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Chapitre 1

Le modele de Kolmogorov

1.1 Introduction

1.1.1 Un probleme étudié en Sup

On jette une piece équilibrée n fois.
Quelle est la probabilité d’avoir obtenu un nombre pair de fois Pile ?

Cette question peut étre traitée de deux manieres : sans ou avec variables aléatoires.

Si on n’utilise pas de variable aléatoire, on prend comme univers = {0;1}" (ou on code Pile
par 1 et Face par 0). Les événements élémentaires sont les n-uplets de 0 et de 1.

L’événement dont on cherche la probabilité, comme tout évenement, est un ensemble d’évene-
ments élémentaires ie une partie de €2. Ici, il s’agit de I’ensemble des n-uplets de 0 et de 1 avec
un nombre pair de 1.

Il y a ici équiprobabilité des évenements élémentaires et la probabilité cherchée est le nombre
de cas favorables divisé par le nombre total de cas.

Le nombre total de cas, c’est a dire le cardinal de 'univers, est égal a 2".

La question posée se raméne donc & un probleme de dénombrement : combien y a-t-il de n-uplets
de 0 et de 1 constitué d’un nombre pair de 1.

[n/2] n
La réponse est Np = Z <2k>
k=0

L(n—1)/2]
Pour d i lus simple de cett introduit Ni = .
our donner une expression plus simple de cette somme, on introduit Ni Z (2 b 1)

k=0
D’apres la formule du bindéme :

Np+Ni = i(;;"):w
Np—Ni = Zn:<z>(—1)k:(1—1)”:0

1
Donc Np = 2" ! et la probabilité cherchée vaut 3

Si on utilise les variables alétoires, on note pour i € [1;n], X; le résultat du i-éme lancer
(1 pour Pile et 0 pour Face), sans se préoccuper d’expliciter 'univers.
Les variables aléatoires X1, ..., X,, sont mutuellement indépendantes et suivent toutes la loi de
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Bernoulli de parametre 3
n
Le nombre de Pile obtenu est Z Xj.. C’est une variable aléatoire qui suit la loi binomiale de
k=1

1
parametres n et —.

On déduit alors des propriétés de la loi binomiale que la probabilité cherchée est :

[n/2] <1>2k <1 1>n—2k Np ) . lenl ccédent
- - = = ——, C€ (ul nous ramene au calCcu recedaent.
kZ:O 2k ) \2 2 g 0 P

1.1.2 Un probléme qu’on peut étudier en Spé mais pas en Sup

On jette une piece équilibrée jusqu’a obtenir Pile.
Quelle est la probabilité qu’on ait lancé la piece un nombre pair de fois?

Ce probleme peut étre traité sans ou avec variables aléatoires, méme si il est recommandé
de le faire avec des variables aléatoires.

Sans variable aléatoire, on définit 'univers. Il est naturel de prendre comme univers {2 =
{a;wi;ws, ...} ol wy est le cas ou on obtient Pile pour la premiere fois au k-éme lancer et
a le cas ou on n’obtient jamais Pile.

Contrairement aux situations étudiées en Sup, €2 est infini.

Sur un univers infini, il ne peut y avoir équiprobabilité, car on aurait 1 = co x p avec p > 0.

La probabilité de wy vaut ok (k — 1 fois Face puis Pile) mais comment le justifier rigoureuse-

ment 7

Il est préférable d’utiliser des variables aléatoires. On note toujours X; le résultat du i-eme lancer

(1 pour Pile et 0 pour Face), sans se préoccuper d’expliciter I'univers mais cette fois i décrit N*.

Les variables aléatoires X;,i € N* sont mutuellement indépendantes et suivent toutes la loi de
1

Bernoulli de parameétre —.

Le rang d’obtention du premier Pile est une nouvelle variable aléatoire et on cherche la proba-
bilité qu’elle soit paire.

Pour étre plus rigoureux :

T = min ({n € N* tq X,, = 1}) si {n € N* tq X,, = 1} # 0, 400 sinon.

