t) ∈ R4 tq x− y + z − t = 0}.

1. Déterminer la matrice dans la base canonique de la projection orthogonale sur F .
2. ?

Correction
1. De nombreuses méthodes sont possibles :
• F est l’orthogonal du vecteur v = (1,−1, 1,−1).
p est donc défini par :
∀x ∈ Rn p(x) = x−

(
v

‖v‖
|x
)

v

‖v‖
= x− (v|x)

‖v‖2
v

On en déduit pour chaque vecteur ei de la base canonique :
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p(ei) = ei −
(−1)i−1

4 v = ei + (−1)i

4 v

La matrice de p dans la base canonique est donc :

P = I4 + 1
4


−1 1 −1 1
1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

 = 1
4


3 1 −1 1
1 3 1 −1
−1 1 3 1
1 −1 1 3


• Deuxième méthode
Soit x = (x, y, z, t) ∈ R4.
p(x) est caractérisé par p(x) ∈ F et p(x)− x ⊥ F .
On en déduit :
∃λ ∈ R tq p(x) = x+ λ(1,−1, 1,−1).
Donc p(x) = (x+ λ, y − λ, z + λ, t− λ).
p(x) ∈ F donc :
x+ λ− (y − λ) + (z + λ)− (t− λ) = 0
On en déduit λ = −1

4 (x− y + z − t) et :

p(x) =
(3

4x+ 1
4y −

1
4z + 1

4 t,
1
4x+ 3

4y + 1
4z −

1
4 t,−

1
4x+ 1

4y + 3
4z + 1

4 t,
1
4x−

1
4y + 1

4z + 3
4 t
)

On en déduit la matrice cherchée : 1
4


3 1 −1 1
1 3 1 −1
−1 1 3 1
1 −1 1 3


2.

Exercice 7 (X 2019)

Soit M ∈Mn,p(R) de rang p.
1. Montrer :
∀y ∈ Rn ∃!x0 ∈ Rp tq ‖Mx0 − y‖ = min

x∈Rp
(‖Mx− y‖)

où ‖.‖ désigne la norme euclidienne canonique de Rn.
2. Montrer que MTM est inversible.

En déduire une relation entre Im (M) et Ker (MT ).
Correction

1. Soit q la projection orthogonale sur Im (M) (endomorphisme de Rn).
Soit y ∈ Rn.
Soit z0 = q(y).
∀z ∈ Im (M) ‖z − y‖ ≥ ‖z0 − y‖ avec égalité si, et seulement si, z = z0.
M représente dans les bases canoniques une application linéaire de Rp dans Rn.
Si on suppose que M est de rang p alors cette application est injective et :
∃!x0 ∈ Rp tel que Mx0 = z0.
Soit x ∈ Rp.
Mx ∈ Im (M) donc :
‖Mx− y‖ ≥ ‖z0 − y‖ = ‖Mx0 − y‖
De plus si ‖Mx− y‖ = ‖Mx0 − y‖ = ‖z0 − y‖ alors Mx = z0.
Donc Mx = Mx0 puis x = x0.

2. MTM est une matrice symétrique réelle à p lignes et p colonnes.
Soit x ∈ Ker (MTM) (x ∈ Rp).

5
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‖Mx‖2 = (Mx)TMx = xTMTMx = 0 donc Mx = 0 puis x = 0.
On en déduit que MTM est inversible.
C’est la méthode habituelle, peut-être y a-t-il moyen d’utiliser ce qui précède.

Im (M) et Ker (MT ) sont des sev de Rn.
Soit y ∈ Im (M) : ∃x ∈ Rp tq y = Mx.
Soit z ∈ Ker (MT ).
(y|z) = (Mx)T z = xTMT z = 0
On en déduit que Im (M) ⊥ Ker (MT ).
Mais :
dim (Ker (MT )) = n − rg(MT ) = n − rg(M) = n − dim (Im (M)) donc Ker (MT ) et
Im (M) sont deux supplémentaires orthogonaux de Rn.

Exercice 8 (X 2015)

Soit P ∈M9(R) telle que :
∀(X,Y ) ∈ R9 × R9 XTPY = −Y TPX
Montrer que P 6∈ GL9(R).

Correction
Vue sa taille P a au moins une valeur propre réelle λ.
Soit X un vecteur propre (réel) associé.
On prend Y = X et on a :
XTPX = −XTPX donc XTPX = 0.
Mais XTPX = XT (λX) = λ ‖X‖2.
D’où λ = 0.
0 est valeur propre de P donc P n’est pas inversible.

Exercice 9 (X 2021)

Soient E un espace euclidien de dimension n et (e1, . . . , en) une famille de vecteurs de E telle
que :

∀x ∈ E ‖x‖2 =
n∑
i=1

(ei|x)2

Montrer que (e1, . . . , en) est une BON de E.

Correction
Soit x ∈ Vect(e1, . . . , en)⊥.

‖x‖2 =
n∑
i=1

(ei | x)2 =
n∑
i=1

02 = 0

Donc Vect(e1, . . . , en)⊥ = {0}.
Comme E est de dimension finie, Vect(e1, . . . , en) =

(
Vect(e1, . . . , en)⊥

)⊥
= {0}⊥ = E.

En d’autres termes, la famille (e1, . . . , en) est génératrice.
Au vu de son cardinal, c’est une base de E.
Il reste à montrer que c’est une famille orthonormée.
Soit i ∈ [[1;n]].
On prend x = ei :
‖ei‖2 = ‖ei‖4 +

∑
j 6=i

(ei|ej)2 ≥ ‖ei‖4

6
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Or ei 6= 0 car ei fait partie d’une base donc ‖ei‖2 ≤ 1.
Vect ((ej)j 6=i) est de dimension n − 1 donc son orthogonal est de dimension 1 et il existe un
vecteur x non nul orthogonal à tous les ej pour j différent de i.
On a : ‖x‖2 = (ei|x)2 ≤ ‖ei‖2 ‖x‖2 par Cauchy-Schwarz
x est non nul donc ‖ei‖ ≥ 1.
On a donc ‖ei‖ = 1.
‖ei‖2 = ‖ei‖4 +

∑
j 6=i

(ei|ej)2 donne alors :∑
j 6=i

(ei|ej)2 = 0

donc (ei|ej) est nul pour j 6= i.

Exercice 10 (Mines 2022)

Soit E un espace euclidien et f une forme linéaire sur E.
1. Montrer :
∃!a ∈ E tq ∀x ∈ E f(x) = (a|x)

2. Soit n ∈ N.
Montrer :
∃!A ∈ Rn[X] tq ∀P ∈ Rn[X]

∫ 1

0
A(t)P (t) dt = P (0)

3. Montrer que le degré de A vaut n et que A(0) > 0.
Correction

1. Soit (e1, . . . , en) une BON de E.

Soit a =
n∑
k=1

akek un vecteur quelconque de E.

f est linéaire donc :

(∀x ∈ E f(x) = (a|x)) ⇐⇒ (∀i ∈ [[1;n]] f(ei) = (a|ei) = ai)

⇐⇒ a =
n∑
k=1

f(ek)ek

2. Il suffit d’appliquer ce qui précède avec E = Rn[X] et f : P 7→ P (0), le produit scalaire

étant défini par : (P |Q) =
∫ 1

0
P (t)Q(t) dt

3. Supposons A de degré inférieur ou égal à n− 1.
P = XA ∈ Rn[X] donc :∫ 1

0
tA(t)2 dt = 0

Mais la fonction t 7→ tA(t)2 est continue et positive donc :
∀t ∈ [0; 1] tA(t)2 = 0
Le polynôme A a donc une infinité de racines. C’est le polynôme nul : c’est absurde, on
aurait :
∀P ∈ Rn[X] P (0) = 0
On a donc montré que A est de degré n.