On cherche P(T € 2N).

L’évenement (7' € 2N) est la réunion des évenements (T' = 2k) : (T € 2N) = U (T = 2k).

keN*
Contrairement aux situations vues en Sup, la réunion est infinie. On a donc besoin d’une pro-

priété relative aux réunions infinies d’événements.
2k—1

(T = 2k) = ( N (Xl=0>>ﬂ<X2k=1)

=1

On en déduit par indépendance que P(T = 2k) = — = —.

X1 1 1 1
La probabilité cherchée est donc ,;1 Y Em =3
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1.2 Univers, évenements

1.2.1 Tribu sur un ensemble

Définition
Si © est un ensemble, on appelle tribu sur Q) toute partie A de 'ensemble P(2) des parties de
Q telle que :

ied
ii pourtout Ac 4, A=Q\AeA

iii pour toute famille finie ou dénombrable ! (A;);c; d’éléments de A, la réunion U A; ap-
el
partient a A
Exemple
P() est une tribu sur . C’est la seule qui soit intéressante si € est fini ou dénombrable 2.
Par contre si €2 est infini, la question se complique considérablement mais je cite le programme :

La notion de tribu n’appelle aucun autre développement que sa définition.

1.2.2 Espace probabilisable : définition

On appelle espace probabilisable tout couple (£2,.4) ou 2 est un ensemble et .4 une tribu sur
Q.
Q est appelé 'univers et les éléments de A éveénements.
La définition d’une tribu signifie donc que :

i Q est un événement, dit événement certain
ii la non réalisation d’un événement est encore un évenement

iii la réalisation d’au moins un des évenements d’un ensemble fini ou dénombrable d’événe-

ments est encore un événement.
“+oc0o

Le programme signale la traduction de ’évenement U A, par :

n=0

dn € N tq A, est réalisé

1.2.3 Espace probabilisable : propriétés

Soit (2,.4) un espace probabilisable.
— Pour toute famille au plus dénombrable (A;);c; d’éléments de A, 'intersection ﬂ A;
i€l
appartient & A En d’autres termes, si on considére une famille au plus dénombrable
d’évenements alors leur réalisation simultanée est un évenement.

Preuve

D’apres la définition d’une tribu :

Viel B; = E eA

Toujours d’apres la définition d’une tribu, U B; appartient a A.
el

1. Cf cette notion en appendice
2. On peut facilement démontrer dans ce cas que P(Q2) est la seule tribu qui contienne tous les événements
élémentaires ie tous les singletons
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Enfin ﬂAZ’:UB,-EA

icl icl
+o0o
Le programme signale la traduction de I’événement ﬂ A, par :
Vn € N A, est réalisé "
— be A
En effet ) = Q

() est appelé ”événement impossible” et  ”événement certain”.
— Soient A et B appartenant a A.
Alors A\ B € A.
En effet, A\ B=ANB
En d’autres termes, si A et B sont deux évenements, ”A est réalisé mais pas B” est aussi
un évenement.

1.2.4 Un exemple de parallele entre le vocabulaire probabiliste et le vocabu-
laire ensembliste

On effectue une suite infinie de lancers d’un dé. Pour tout ¢ € N*, on note :
A; = {Obtention de I'as au "™ lancer}

1. Définir par une phrase ne comportant aucun vocabulaire mathématique chacun des éve-

nements +
— By = ﬂ A;
Z:43 +o0o
e-(N7)0 (M)
i=1 i=4
— B=A4
i>3

2. Ecrire a 'aide des A;, I’événement “on obtient au moins une fois I'as au-dela du n'™¢

lancer”.

3. On pose C), = U A;. Montrer que la suite (C,)nen+ est décroissante (ie pour tout n > 1,
i>n
Cp41 est inclus dans C,).
Caractériser par une phrase ne comportant aucun vocabulaire mathématique I’événement
C={)Cn
n>1
4. Ecrire a 'aide des A; les événements :
— B,, = {On n’obtient plus que des as & partir du n'*™¢ lancer}
— B = {On n’obtient plus que des as a partir d’un certain lancer}

Correction

1. — FEj est ’éveénement : “on obtient ’as & chaque lancer a partir du quatrieme”
— F5 est I’événement : ”"on n’obtient ’as & aucun des trois premiers lancers puis on
obtient I’as a chaque lancer”
— F3 est I’évenement : “on obtient ’as au moins une fois & partir du quatrieéme lancer
(inclus)”
2. 11 S’agit de U A;.

>n
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i>n i>n+1
Donc €41 est inclus dans C,

3. C) = UAi:An—l—lU( U Ai) = A1 UCh4

C est I’événement : “on obtient une infinité de fois ’as” :

wel = VneN'we(,
— VneN" Ji>ntquwe A;
<= I(w) n’est pas majoré ou on note I(w) = {n € N* tqw € A4,}
<= I(w) est infini car I(w) C N

+oo +oo +oo /+o0
4. By=()Aiet B= ] B.=J (ﬂAz)
n=1

i=n n=1 \i=n

1.3 Variables aléatoires discretes

1.3.1 Définitions

Soit (2,.4) un espace probabilisable. On appelle variable aléatoire discréte sur (£2,.4) toute
application X de €2 dans un ensemble E (quelconque) telle que :

i X(Q), 'image de X, est au plus dénombrable.
ii I'image réciproque de tout élément de X ({2) appartient a A.
En d’autres termes, pour tout z € X(Q), X ' ({z}) = {w € Qtq X(w) = z} est un

événement.

Lorsque F =R, X est dite réelle.

1.3.2 Notations

Soit (£2,.4) un espace probabilisable et X une variable aléatoire discrete sur (£2,.4) a valeurs
dans un ensemble E quelconque.
Siz ¢ X(Q) alors X! ({z}) = 0 est un événement donc en fait :
Pour tout x € E, X! ({z}) = {w € Q tq X(w) = 2} est un événement qu’on note (X = z) ou
{X ==z}

Pour tout U ¢ E, X '(U) = {w € Qtq X(w) € U} = U X'({u}) est un évene-
ueUNX(Q)

ment comme réunion au plus dénombrable d’événements. On le note (X € U).

Dans le cas particulier o E = R, on note pour = € R, (X > z) I'"événement X € [x; +o0].

On définit de méme les notations X <z, X <z et X > x.

1.3.3 Exemple

Soit (€2,.A4) un espace probabilisable et (X,,),en+ une suite de variables aléatoires réelles
discrétes sur (€2, .A).
min ({n € N* tq X, =0}) si {n e N* tq X, =0} #0
+oosi {neN*tq X, =0} =10
T est une variable aléatoire sur (€, .A) :

Soit T' = {

7
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T(Q) est inclus dans N* N {oco} qui est dénombrable donc T'(€2) est au plus dénombrable.

+o0o
T ({+o0}) = ﬂ (Xp # 0) est un évenement comme intersection dénombrable d’événements.
=1
" n—1
Pour tout n € N*, T~ ({n}) = <ﬂ (Xk # 0)) N (X, = 0) est un évenement.
k=1

1.3.4 Image d’une variable aléatoire par une fonction

Soit (£2,.4) un espace probabilisable et X une variable aléatoire discrete sur (€2,.4).
Soit f une fonction définie sur X (€2).
f(X) est une variable aléatoire.

Démonstration

Q—=F
On note Y = f(X) ou F est 'ensemble d’arrivée de f.

w = f(X(w))
Y(Q) = f(X()) est au plus dénombrable car X (€2) est au plus dénombrable.
Soit y € Y(Q).
Soit B I'ensemble des antécédents de y par f : B ={z € X(Q) tq f(z) =y}
B est au plus dénombrable car B est inclus dans X (£2) qui est au plus dénombrable.
Yyy) = U X1({z}) est donc un évenement.
zeB

1.3.5 Couples de variables aléatoires

Soit (£2,.4) un espace probabilisable.
Soient X : Q@ — E et Y : 2 — F deux applications.