A(0) =
∫ 1

0
A(t)2 dt = ‖A‖2 > 0 car A est non nul.

7
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Exercice 11 (Mines 2022)

Soit E un espace euclidien de dimension n ∈ N∗.
Soit B = (e1, . . . , en) une base orthonormée de E.
Soit (f1, . . . , fn) une famille de vecteurs de E telle que :
∀k ∈ [[1;n]] ‖ek − fk‖ <

1√
n

Montrer que (f1, . . . , fn) est une base de E.
Que se passe-t-il si il y a égalité ?

Correction
• Première méthode

Au vu du nombre de vecteurs, il suffit de montrer que la famille (f1, . . . , fn) est libre.
Pour tout k ∈ [[1;n]], soit δk = fk − ek.
∀k ∈ [[1;n]] ‖δk‖ <

1√
n

Soit (λ1, . . . , λn) ∈ Rn tq
n∑
k=1

λkfk = 0

On a donc :
n∑
k=1

λk(ek + δk) = 0

et :
n∑
k=1

λkek = −
n∑
k=1

λkδk

On en déduit :√√√√ n∑
k=1

λ2
k =

∥∥∥∥∥
n∑
k=1

λkek

∥∥∥∥∥ car (e1, . . . , en) base orthonormée de E

=
∥∥∥∥∥
n∑
k=1

λkδk

∥∥∥∥∥
≤

n∑
k=1
|λk| ‖δk‖

≤
n∑
k=1
|λk|

1√
n

= 1√
n

n∑
k=1
|λk|

≤ 1√
n

√√√√ n∑
k=1

12

√√√√ n∑
k=1
|λk|2 par Cauchy-Schwarz

≤

√√√√ n∑
k=1

λ2
k

Donc toutes les inégalités écrites sont en fait des égalités. En particulier :
∀k ∈ [[1;n]] |λk| ‖δk‖ = |λk|

1√
n

Si on suppose :
∀k ∈ [[1;n]] ‖ek − fk‖ <

1√
n

on a donc :
∀k ∈ [[1;n]] |λk| = 0 donc λk = 0

8
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et la famille (f1, . . . , fn) est libre.

Le résultat subsiste si on suppose :
∀k ∈ [[1;n]] ‖ek − fk‖ ≤

1√
n

et :
∃k0 ∈ [[1;n]] tq ‖ek0 − fk0‖ <

1√
n

En effet, toutes les inégalités étant en fait des égalités, il y a égalité dans Cauchy-Schwarz
de sorte que :
∀k ∈ [[1;n]] |λk| = |λ1|
et on a toujours :
∀k ∈ [[1;n]] |λk| ‖δk‖ = |λk|

1√
n

ce qui donne pour k = k0 :
|λ1| ‖δk0‖ = |λ1|

1√
n

avec ‖δk0‖ <
1√
n

On en déduit |λ1| = 0 donc λ1 = 0 et on conclut facilement.

Reste le cas où :
∀k ∈ [[1;n]] ‖ek − fk‖ = 1√

n
Le cas d’égalité de l’inégalité de Cauchy-Schwarz donne :
∀k ∈ [[1;n]] |λk| = |λ1|
Le cas d’égalité dans l’inégalité du milieu ne donne plus rien.
Le cas d’égalité de l’inégalité triangulaire permet d’affirmer que les vecteurs λkδk sont
colinéaires et de même sens.
Les δk ayant la même norme et les λk la même valeur absolue, les vecteurs λkδk sont

égaux, égaux à − 1
n

n∑
k=1

λkek.

On est ainsi amené à essayer les vecteurs fk = ek −
1
n

n∑
l=1

el.

∀k ∈ [[1;n]] ‖fk − ek‖ = 1
n

√√√√ n∑
l=1

12 = 1√
n

et
n∑
k=1

fk = 0.

• Deuxième méthode
Soit x un vecteur orthogonal à tous les fk.
∀k ∈ N |(ek | x)| = |(ek − fk|x)| ≤ ‖ek − fk‖ ‖x‖

Mais x =
n∑
k=1

(ek | x)ek et :

‖x‖2 =
n∑
k=1

(ek | x)2 ≤ ‖x‖2
n∑
k=1
‖ek − fk‖2

Donc :(
1−

n∑
k=1
‖ek − fk‖2

)
‖x‖2 ≤ 0

9
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avec
n∑
k=1
‖ek − fk‖2 <

n∑
k=1

1
n

= 1

Donc ‖x‖2 ≤ 0 et x = 0.
On a donc montré : (Vect(f1, . . . , fn))⊥ = {0}.
On en déduit, E étant de dimension finie, Vect(f1, . . . , fn) = E ie (f1, . . . , fn) est une
famille génératrice de E. Vu le nombre de vecteurs et la dimension de E, (f1, . . . , fn) est
une base de E.

On suppose désormais :
∀k ∈ [[1;n]] ‖ek − fk‖ ≤

1√
n

∃k0 ∈ [[1;n]] tq ‖ek0 − fk0‖ = 1√
n

∃k1 ∈ [[1;n]] tq ‖ek1 − fk1‖ <
1√
n

Soit x un vecteur orthogonal à tous les fk.
∀k ∈ N |(ek | x)| = |(ek − fk|x)| ≤ ‖ek − fk‖ ‖x‖

Mais x =
n∑
k=1

(ek | x)ek et :

‖x‖2 =
n∑
k=1

(ek | x)2 ≤ ‖x‖2
n∑
k=1
‖ek − fk‖2

Donc :(
1−

n∑
k=1
‖ek − fk‖2

)
‖x‖2 ≤ 0

avec
n∑
k=1
‖ek − fk‖2 <

n∑
k=1

1
n

= 1 : on somme n inégalités dont une au moins est stricte

Donc ‖x‖2 ≤ 0 et x = 0.
On a donc montré : (Vect(f1, . . . , fn))⊥ = {0}.
On en déduit, E étant de dimension finie, Vect(f1, . . . , fn) = E ie (f1, . . . , fn) est une
famille génératrice de E. Vu le nombre de vecteurs et la dimension de E, (f1, . . . , fn) est
une base de E.

Enfin, on traite le cas :
∀k ∈ [[1;n]] ‖ek − fk‖ = 1√

n
On suppose qu’il existe un vecteur x non nul et orthogonal à tous les fk.
Quitte à diviser x par sa norme, on peut supposer x unitaire.
∀k ∈ [[1;n]] |(ek | x)| = |(ek − fk|x)| ≤ ‖ek − fk‖ ‖x‖

Mais x =
n∑
k=1

(ek | x)ek et :

‖x‖2 =
n∑
k=1

(ek | x)2 ≤ ‖x‖2
n∑
k=1
‖ek − fk‖2 = ‖x‖2

n∑
k=1

1
n

= ‖x‖2

On a donc :
∀k ∈ [[1;n]] (ek | x)2 = (ek − fk | x)2 = ‖x‖2 ‖ek − fk‖2
D’après le cas d’égalité de l’inégalité de Cauchy-Schwarz :
∀k ∈ N ∃λk ∈ R tq ek − fk = λkx

10
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En prenant la norme, on obtient λk = ± 1√
n
.

On pose εk = λk
√
n ∈ {−1; 1}.

x =
n∑
k=1

(ek | x)ek =
n∑
k=1

(ek − fk | x)ek = 1√
n

n∑
k=1

εkek

∀k ∈ [[1;n]] fk = ek − λkx = ek −
εk√
n
x

Réciproquement, on suppose qu’il existe (ε1, . . . , εn) ∈ {−1; 1}n tel que :

∀k ∈ [[1;n]] fk = ek −
εk√
n
x où x = 1√

n

n∑
k=1

εkek

∀k ∈ [[1;n]] (fk | x) =
(
ek −

εk√
n
x | x

)
= (ek | x)− εk√

n
‖x‖2

= εk√
n
− εk√

n
× 1
n

n∑
k=1

1

= 0

On en déduit que Vect(f1, . . . , fn) ⊂ x⊥. La famille (f1, . . . , fn) n’est pas génératrice, ce
n’est donc pas une base de E.