Soit O {Q S ExXF
w = (X (w),Y(w))

C est une variable aléatoire discrete si, et seulement si, X et Y sont des variables aléatoires
discretes.
On dit alors que C' est un couple de variables aléatoires discretes.

Démonstration
— On suppose que X et Y sont des variables aléatoires discretes.

X (92) et Y(£2) sont donc au plus dénombrables.
X(Q) x Y(9) est alors au plus dénombrable.
Attention : C(2) peut-étre strictement contenu dans X () xY (Q2), par exemplesi X =Y :
C(Q) ={(z,z),z € X(Q)} alors que X(2) x Y (Q) = {(z,y),z € X(Q),y € Y(Q)}.
Soit ¢ € C(Q).
A(z,y) € X(Q) xY(Q) tq ¢ = (z,y)

Cl{e}) = {weQtqX(w)=retY(w) =y}
X 1({z}) nY"1({y}) est un évenement

Réciproquement, on suppose que C' est une variable aléatoire discrete.
) ExF—FE
Soit

(x,y) —x

X =7(C) donc X est une variable aléatoire.
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On montre de méme que Y est une variable aléatoire.

Plus généralement si X1, ..., X, sont n applications définies sur € alors :

(Vi € [1;n] X; est une variable aléatoire discrete) <= (X1,...,X,) est une variable aléatoire discréte
Il résulte alors de 1.3.4 que pour tout fonction définie sur un ensemble contenant

X1(Q) x -+ x Xp(Q), f(X1,...,X,) est une variable aléatoire discrete.

Par exemple, X1 + --- + X,, est une variable aléatoire discrete.

1.4 Probabilités

1.4.1 Définitions

— Soit (2,.A4) un espace probabilisable.
On appelle probabilité sur (2,.4) une application
P:A—[0;1] telle que :
i P(Q) =1
ii Pour toute suite (A4, )nen d’événements deux a deux incompatibles (ie pour toute suite
(Ap)nen d’élements de A telle que A, N A, = () pour tout couple d’entiers (n,m) tel
que n # m)

+oo +oo
n=0 n=0
Cette propriété est appelée o-additivité.

— On appelle espace probabilisé un triplet (£2,.4, P) ou (£2,.A) est un espace probabilisable
et P une probabilité sur (Q,.A).

1.4.2 A propos de la g-additivité
Dans tout ce paragraphe, (2,4, P) est un espace probabilisé.

— La suite (Ay)nen avec A, = () pour tout n € N est une suite d’éléments de A.
Pour tout couple (n,m) € N? tel que n # m, on a :
AnNAn=0Nn0=0
Donc, par o-additivité :
“+oo “+o00
P <U An> =Y P(4,)
n=0 n=0
ou encore :

400
P0)=>_ P
n=0
“+o0o
Cela n’est possible que si P(()) =0 : P(()) > 0 et si p > 0 alors Zp = +o00.

n=0
Cette propriété ne figure pas dans le cours sur les séries. Pour les besoins des démons-

trations théoriques du cours de probabilités, le programme introduit avec beaucoup de
précautions pour en limiter 1'usage aux probabilités la notion de famille sommable. Cette
notion est développée en annexe a la fin de ce cours.

La probabilité de ’événement impossible est nulle. On verra plus bas que la réciproque

9
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est fausse.

Soient A et B deux événements incompatibles.

Alors : P(AUB) = P(A) + P(B).

11 suffit d’appliquer la o-additivité avec Ay = A, Ay = B et pour tout n > 2, A, = (.
Plus généralement et par la méme méthode ou par récurrence, on peut montrer :
Soient Ay, ..., A, une famille finie d’évenements deux a deux incompatibles.

Alors P <LpJ Ai> = zp:P(Ai)

On a donc pour toute famille finie (A;);e; d’événements deux a deux incompatibles :

p (U Ai> =Y P(4).
icl icl

Cette propriété reste vraie si I est dénombrable.

Soit  une bijection de N sur I.

“+o0o +oo
p (U Ai> =P (U Aw(n)> =Y P(A,@)) par o-additivité.
i€l n=0 n=0
D’ou P (U Ai> = Z P(A;) d’apres les propriétés des familles sommables.
el iel
Pour tout évenement A, la probabilité de I’événement contraire vaut 1 — P(A).
En d’autres termes :
VAe AP(A)=1- P(A)
En effet A et A sont incompatibles donc :
P(A)+P(A)=P(AUA) =P(Q)=1

Croissance de P

V(A,B)e A2 AC B= P(A) < P(B)

En d’autres termes, si la réalisation de I’événement A entraine celle de B alors la proba-
bilité de A est inférieure ou égale a celle de B.

Pour la démonstration, il suffit de remarquer que B est la réunion des deux événements
incompatibles A et B\ A ce qui entraine :

P(B)=P(A)+ P(B\ A) > P(A)

Y(A,B)€ A2 AC B= P(B\ A) = P(B) — P(A)
Il suffit de reprendre le calcul du point précédent.
Attention : ce résultat n’est pas valable si A n’est pas inclus dans B.

V(A,B) € A2 P(AUB) = P(A) + P(B) — P(AN B)
On écrit AUB=(A\(ANB))U(ANB)U(B\ (ANB))
Les trois événements étant (deux a deux) incompatibles, on a :

P(AUB) = P(A\(ANB))+P(ANB)+ P(B\(ANB))
P(A) — P(ANB)+ P(ANB) + P(B) — P(ANB)
P(A)+ P(B) — P(AN B)

10
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1.4.3 Continuité croissante

Soit (A )nen une suite d’événements telle que pour tout n € N, on ait A,, C A,41. Alors :

+o0
nlggmljb4n)::f)<lzil4n>

Démonstration

Par croissance de P, la suite (P(Ay)), ey est croissante. Comme elle est majorée par 1, elle
converge.

On pose By = Ay et pour tout n € N*, B, = A, \ Ap_1.
D’apres les propriétés des tribus :
VneNB, €A
— Les évenements B, pour n € N sont deux a deux disjoints.
Soit (n,m) € N2 tq n # m.
On peut sans restreindre la généralité supposer n < m.
B, =A,\ A4,-1 C A, C Ap_1, valable aussi si n = 0.

B,NB, = (Ammm)mBn

— A, N (Am_1 N Bn)
= A,NQcar B, C A1

=0
“+o00 —+00
— JA4n=J Bn
n=0 n=0
VneN* B, =A4,\ A,—1 C A,
Boiifﬂ)C_Ao
Donc :
VneN B, C A,
“+00 +00
Dou: | JB.C | 4n
n=0 n=0
“+o00
Réciproquement, soit w € U A,
n=0
{n € Ntqw € A,} est une partie non vide de N donc elle a un plus petit élément noté

nop.
Sing=0alors w € Ay = By
Sing #0 alors w € Ay, et w ¢ Ay,—1 donc w € By,

—+00 “+o00 “+00
Donc w € UBnet UAnC UBn'
n=0 n=0 n=0

11
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On a donc :

P(Un)=r(Um) -

Remarque

+oo

> P(B,)

n=0
+o0

P(AQ) + Z P(An \ An—l)
n=1

P(Ap) + io P(A,) — P(Ap—1) car A,,_1 C A,
n=1

P(Aq) + Tim _P(Ay) ~ P(Ao)

lim P(A;)

n——+0oo

Soit (Ap)nen une suite d’événements (non nécessairement monotone).