1 Endomorphismes d’un espace euclidien

1.1 Isométries vectorielles et matrices orthogonales

Exercice 12 (Mines 2017)

Soient E un espace euclidien et a et b deux vecteurs non nuls.
Soit Ω l’ensemble des automorphismes orthogonaux s de E tels que s(a) = b.

1. Donner une CNS pour que Ω soit non vide.
2. ?

Correction
1. Si Ω est non vide, on a facilement ‖a‖ = ‖b‖.

Réciproquement, on suppose ‖a‖ = ‖b‖.
Si a = b c’est trivial.
On suppose a 6= b.
Soit s la réflexion d’hyperplan (a− b)⊥.
‖a‖ = ‖b‖ entraîne a− b ⊥ a+ b.
a = a+ b

2 + a− b
2 et s(a) = a+ b

2 − a− b
2 = b

2. ?

Exercice 13 (CCP 2019)

Soit A =

a b c
b c a
c a b

 ∈M3(R).

On note S = a+ b+ c et σ = ab+ bc+ ca.

11
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1. Montrer :
A ∈ O3(R)⇐⇒ S = ±1 et σ = 0

2. Préciser une condition pour que A ∈ SO3(R).
Correction

1. Une matrice deM3(R) est orthogonale si et seulement si ses trois colonnes sont unitaires
et deux à deux orthogonaux.
Les trois colonnes de A ont la même norme : a2 + b2 + c2.
Le produit scalaire de deux colonnes (distinctes) vaut toujours ab+ bc+ ac
On en déduit :

A ∈ O(3) ⇐⇒
{
a2 + b2 + c2 = 1
ab+ ac+ bc = 0

⇐⇒
{

(a+ b+ c)2 − 2(ab+ ac+ bc) = 1
ab+ ac+ bc = 0

⇐⇒
{
S2 = 1
σ = 0

⇐⇒
{
S = ±1
σ = 0

2. Les matrices de SO(3) sont caractérisées parmi les matrices de O(3) par : det (A) = 1.

det (A) =

∣∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
a+ b+ c b c
a+ b+ c c a
a+ b+ c a b

∣∣∣∣∣∣∣ L1 ← L1 + L2 + L3

= (a+ b+ c)

∣∣∣∣∣∣∣
1 b c
1 c a
1 a b

∣∣∣∣∣∣∣
= (a+ b+ c)

∣∣∣∣∣∣∣
1 b c
0 c− b a− c
0 a− b b− c

∣∣∣∣∣∣∣ L2 ← L2 − L1 L3 ← L3 − L1

= (a+ b+ c)
∣∣∣∣∣c− b a− c
a− b b− c

∣∣∣∣∣
= −(a+ b+ c)

(
(a− b)(a− c) + (b− c)2

)
= −(a+ b+ c)(a2 + bc− ab− ac+ b2 − 2bc+ c2)
= −(a+ b+ c)

(
(a2 + b2 + c2 − (ab+ ac+ bc)

)
Si A est une matrice orthogonale alors son déterminant vaut −(a + b + c)(1 − 0) =
−(a+ b+ c) donc si A appartient à SO(3) alors S = −1 et σ = 0.
Réciproquement, si S = −1 et σ = 0, A est une matrice orthogonale d’après la première
question.
Son déterminant vaut alors −S = 1 et A ∈ SO(3).
Finalement :

A ∈ SO(3)⇐⇒
{
S = −1
σ = 0

12
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Exercice 14 (D’après Centrale 2017 maths 2)

On dit que deux matrices A et B de Mn(R) vérifient la propriété (N) si, et seulement si,
‖Ax‖ = ‖Bx‖ pour tout x ∈ Rn (où ‖.‖ est la norme euclidienne canonique).

1. Montrer :
A et B vérifient (N) ⇐⇒ ∀(i, j) ∈ [[1;n]]2 (Ai|Aj) = (Bi|Bj) où Ak est la kième colonne
de A.

2. On suppose A ∈ GLn(R). Montrer :
A et B vérifient (N)⇐⇒ ∃C ∈ O(n) tq A = CB

3. Soient u = (u1, . . . , up) et v = (v1, . . . , vp) deux familles libres de Rn telles que Gu = Gv
où Gu est la matrice ((ui|uj))1≤i,j≤p.
On note U = V ect(u1, . . . , up) et V = V ect(v1, . . . , vp).
(a) Montrer :
∃!f ∈ L(U, V ) tq ∀i ∈ [[1; p]] f(ui) = vi

(b) Montrer que f est une isométrie vectorielle.
(c) Montrer qu’il existe une isométrie vectorielle g de Rn telle que g|U = f .

4. Montrer dans le cas général :
A et B vérifient (N)⇐⇒ ∃C ∈ O(n) tq A = CB

Correction
On note (e1, . . . , en) la base canonique de Rn.
∀i ∈ [[1;n]] Ai = Aei et Bi = Bei.

1. • =⇒

∀(i, j) ∈ [[1;n]]2 ‖A(ei + ej)‖2 = ‖B(ei + ej)‖2

‖Aei +Aej‖2 = ‖Bei +Bej‖2

‖Aei‖2 + ‖Aej‖2 + 2(Aei|Aej) = ‖Bei‖2 + ‖Bej‖2 + 2(Bei|Bej)

D’où le résultat après simplification : ‖Aei‖2 = ‖Bei‖2
• ⇐=
Soit x ∈ Rn.
∃(x1, . . . , xn) ∈ Rn tq x =

n∑
i=1

xiei

‖Ax‖2 =
∥∥∥∥∥
n∑
i=1

xiAei

∥∥∥∥∥
2

=
∥∥∥∥∥
n∑
i=1

xiAi

∥∥∥∥∥
2

=
n∑
i=1

n∑
j=1

xixj(Ai|Aj)

=
n∑
i=1

n∑
j=1

xixj(Bi|Bj)

= ‖Bx‖2

2. • =⇒
∀x ∈ Ker (B) ‖Ax‖ = ‖Bx‖ = ‖0‖ = 0
∀x ∈ Ker (B) Ax = 0

13
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Mais A est inversible donc x = 0.
B est donc inversible.
On pose C = AB−1.

∀x ∈ Rn ‖Cx‖ =
∥∥∥AB−1x

∥∥∥ =
∥∥∥BB−1x

∥∥∥
= ‖x‖

C est bien une matrice orthogonale.
• ⇐=
∀(i, j) ∈ [[1;n]]2 (Ai|Aj) = (CBi|CBj) = (Bi|Bj) car C est une matrice orthogonale.
A et B vérifient la propriété (N) d’après 1).

3. (a) u est une famille libre donc c’est une base de U = V ect(u).
Une application linéaire étant parfaitement définie par la donnée des images des vec-
teurs d’une base de l’espace de départ :
∃!f ∈ L(U, V ) tq ∀i ∈ [[1; p]] f(ui) = vi

(b)

∀x ∈ U ‖f(x)‖2 =
∥∥∥∥∥
p∑
i=1

xif(ui)
∥∥∥∥∥

2

=
p∑
i=1

p∑
j=1

xixj(f(ui)|f(uj))

=
p∑
i=1

p∑
j=1

xixj(vi|vj) car f(ui) = vi

=
p∑
i=1

p∑
j=1

xixj(ui|uj) =
∥∥∥∥∥
p∑
i=1

xiui

∥∥∥∥∥
2

= ‖x‖2

f est bien une isométrie vectorielle.
(c) Soit (up+1, . . . , un) une BON de U⊥.

Soit (vp+1, . . . , vn) une BON de V ⊥.
∃!g ∈ L(Rn) tq ∀i ∈ [[1;n]] g(ui) = vi

Soit x =
n∑
i=1

xiui ∈ Rn.

g(x) =
( p∑
i=1

xivi ∈ V
)

+

 n∑
i=p+1

xivi ∈ V ⊥
.