—+o00 N
i <nUO An) - NLHEOO i (nUO An)

Preuve

N

Pour tout N € N, on note By = U A,

VN € N By :BNUAN_H
Donc :

VN e N By C BN+1

De plus :

+o0o +o0
U4.= U Bny
n=0 N=0
Faut-il détailler ce point ?
YneNA, C B,
“+o0o +o0
Donc U A, C U By

n=0 N=0
Réciproquement :
N +o0

VNeNBy =] A4, c | 4n

n=0 n=0

—+oco —+oc0
Donc : U By C UAn

N=0 n=0
En tout cas :

P <U° An>

n=0

n=0

(U]

lim P(By) par continuité croissante

N—+400

N—+oc0

N
lim P (U An>
n=0

12
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1.4.4 Continuité décroissante

Soit (Ap)nen une suite d’événements telle que pour tout n € N, on ait A, 11 C A,. Alors :

P4, (ﬂA>

Preuve :
Pour tout n € N, soit B,, = A4,,.
(Bp)nen est une suite d’évenements telle que pour tout n € N, on ait B, C Bp41.

Donc hm P(B (UB)
CommeP(B )=1—P(A,),on a:

T +oo
i P =1t P = 1= (U n) - (HB”):P(nﬂoAn)

Remarque
Soit (A )nen une suite d’évenements (non nécessairement monotone).

—+o0 N
i (nOO An) - Nl_lg—loo i <nDO A")

Preuve : N

Pour tout NV € N, on note Cy = ﬂ A,.
n=0

VN e NCny1 =CnN OAN_H Cc Cyn

De plus :

ﬂ An = m C'N
Faut il detalller ce point ?
VN eNCy C Ax

“+oo “+oo
Donc ﬂ Cy C ﬂ A,
N=0 n=0
Réciproquement :
—+00
YN EeN () AnC ﬂAn—CN
n=0 n=0
“+o00 —+00
Donc : ﬂAnC ﬂ Cn
n=0 N=0

En tout cas :

() = ()

= lim P(Cy) par continuité décroissante
N—+o00

N

13
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1.4.5 Sous-additivité

Si (Ap)nen est une suite d’éveénements alors :
—+00 —+00
P (U An> <> P(Ay)
n=0 n=0

On rappelle qu’en cas de divergence de la série a termes positifs Z P(A,), Z P(A,) =
n>0

Démonstration
Y(A,B) € A2 P(AUB) = P(A) + P(B) — P(ANB) < P(A) + P(B) car P(ANB) >0
On en déduit par récurrence :

Vn e N*V(Ay,...,A,) € A" P (UA) <) P(A
=1

Soit (A )nen une suite d événements.

n

vneNP(UA-> <ZP
=0

On fait tendre n vers +oo en tenant compte des remarques faites apres la continuité croissante :

P (U An> < Z P(A,), cette somme étant finie ou non.

1.4.6 Eveénements presque siirs, évéenements négligeables

Soit (€2,.A, P) un espace probabilisé.
On appelle événement presque siir tout événement A tel que P(A) = 1.
On appelle évenement négligeable tout évenement A tel que P(A) = 0.

Exemple

Soit (£2,.4, P) un espace probabilisé.

Soit (Ap)nen une famille dénombrable d’événements presque sirs.
“+o00

Montrer que ﬂ A, est encore un éveénement presque sir.
n=0

14
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Démonstration

p<ﬁ°A> - 1—P(:ﬁ;An>

+00 +0o0o
0 < P (U An> < Z P(A,) par sous-additivité
n=0
0 >

INA
o)
_l’_
\ Cg
2
3
INA
MJr
3
o
I
o

p<ﬁA> _

1.5 Probabilités conditionnelles

1.5.1 Définition

Soit (£2,.4, P) un espace probabilisé.
Pour deux événements A et B tels que P(B) > 0, on appelle probabilité conditionnelle de A
P(ANB)

sachant B et on note Pg(A) ou P(A|B) le quotient P(B)

Remarque
Attention a la notation P(A|B) : A|B n’est pas un événement.