Par Pythagore :

‖g(x)‖2 =
∥∥∥∥∥
p∑
i=1

xivi

∥∥∥∥∥
2

+

∥∥∥∥∥∥
n∑

i=p+1
xivi

∥∥∥∥∥∥
2

=
∥∥∥∥∥f
( p∑
i=1

xiui

)∥∥∥∥∥
2

+
n∑

i=p+1
x2
i car (vp+1, . . . , vn) est ON

=
∥∥∥∥∥
p∑
i=1

xiui

∥∥∥∥∥
2

+

∥∥∥∥∥∥
n∑

i=p+1
xiui

∥∥∥∥∥∥
2

car (up+1, . . . , un) est ON

=
∥∥∥∥∥
n∑
i=1

xiui

∥∥∥∥∥
2

= ‖x‖2 par Pythagore
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g est bien un automorphisme orthogonal de Rn dont la restriction à U est f .
4. Si A = CB avec C ∈ O(n) alors A et B vérifient (N) comme en 5).

On suppose désormais que A et B vérifient (N) sans être inversibles (si l’une ne l’est pas,
l’autre non plus).
D’après (N), Ker (A) = Ker (B) et rg(A) = rg(B).
Soit (u1, . . . , up) p colonnes de B formant une base de Im (B).
Soient (v1, . . . , vp) les colonnes de A de mêmes indices.
D’après 1), Gu = Gv.
D’après 6), il existe g automorphisme orthogonal de Rn tel que :
∀i ∈ [[1; p]] g(ui) = vi.
Soit x ∈ Rn.

∃(y1, . . . , yp) ∈ Rp tq Bx =
p∑
i=1

yiui.

Soit C la matrice canonique de g : C ∈ O(n).

CBx =
p∑
i=1

yivi

Il existe ε1, . . . , εp, p vecteurs de la base canonique tels que ui = Bεi et vi = Aεi.

Bx =
p∑
i=1

yiui =
p∑
i=1

yiBεi donc x−
p∑
i=1

yiεi ∈ Ker (B).

Mais Ker (A) = Ker (B) et :

Ax =
p∑
i=1

yiAεi =
p∑
i=1

yivi = CBx.

D’où A = CB.

Exercice 15 (Centrale 2015, rapport du jury)

Soit f un automorphisme orthogonal d’un espace euclidien E.
On pose g = f − idE .

1. Montrer que Im (g) = Ker (g)⊥.

2. Pour tout n ∈ N∗, on considère pn = 1
n

(
idE + f + f2 + · · ·+ fn−1).

Montrer que pour tout x ∈ E, la suite (pn(x)) converge vers p(x) le projeté orthogonal
sur Ker (g).

Correction
1. Soit x ∈ Ker g et y ∈ Im (g).
x ∈ Ker (g) donc f(x) = x
y ∈ Im (g) donc : ∃z ∈ E tq y = g(z) = f(z)− z
(x|y) = (x|f(z)− z) = (x|f(z))− (x|z) = (f(x)|f(z))− (x|z) = 0 car f ∈ O(E)
Donc Ker (g) ⊥ Im (g) et Im (g) ⊂ Ker (g)⊥

Mais dim
(
Ker (g)⊥

)
= dim (E)− dim (Ker (g)) = dim (Im (g)) avec la formule du rang.

Donc Im (g) = Ker (g)⊥.

15
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2.

∀n ∈ N∗ g ◦ pn = 1
n

(f − idE) ◦
n−1∑
k=0

fk = 1
n

(
f ◦

n−1∑
k=0

fk −
n−1∑
k=0

fk
)

= 1
n

(
n−1∑
k=0

fk+1 −
n−1∑
k=0

fk
)

= 1
n

(
fn+1 − idE

)
g et pn commutent (ce sont des polynômes en f) donc pn ◦ g = 1

n

(
fn+1 − idE

)
.

Soit x ∈ E.
∀n ∈ N∗ ‖pn(g(x))‖ ≤ 1

n
(‖fn(x)‖+ ‖x‖) = 2

n
‖x‖

En effet f ∈ O(E) qui est stable par ◦ donc les puissances de f sont toutes dans O(E).
Donc :
∀x ∈ E pn(g(x)) −−−−−→

n→+∞
0

ou encore :
∀y ∈ Im (g) pn(y) −−−−−→

n→+∞
0

Soit x ∈ Ker (g).
f(x) = x donc par une récurrence facile :
∀n ∈ N fn(x) = x
Donc :
∀n ∈ N∗ pn(x) = 1

n
(nx) = x −−−−−→

n→+∞
x

Soit x ∈ E.
Soit y son projeté orthogonal sur Ker (g).
x− y ∈ Ker (g)⊥ = Im (g)
∀n ∈ N∗ pn(x) = pn(y) + pn(x− y)
D’après l’étude des cas particuliers ci-dessus, pn(x) −−−−−→

n→+∞
y + 0 = y.

Exercice 16 (X 2022)

A quelle condition sur n existe-t-il A ∈Mn(R) telle que A2 + In = 0?

Correction
Si A existe alors A2 = −In et en prenant le déterminant (det (A))2 = (−1)n.
On en déduit que n est pair.
Réciproquement, si n = 2p la matrice diagonale par blocs A = Diag(B, . . . , B) avec B =(

0 −1
1 0

)
convient.

Exercice 17 (Mines 2023)

Soit M ∈ O(n).

Montrer que

∣∣∣∣∣∣
∑

1≤i,j≤n
mi,j

∣∣∣∣∣∣ ≤ n ≤
∑

1≤i,j≤n
|mi,j | ≤ n

√
n.
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Correction

Soit U =

1
...
1

 ∈Mn,1(R).

MU =



n∑
j=1

m1,j

...
n∑
j=1

mn,j


Donc

∣∣∣∣∣∣
∑

1≤i,j≤n
mi,j

∣∣∣∣∣∣ = (MU,U) et par Cauchy-Schwarz :∣∣∣∣∣∣
∑

1≤i,j≤n
mi,j

∣∣∣∣∣∣ ≤ ‖MU‖ ‖U‖

M étant une matrice orthogonale, ‖MU‖ = ‖U‖ et :∣∣∣∣∣∣
∑

1≤i,j≤n
mi,j

∣∣∣∣∣∣ ≤ ‖U‖2 = n

∀j ∈ [[1;n]]
n∑
i=1

m2
i,j = 1

On en déduit :
∀(i, j) ∈ [[1;n]]2 m2

i,j ≤ 1 puis |mi,j | ≤ 1
Donc :
∀(i, j) ∈ [[1;n]]2 m2

i,j ≤ |mi,j |
En sommant, on obtient :
n = tr (In) = tr (MTM) =

∑
1≤i,j≤n

m2
i,j ≤

∑
1≤i,j≤n

|mi,j |

Il a été vu en cours que
{
Mn(R)×Mn(R)→ R
(A,B) 7→ tr (ATB)

est un produit scalaire.

Pour ce produit scalaire :
∀M ∈ O(n) ‖M‖2 = tr (MTM) = tr (In) = n
Soit J la matrice telle que Ji,j = 1 si mi,j ≥ 0, -1 sinon.
L’inégalité de Cauchy-Schwarz donne :∑
1≤i,j≤n

|mi,j | = (M,J) ≤ ‖M‖ ‖J‖ =
√
n× n

2 Endomorphismes et matrices symétriques
Exercice 18 (CCP 2018,2019)

Soit E un espace préhilbertien réel.
Soient f et g deux applications de E dans E telles que :
∀(x, y) ∈ E2 (f(x)|y) = (x|g(y))

1. Montrer que f et g sont linéaires.
2. Que dire de l’image de g et du noyau de f ?

Correction

17
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1. Soit x1 et x2 ∈ E et (λ1, λ2) ∈ R2.
Soit y ∈ E.

(f(λ1x1 + λ2x2)− λ1f(x1)− λ2f(x2)|y) = (f(λ1x1 + λ2x2)|y)− λ1(f(x1|y)− λ2(f(x2)|y)
= (λ1x1 + λ2x2|g(y))− λ1(x1|g(y))− λ2(x2|g(y))
= (λ1x1 + λ2x2 − λ1x1 + λ2x2|g(y))
= 0

Comme c’est vrai pour tout y, f(λ1x1 + λ2x2) = λ1f(x1) + λ2f(x2).
f est donc linéaire.
On montre de même que g est linéaire.

2. Soit x ∈ Ker (f) et y ∈ Im (g).
Il existe z dans E tel que y = g(z).
(x|y) = (x|g(z)) = (f(x)|z) = (0|z) = 0
Ker (f) et Im (g) sont donc orthogonaux.
On a donc Ker (f) ⊂ Im (g)⊥.
La réciproque est vraie.
Soit x ∈ Im (g)⊥.
‖f(x)‖2 = (f(x)|f(x)) = (x|g(f(x))) = 0.
Donc Ker (f) = Im (g)⊥.

3. Remarque
On suppose E de dimension finie ie E euclidien.
Soit n la dimension de E, qu’on suppose strictement positive.
Soit B = (e1, . . . , en) une base orthonormée de E.
Soit A la matrice de f dans la base B.
Soit B la matrice de g dans la base B.
∀(x, y) ∈ E2 (f(x)|y) = (x|g(y))
donne :
∀(X,Y ) ∈Mn,1(R)2 (AX)TY = XT (BY )
ou encore :
∀(X,Y ) ∈Mn,1(R)2 XTATY = XTBY
Donc B = AT .

Exercice 19 (Mines 2017)

La matrice A =


1− i −4 5 −7
−4 2− i 14 37
5 14 3− i −21
−7 37 −21 4− i

 est-elle inversible ?

Correction

La matrice B =


1 −4 5 −7
−4 2 14 37
5 14 3 −21
−7 37 −21 4

 est symétrique réelle donc i n’est pas valeur propre de

B.
A = B − iI4 est donc inversible.

Exercice 20 (Centrale 2019)
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Soit E un espace euclidien de dimension n.
Soient a et b deux vecteurs linéairement indépendants de E.

Soit f
{
E → E

x 7→ (a|x)b+ (b|x)a
.

1. Montrer que f est un endomorphisme symétrique de E.
2. Déterminer les valeurs propres et les sous-espaces propres de f .

Correction
1. f est un endomorphisme de E : trivial.

Un calcul simple donne :

∀(x, y) ∈ E2 (f(x)|y) = (a|x)(b|y) + (b|x)(a|y)
(x|f(y)) = (a|y)(b|x) + (a|x)(b|x)

f est symétrique.
2. D’après le théorème spectral, f est diagonalisable.

(a, b) est libre donc :
f(x) = 0⇐⇒ (a|x) = (b|x) = 0
ker(f) = V ect(a, b)⊥ est de dimension n− 2 > 0.
0 est valeur propre de multiplicité n− 2 de f .
Il manque deux valeurs propres de f . Les vecteurs propres associés sont dans (ker(f))⊥ =
V ect(a, b).

La matrice dans (a, b) de l’endomorphisme de V ect(a, b) induit par f , noté g, est
(

(a|b) ‖b‖2

‖a‖2 (a|b)

)
et on utilise la méthode habituelle :

χg = X2 − tr (g)X + det (g)
= X2 − 2(a|b)X + (a|b)2 − ‖a‖2 ‖b‖2

= (X − (a|b))2 − ‖a‖2 ‖b‖2

= (X − (a|b)− ‖a‖ ‖b‖) (X − (a|b) + ‖a‖ ‖b‖)

Les valeurs propres manquantes de f sont donc (a|b) + ‖a‖ ‖b‖ et (a|b)− ‖a‖ ‖b‖.
a et b sont linéairement indépendants donc non nuls et ces deux valeurs propres sont
distinctes.
Le cas d’égalité de Cauchy-Schwarz assure qu’elles sont non nulles.
Passons aux sous-espaces propres :

xa+ yb ∈ E(a|b)+‖a‖‖b‖(f) ⇐⇒
{

(a|b)x+ ‖b‖2 y = (a|b)x+ ‖a‖ ‖b‖x
‖a‖2 x+ (a|b)y = (a|b)y + ‖a‖ ‖b‖ y

⇐⇒ y = ‖a‖
‖b‖

x

Donc le sous-espace propre de f associé à la valeur propre (a|b) + ‖a‖ ‖b‖ est la droite
dirigée par a

‖a‖
+ b

‖b‖
.
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xa+ yb ∈ E(a|b)−‖a‖‖b‖(f) ⇐⇒
{

(a|b)x+ ‖b‖2 y = (a|b)x− ‖a‖ ‖b‖x
‖a‖2 x+ (a|b)y = (a|b)y − ‖a‖ ‖b‖ y

⇐⇒ y = −‖a‖
‖b‖

x

Donc le sous-espace propre de f associé à la valeur propre (a|b) − ‖a‖ ‖b‖ est la droite
dirigée par a

‖a‖
− b

‖b‖
.

Exercice 21 (CCP 2019)

Soit A =


0 . . . 0 1
0 . . . 0 1
...

...
...

0 . . . 0 1
1 . . . 1 0

 ∈Mn(R).

Quel est le rang de A ?
A est-elle diagonalisable ?
Quelles sont les valeurs propres de A ?

Correction
On suppose que n ≥ 2.
Le rang de A est égal au rang de la famille (C1, . . . , Cn) de ses colonnes. Mais C1 = C2 = · · · =
Cn−1 et (C1, Cn) est libre donc A est de rang 2.

A est diagonalisable car symétrique réelle.

On va supposer n ≥ 3, le cas n = 2 ne présentant pas de difficulté particulière.
n− 2 > 0 donc 0 est valeur propre. La multiplicité de 0 est la même que la dimension du noyau
car A est diagonalisable.
Il manque deux valeurs propres.Leur somme est égale à tr (A) = 0 donc elles sont opposées.
A est donc semblable à une matrice de la forme Diag(λ,−λ, 0, . . . , 0) avec λ > 0.
A2 est donc semblable à Diag(λ2, λ2, 0, . . . , 0).
On en déduit tr (A2) = 2λ2.

Mais A2 =


1 . . . 1 0
1 . . . 1 0
...

...
...

1 . . . 1 0
0 . . . 0 n− 1

 donc λ =
√
n− 1

Exercice 22 (Centrale 2016)

On note S = {X ∈ Rn tq ‖X‖ = 1} où ‖.‖ est la norme euclidienne canonique de Rn.
Soit M ∈Mn(R).
Montrer que {(MX|X), X ∈ S} est un segment de R.
On pourra commencer par supposer que M est symétrique.
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Correction
On commence par supposer que M est symétrique.
On note λ1 ≤ · · · ≤ λn ses valeurs propres.
On a classiquement :
∀X ∈ S λ1 ≤ (MX|X) ≤ λn ie {(MX|X), X ∈ S} ⊂ [λ1;λn].
Soit ε1 un vecteur propre unitaire de M associé à la valeur propre λ1.
Soit εn un vecteur propre unitaire de M associé à la valeur propre λn.
∀θ ∈ R cos θε1 + sin θεn ∈ S
Soit f : θ 7→ (M(cos θε1 + sin θεn)| cos θε1 + sin θεn)
f est continue, f(0) = λ1 et f(1) = λn
D’après le TVI [λ1;λn] ⊂ {(MX|X), X ∈ S}.
On en déduit : {(MX|X), X ∈ S} = [λ1;λn].
Autre solution
Soit y ∈ [λ1;λn].
∃t ∈ [0; 1] tq y = (1− t)λ1 + tλn.
y = (MX|X) avec X =

√
1− tε1 +

√
tεn.