1.5.2 Probabilité Pg

Soit (€2,.4, P) un espace probabilisé.
Soit B un évenement tel que P(B) > 0.
A —[0;1]

est une probabilité sur (92, .4).
A Pp(A) = P(A|B)

L’application Pp {
Démonstration
— Soit A € A.
ANB C Bdonc0< P(ANB) < P(B).
On en déduit 0 < Pg(A) < 1.
P(QNB) P(B)
Pp(Q) = P(B) ~ P(B) =1.
— Soit (Ap)nen une suite d’événements deux a deux incompatibles.
Les évenements A, N B, n € N sont également deux a deux incompatibles et donc :
+o0 +o0 +oo
P <<U An> mB) =P <U(Ant)> =Y P(4,NB)
n=0 n=0 n=0

Divisant par P(B), on obtient :
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“+oo “+oo
Py (U An> Y Pa(ay)
Remarquen ’ "
Pp a donc toutes les propriétés d’une probabilité sur (2, .4).
On dispose en particulier des relations suivantes, souvent utiles :
— VAe APg(A) =1- Pg(4)
— V(A,C) € A2 Pg(AUC) = Pg(A) + Pg(C) — Pg(ANCO)

1.6 Formule des probabilités composées

1.6.1 Introduction

Si A et B sont deux évenements tels que P(B) > 0 alors P(AN B) = P(A|B) x P(B).
Formellement on tourne en rond mais il existe de nombreuses situations ou on sait facilement
évaluer P(A|B) et la formule précédente permet de calculer P(AN B).

Examinons par exemple la situation suivante :

On considere deux urnes U; et Us contenant chacune initialement deux boules noires et trois
boules blanches. On tire une boule de 'urne U7, on note sa couleur et on la met dans 'urne Us.
On tire alors une boule dans 'urne Us.

Quelle est la probabilité de tirer deux fois une boule noire ?

On note Ny ’événement : ”la boule tirée de I'urne U; est noire” et Ny I’événement : ”la boule
tirée de 'urne Us est noire”.

On cherche P(Ny N Ny).

P(Ny N Ng) = P(N2|Ny) x P(Ny).

P(Ny1) = — car U; contient initialement 5 boules dont 2 noires.

P(N3|Ny) = g =5 car si la premiere boule tirée est noire, lors du deuxieme tirage U contient

6 boules dont 3 noires.

[\

1
Finalement la probabilité cherchée est 3 X — = 5

ot

1.6.2 Formule des probabilités composées

Soit (2,.4, P) un espace probabilisé.
Soient Ay, ..., A, n événements tels que P(A;N---NA,_1) > 0.
Alors :

P(Alﬂn-ﬁAn) :P(Al) X P(A2|A1) X P(A3|A1HA2) X oo+ X P(An|A1ﬂ"'ﬂAn_1)

Remarques
— Les probabilités conditionnelles écrites dans cette formule ont bien un sens :
Vie[lin—1] P(Ain---NA4;) >0
En effet AyN---NA,_1 CA1N---NA; et on utilise la croissance de la probabilité.
— Cette formule se démontre par récurrence sur n.

1.6.3 Exemple

On consideére une urne contenant 4 boules blanches et 3 boules noires.
On tire une a une et sans remise 3 boules de 'urne.
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Quelle est la probabilité que la premiere boule tirée soit blanche, la seconde blanche et la troi-
siéme noire 7

Notons B; 1’événement ”la i®™€ boule tirée est blanche” et N; I’événement "la i®™€ boule ti-
rée est noire”.

On cherche P(B; N By N N3).