Dans le cas général, on remarque :
(MX|X) = (MX)TX = XTMTX = (X|MTX) = (MTX|X)
On en déduit :
(MX|X) =

((
M +MT

2

)
X|X

)
ce qui nous ramène au cas d’une matrice symétrique.

Exercice 23 (Mines 2011, 2019)

Déterminer les A ∈Mn(R) telles que AAT A = In.

Correction
A (AT A) = In donc A est inversible et A−1 = AT A qui est symétrique.
On en déduit que A est symétrique réelle.
On a donc A = PDP T avec P orthogonale et D diagonale.
AAT A = In donne A3 = In puis D3 = In.
On en déduit facilement D = In puis A = In.
La réciproque est triviale.

Exercice 24 (Mines 2021)

Soit A ∈Mn(R) telle que A3 +A2 +A = 0.
1. On suppose en plus A symétrique.

Montrer que A est nulle.
2. Montrer que tr (A) ∈ Z.
3. Donner un encadrement de tr (A).

Correction
1. On montre classiquement que si λ est une valeur propre complexe de A alors λ3+λ2+λ = 0

ie λ = 0, j ou j2.
Mais si A est symétrique réelle, ses valeurs propres complexes sont en fait réelles : 0 est
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la seule valeur propre de A.
Mais une matrice symétrique réelle est diagonalisable donc A est semblable à la diagonale
nulle ie la matrice nulle. On en déduit facilement que A est nulle.

2. tr (A) est la somme des valeurs propres complexes de A comptées avec leurs multiplicités
donc tr (A) = α1 × 0 + α2 × j + α3j

2 avec α1 + α2 + α3 = n.
Mais A est réelle donc α2 = α3 et :
tr (A) = α2(j + j2) = −α2 ∈ Z

3. α1 + 2α2 = n donc 0 ≤ α2 ≤
n

2 .

Avec une matrice diagonale par blocs de la forme Diag(0, . . . , 0, R, . . . , R) oùR =
(
−1/2 −

√
3/2√

3/2 −1/2

)
,

on montre que α2 peut prendre comme valeur tous les entiers de 0 à
⌊
n

2

⌋
.

On conclut facilement.

Exercice 25 (Mines 2011,2019)

Soit E un espace euclidien.
Si w est un endomorphisme symétrique de E, on note α(w) sa plus petite valeur propre et β(w)
sa plus grande valeur propre.

1. Si w est un endomorphisme symétrique de E et x un vecteur de E, encadrer (w(x) | x)
à l’aide de α(w) et de β(w).

2. Soient u et v deux endomorphismes symétriques de E.
Montrer β(u+ v) ≥ α(u) + β(v).

Correction
1. ∀x ∈ E α(w) ‖x‖2 ≤ (w(x) | x) ≤ β(w) ‖x‖2

Démonstration
D’après le théorème spectral, il existe B = (e1, . . . , en) BON de E formée de vecteurs
propres de w.
Pour tout i ∈ [[1;n]], on note λi la valeur propre associée au vecteur propre ei de sorte
que :
∀i ∈ [[1;n]] w(ei) = λiei
Quitte à permuter les vecteurs de cette base, on peut supposer λ1 ≤ . . . λn.
On a alors λ1 = α(w) et λn = β(w).
Soit x ∈ E.
∃(x1, . . . , xn) ∈ Rn tq x =

n∑
k=1

xkek.

(w(x) | x) =
(
w

(
n∑
k=1

xkek

)
|

n∑
k=1

xkek

)
=
(

n∑
k=1

xkw(ek) |
n∑
k=1

xkek

)

=
(

n∑
k=1

xkλkek |
n∑
k=1

xkek

)
=

n∑
k=1

λkx
2
k car B est orthonormée

On en déduit :
λ1 ‖x‖2 = λ1

n∑
k=1

x2
k ≤ (w(x) | x) ≤ λn

n∑
k=1

x2
k = λn ‖x‖2
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2. Soit y un vecteur propre de v pour la valeur propre β(v).
x = 1

‖y‖
y est un vecteur unitaire tel que v(x) = β(v)x.

β(u+ v) = β(w) ≥ (w(x) | x) = (u(x) | x) + (v(x) | x) = (u(x) | x) + β(v) ‖x‖2

≥ α(u) ‖x‖2 + β(v) = α(u) + β(v)

Exercice 26 (Centrale 2019)

Soit A ∈Mn(R) symétrique dont toutes les valeurs propres sont strictement positives.
Etant donné un vecteur x de Rn, on pose fA(x) = XTAX où X est le vecteur colonne canoni-
quement associé à x.

1. Montrer que la fonction L(fA) : p 7→ max
x∈Rn

((p|x)− fA(x)) est bien définie.

2. Montrer que la fonction L(fA) est de la forme fB pour une matrice B à préciser.
Correction

1. • La question vue depuis le cours d’algèbre linéaire
A est symétrique réelle donc :
∃Q ∈ O(n) tq A = QDQT avec D = Diag(λ1, . . . , λn).
Par hypothèse :
∀i ∈ [[1;n]] λi > 0

Soit x ∈ Rn et X =

x1
...
xn

 la matrice colonne canoniquement associée.

Soit p ∈ Rn et P =

p1
...
pn

 la matrice colonne canoniquement associée. Attention :

contrairement aux notations habituelles, P est une colonne et non une matrice carrée.

(p|x)− fA(x) = P TX −XTAX = P T (QQT )X −XT (QDQT )X
= (P TQ)(QTX)− (XTQ)D(QTX)
= (QTP )T (QTX)− (QTX)TD(QTX)

On pose Y = QTX =

y1
...
yn

 et Z = QTP =

z1
...
zn

 .

(p|x)− fA(x) = ZTY − Y TDY =
n∑
i=1

ziyi −
(
y1 . . . yn

)λ1y1
...

λnyn


=

n∑
i=1

ziyi −
n∑
i=1

λiy
2
i =

n∑
i=1

(
ziyi − λiy2

i

)

Une étude de fonction élémentaire donne pour z ∈ R et λ ∈ R∗+ :

∀y ∈ R zy − λy2 ≤ z2

4λ avec égalité pour y = z

2λ
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On en déduit :
(p|x)− fA(x) ≤

n∑
i=1

z2
i

4λi

avec égalité pour x tel que Y =

z1/(2λ1)
...

zn/(2λn)

 ie X = 1
2QD

−1Z = 1
2QD

−1QTP =

1
2A
−1P

Donc la fonction L(fA) est bien définie.

• La question vue depuis le cours sur les fonctions de plusieurs variables
On va justifier l’existence du maximum avec le théorème des bornes atteintes.
La fonction g : x ∈ Rn 7→ (p|x) − fA(x) est continue (car polynomiale) et Rn est un
fermé non vide mais Rn n’est pas borné.
On doit tout de même avoir recours à l’algèbre linéaire.
A est symétrique réelle donc :
∃Q ∈ O(n) tq A = QDQT avec D = Diag(λ1, . . . , λn).
Par hypothèse :
∀i ∈ [[1;n]] λi > 0
et on peut supposer (quitte à permuter les colonnes de Q) que λ1 ≤ . . . λn

Soit x ∈ Rn et X =

x1
...
xn

 la matrice colonne canoniquement associée.

fA(x) = XTAX = XT (QDQT )XT = (XTQ)D(QTX)
= (QTX)TD(QTX)

On pose Y = QTX =

y1
...
yn

.

fA(x) = Y TDY =
n∑
i=1

λiy
2
i

≥ λ1

n∑
i=1

y2
i = λ1Y

TY = λ1X
TQQTX = λ1X

TX

≥ λ1 ‖x‖2

On en déduit :
∀x ∈ Rn g(x) ≤ ‖p‖ ‖x‖ − λ1 ‖x‖2 −−−−−−→

‖x‖→+∞
−∞ car λ1 > 0

Donc :
∃R > 0 tq ‖x‖ ≥ R =⇒ g(x) ≤ g(0) = 0
La boule fermée de centre 0 et de rayon R est fermée et bornée donc :
∃x0 ∈ B(0, R) tq ∀x ∈ B(0, R) g(x) ≤ g(x0)
En particulier, g(0) ≤ g(x0).
Donc si ‖x‖ ≥ R alors g(x) ≤ g(0) ≤ g(x0)
On a donc :
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∀x ∈ Rn g(x) ≤ g(x0)
La fonction g a bien un maximum sur Rn.
La fonction L(fA) est bien définie.
Par contre contrairement à la première méthode, on n’a pas à ce stade la valeur du
maximum.
Comme c’est un maximum sur Rn, il n’y a pas d’effet de bord et ∇g(x0) = 0.

g(x0 + h) = (p|x0 + h)− (X0 +H)TA(X0 +H)
= (p|x0) + (p|h)−

(
XT

0 AX0 +HTAX0 +XT
0 AH +HTAH

)
= g(x0) + (p|h)−

(
HTAX0 +XT

0 A
TH

)
+ o(H) car AT = A

= g(x0) + (p|h)−
(
XT

0 A
TH +

(
XT

0 A
TH

)T)
+ o(H)

= g(x0) + (p|h)− 2XT
0 A

TH + o(h) car XT
0 A

TH ∈M1(R)
= g(x0) + (p− 2Ax0|h) + o(h)

Donc ∇g(x0) = p− 2Ax0 et x0 = 1
2A
−1p

2. On a montré à la question précédente que le maximum est atteint en x ∈ Rn tel que
X = 1

2A
−1P , P étant la matrice colonne des coordonnées de p dans la base canonique

L(fA)(p) = 1
2P

TA−1P − 1
4P

T (A−1)TAA−1P = 1
4P

TA−1P

= f1/4A−1(p)

Donc L(fA) = fB avec B = 1
4A
−1

Exercice 27 (Mines 2021)

Soit A ∈Mn(R).
Montrer que AAT et ATA sont semblables.

Correction
• Première méthode

On commence par montrer :
Soient A et B ∈Mn(K).
Les matrices AB et BA ont le même polynôme caractéristique.

Démonstration
Soit A,B ∈Mn(K).
— Premier cas : A ∈ GLn(K)

BA = A−1 (AB)A = A−1 (AB)
(
A−1)−1

Les matrices AB et BA sont semblables donc ont le même polynôme caractéristique.
— Deuxième cas : A 6∈ GLn(K)

Il existe une suite (Ap)p∈N de matrices inversibles qui converge vers A.
∀λ ∈ K ∀p ∈ N det (λIn −ApB) = det (λIn −BAp) cf le premier cas.
On fixe λ et on fait tendre p vers +∞.
∀λ ∈ K det (λIn −AB) = det (λIn −BA)
D’où le résultat car K est infini.
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Néanmoins, l’examinatrice a demandé de montrer que toute matrice est la limite d’une
suite de matrices inversibles :
Soit A ∈Mn(K).
Si A est inversible, (A)p∈N est une suite de matrices inversibles qui converge vers A.
On suppose donc que A n’est pas inversible.
A n’a qu’un nombre fini de valeurs propres, dont 0.
Donc :
∃a > 0 tq ∀λ ∈ [−a; a] \ {0} A− λIn ∈ GLn(K)
1
p
−−−−→
p→+∞

0 donc :

∃p0 ∈ N∗ tq ∀p ≥ p0
1
p
∈ [−a; a] \ {0}

On a :

i ∀p ≥ p0 A−
1
p
In ∈ GLn(K)

ii A− 1
p
In −−−−→

p→+∞
A

On peut passer à l’exercice :
D’après ce qui précède, AAT et ATA ont le même polynôme caractéristique.
Mais AAT et ATA sont symétriques réelles donc leur polynôme caractéristique est scindé
sur R :
χATA = χAAT =

n∏
i=1

(X − λi)

et AAT et ATA sont toues les deux semblables à Diag(λ1, . . . , λn), elles sont donc sem-
blables.
• Deuxième méthode
On va montrer que AAT et ATA ont les mêmes valeurs propres sans passer par le poly-
nôme caractéristique.
Soit λ une valeur propre non nulle de AAT .
∀X ∈ Eλ(AAT ) (ATA)(ATX) = AT (AATX) = AT (λX) = λATX
Donc : AT (Eλ(AAT )) ⊂ Ker (ATA− λIn).
De plus dim

(
AT (Eλ(AAT ))

)
= dim

(
Eλ(AAT )

)
− dim

(
Ker (AT ) ∩ (Eλ(AAT )

)
Mais si X ∈ Ker (AT ) ∩ (Eλ(AAT ), λX = AATX = A × 0 = 0 donc Ker (AT ) ∩
(Eλ(AAT ) = {0} et dim

(
AT (Eλ(AAT ))

)
= dim

(
Eλ(AAT )

)
.

On en déduit que λ est valeur propre de ATA et que la dimension de Eλ(ATA) est supé-
rieure ou égale à celle de Eλ(AAT ).
Les deux matrices jouant des rôles symétriques, on a en fait prouvé qu’elles ont les mêmes
valeurs propres non nulles avec des sous-espaces propres de même dimension.
Mais il s’agit de matrices symétriques réelles donc diagonalisables en BON et leurs noyaux
sont les supplémentaires orthogonaux de la somme des sous-espaces propres associés aux
valeurs propres non nulles. Ils sont donc de même dimension.
Les matrices AAT et ATA ont donc le même spectre, avec pour chaque valeur propre
(commune) égalité des dimensions des sous-espaces propres. De plus les sommes de ces
sous-espaces propres sont égales à Rn.En prenant des BON adaptées à ces sommes, on
montre que AAT et ATA sont semblables à la même matrice diagonale donc semblables
entre elles.
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2.1 Endomorphismes et matrices symétriques positifs

Exercice 28 (X 2019, 2021)

Soit A ∈ Sn(R) telle que : ∀X ∈ Rn XTAX ≥ 0.
Montrer que max

1≤i,j≤n
(|ai,j |) = max

1≤i≤n
(ai,i).

Correction
• Première méthode

On note (e1, . . . , en) la base canonique de Rn.
Soit i et j ∈ [[1;n]].
(ei + ej)TA(ei + ej) ≥ 0
eTi Aei + eTi Aej + eTj Aei + eTj Aej ≥ 0
ai,i + ai,j + aj,i + aj,j ≥ 0
−2ai,j ≤ ai,i + aj,j
En considérant ei − ej , on obtient : 2ai,j ≤ ai,i + aj,j .
Donc 2 |ai,j | ≤ ai,i + aj,j ≤ 2 max

1≤i≤n
(ai,i)

Ce majorant étant atteint lorsque j = i = i0 qui réalise le maximum de ai,i.

• Deuxième méthode
A est une matrice symétrique positive donc ses valeurs propres sont réelles positives.
On invoque le théorème spectral.
On note (e1, . . . , en) la base canonique de Rn.
On note (ε1, . . . , εn) une BON de Rn formée de vecteurs propres de A.
On note P la matrice de passage de (ε1, . . . , εn) à (e1, . . . , en) ie :

∀(i, j) ∈ [[1;n]] ej =
n∑
i=1

pi,jεi.

On note λi la valeur propre associé à εi.
Soit (i, j) ∈ [[1;n]]2.

|ai,j | = |(ei|Aej)| =
∣∣∣∣∣
(

n∑
k=1

pk,iεk|
n∑
k=1

pk,jAεk

)∣∣∣∣∣
=

∣∣∣∣∣
(

n∑
k=1

pk,iεk|
n∑
k=1

pk,jλkεk

)∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=1

λkpk,ipk,j

∣∣∣∣∣ =
∣∣∣∣∣
n∑
k=1

√
λkpk,i

√
λkpk,j

∣∣∣∣∣
≤

(
n∑
k=1

λkp
2
k,i

)1/2( n∑
k=1

λkp
2
kji

)1/2

=
√
eTi Aei

√
eTj Aej = √ai,i

√
aj,j

≤ max
1≤i≤n

(ai,i)

Ce majorant étant atteint lorsque j = i = i0 qui réalise le maximum de ai,i.
• Troisième méthode

On vérifie facilement que l’application Φ
{
Mn,1(R)×Mn,1(R)→ R
(X,Y ) 7→ XTAY

est un produit
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scalaire.
Si on note (e1, . . . , en) la base canonique deMn,1(R), on a :

∀(i, j) ∈ [[1;n]]2 |ai,j | =
∣∣∣eTi Aej∣∣∣ = |Φ(ei, ej)|

≤
√

Φ(ei, ei)×
√

Φ(ej , ej) par Cauchy-Schwarz
≤ √

ai,i ×
√
aj,j

≤ max
1≤i≤n

(ai,i)

Ce majorant étant atteint lorsque j = i = i0 qui réalise le maximum de ai,i.

Exercice 29 (Centrale 2021)

Soit A ∈Mn(R) une matrice symétrique réelle.
Soit B ∈Mn(R) une matrice symétrique réelle telle que Sp(B) ⊂ R∗+.

1. Soit ∆ ∈ Mn(R) une matrice diagonale réelle dont tous les coefficients diagonaux sont
strictement positifs.
Soit P ∈Mn(R) une matrice inversible.
Montrer que P T∆P est symétrique.
Montrer que les valeurs propres de P T∆P sont toutes réelles strictement positives.

2. Montrer qu’il existe P ∈ GLn(R) et D ∈ Mn(R) diagonale telles que B = PP T et
A = PDP T .

3. Deux autres questions.
La question suivante est une application classique de la question précédente :
Montrer :
∀(A,B) ∈ S+

n (R)2 det (A+B) ≥ det (A) + det (B)
Correction

1.
(
P T∆P

)T
= P T∆T

(
P T
)T

= P T∆P donc P T∆P est symétrique.
Soit X ∈ Rn \ {0}.
XT

(
P T∆P

)
X = (PX)T∆(PX)

On note PX = Y =

y1
...
yn

 et ∆ = Diag(δ1, . . . , δn).

X est non nul et P est inversible donc Y est non nul.
Il existe donc i0 ∈ [[1;n]] tel que yi0 6= 0.

Y T∆Y =
n∑
i=1

δiy
2
i =

(
δi0y

2
i0 > 0

)
+
∑
i=1
i 6=i0

(
δiλ

2
i ≥ 0

)
> 0

On a donc prouvé que P T∆P est symétrique définie positive.
Ses valeurs propres sont donc toutes réelles strictement positives.

2. D’après le théorème spectral, il existe Q ∈ O(n) et ∆ = Diag(δ1, . . . , δn) telles que
B = Q∆QT .
Par hypothèse, les valeurs propres de B sont strictement positives donc les δi sont stric-
tement positifs.
Soit R = Diag(

√
δ1, . . . ,

√
δn)QT .

C’est une matrice inversible réelle.
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RTR = QDiag(
√
δ1, . . . ,

√
δn)Diag(

√
δ1, . . . ,

√
δn)QT = Q∆QT = B.

Soit R1 = R−1.
RT1 AR1 est symétrique :(
RT1 AR1

)T
= RT1 A

T
(
RT1

)T
= RT1 AR1 donc RT1 AR1 est symétrique (réelle).

Par conséquent, il existe S ∈ O(n) telle que RT1 AR1 = SDST avec D une matrice diago-
nale.
Or

(
RT1

)−1
=
(
R−1

1

)T
= RT On en déduit A = RTSDSTR = PDP T avec P = RTS

inversible réelle.
Par ailleurs, B = RTR = RT InR = RTSSTR = PP T

3. On conserve les notations précédentes.
det (B) = (det (P ))2

det (A) = (det (P ))2 det (D)
A+B = P (In +D)P T donc det (A+B) = (det (P ))2 det (In +D)
On ajoute l’hypothèse : A est symétrique positive.

∀X ∈ Rn XTDX = XTP−1A
(
P T
)−1

X =
((
P T
)−1

X

)T
A
(
P T
)−1

X ≥ 0 : D est elle
aussi symétrique positive.
Par conséquent ses coefficients sont positifs.
On en déduit (en développant le produit ou en raisonnant par récurrence) :
n∏
i=1

(1 + di,i) ≥ 1 +
n∏
i=1

di,i

ie det (In +D) ≥ det (In) + det (D)
On multiplie ensuite par (det (P ))2 et on obtient det (A+B) ≥ det (A) + det (B) pour
A symétrique positive et B symétrique définie positive.
Si B n’est que positive, on applique ce qui précède à B + 1

p
In qui est définie positive et

on fait tendre p vers +∞.

Exercice 30 (Centrale 2022)

On munitMn(R) de sa norme euclidienne usuelle : ‖M‖ =
√
tr (MTM).

On considère M ∈ GLn(R).
1. Montrer qu’il existe (S,Ω) ∈ S++

n (R)×On(R) tel que M = ΩS
2. Calculer d(M,On(R)) = inf

V ∈On(R)
‖M − V ‖.

Indication : montrer que pour tout V ∈ On(R), ‖MV ‖ = ‖VM‖ = ‖M‖
Correction

1. MTM est symétrique. De plus si X ∈Mn,1(R) \ {0} alors :
XTMTMX = (MX)T (MX) = ‖MX‖2 > 0 car M est inversible donc MX est non nul.
Donc MTM ∈ S++

n (R).
D’après le théorème spectral, il existe P ∈ O(n) et D = Diag(λ1, . . . , λn) avec les λi tous
strictement positifs tels que MTM = PDP T .
S = PDiag(

√
λ1, . . . ,

√
λn)P T ∈ S++

n (R) et S2 = MTM
Soit Ω = MS−1.
ΩTΩ = S−1MTMS−1 = S−1S2S−1 = In donc Ω ∈ O(n)
Enfin M = ΩS.
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2. On commence par démontrer l’indication.
∀M1 ∈Mn(R) ∀V ∈ O(n) ‖M1V ‖2 = tr (V TMT

1 M1V ) = tr (MT
1 M1V V

T ) = tr (MT
1 M1) =

‖M1‖2
∀M1 ∈Mn(R) ∀V ∈ O(n) ‖VM1‖2 = tr (MT

1 V
TVM1) = tr (MT

1 M1) = ‖M1‖2

∀V ∈ O(n) ‖M − V ‖2 = ‖ΩS − V ‖2 =
∥∥∥Ω(S − ΩTV )

∥∥∥2

= ‖S −W‖2 avec W = ΩTV ∈ O(n)
= tr

(
(S −W )T (S −W )

)
= tr (S2 − SW −W TS +W TW )

= tr (MTM)− 2tr (SW ) + tr (In)
= tr (MTM)− 2tr (PDiag(

√
λ1, . . . ,

√
λn)P TW ) + n

= tr (MTM)− 2tr (Diag(
√
λ1, . . . ,

√
λn)P TWP ) + n

= tr (MTM)− 2tr (Diag(
√
λ1, . . . ,

√
λn)A) + n avec A = P TWP ∈ O(n)

= tr (MTM)− 2
n∑
i=1

√
λiai,i + n

≥ tr(MTM)− 2
n∑
i=1

√
λi + n avec égalité si A = In

= tr (S2)− 2tr (S) + tr (In) = tr ((S − In)2)
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