Utilisons la formule des probabilités composées :

4 3
P(BlﬂBQQNg) :P(Bl) X P(BQ‘Bl) X P(N3|BlﬂB2) = ? X 6 X

1.7 Formule des probabilités totales

1.7.1 Systéme complet d’évenements

Soit (€2,.A, P) un espace probabilisé.
On appelle systéeme complet (sous-entendu au plus dénombrable dans le cadre du programme)
d’évenements tout famille (A;);e; d’événements telle que :

i I est un ensemble au plus dénombrable

ii V(i,j) € I? i # j = A; N A; = 0 ie les éveénements de la famille sont deux a deux

incompatibles.
iii (J4; =0
iel

1.7.2 Formule des probabilités totales

Soit (€2,.A, P) un espace probabilisé.
Soit B un évenement.
Si (A;)ier est un systéme complet d’éveénements, fini ou dénombrable, alors
P(B)=) P(BNA;) =) P(B|4;) P(4))

il iel

Remarque
Dans un systeme complet d’événements, il est possible qu’il existe des évéenements A; de proba-
bilité nulle.
Dans ce cas P(BJ|A;) n’est pas définie et la formule précédente ne peut pas étre appliquée telle
quelle.
En pratique pour préserver cette formule comme outil de calcul, on adopte la convention
P(B|A;) P(A;) = 0 lorsque P(4;) = 0.

Démonstration de la formule des probabilités totales
B = U(BﬂAi) car UAi:Q.
iel iel
(BNA;)N(BNAj)=DBnN(A;NA;) donc les BN A; sont deux a deux disjoints.
Donc, d’apres la o-additivité, P(B) = > P(BN A;) = Y _ P(B|A;) P(4;) avec la convention
iel iel
ci-dessus.

1.7.3 Généralisation

Soit (€2,.4, P) un espace probabilisé.
On appelle systéme quasi-complet (sous-entendu au plus dénombrable dans le cadre du pro-
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gramme) d’événements tout famille (A;);c; d’événements telle que :
i I est un ensemble au plus dénombrable

ii V(i,j) € I i # j = A; N A; = 0 ie les évenements de la famille sont deux a deux
incompatibles.

iii P (U Ai> = 1, ou ce qui revient au méme si les deux premieres hypotheses sont vérifiées :
el
> P(4A;) =1
el
Soit B un évenement.
Si (A;)ier est un systeme quasi-complet d’événements, fini ou dénombrable, alors
P(B)=>Y_ P(BNA;) =) _ P(B|A;) P(A)
il iel

Remarque
Dans un systéeme quasi-complet d’évenements, il est possible qu’il existe des évenements A; de
probabilité nulle.
Dans ce cas P(BJ|A;) n’est pas définie et la formule précédente ne peut pas étre appliquée telle
quelle.
En pratique pour préserver cette formule comme outil de calcul, on adopte la convention

P(B|A;) P(A;) = 0 lorsque P(4;) =0.

Démonstration de la formule des probabilités totales avec un systéme quasi-complet
d’événements

Soit A =Q\ (UA1>
icl

P(A)=0

Soit k¢ Iet J={k}UI.

Si on pose Ay = A alors la famille (A4;);c; est un systéme complet d’évenements.
Donc :

P(B) = P(BNA)+)> P(BNA)
el
= 0+ Z P(BnN A;) par croissance de P
icl

= Y. P(Bn4A;) =) P(B|A;)P(A)
iel el

1.8 Formule de Bayes

1.8.1 Proposition

Soit (€2,.4, P) un espace probabilisé.

Soient A et B deux événements de probabilités strictement positives.

‘ _ P(B|A) x P(A)
Ona: P(A|B) = P () .
En effet, P(AN B) = P(A|B) x P(B)
et en inversant les roles de A et de B : P(BN A) = P(B|A) x P(A).
Comme ANB=BNA,ona: P(A|B)x P(B) = P(B|A) x P(A) et on en déduit le résultat en
divisant par P(B) > 0.
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1.8.2 Proposition

Soit (2,.A4, P) un espace probabilisé.
Soit (A;)ier un systéme complet ou quasi complet, au plus dénombrable, d’événements.
Soit B un évenement de probabilité non nulle.
Soit ig € I tel que P(A4;,) > 0.

o P(B|Ay) P(As)
})(14i0’l3) - - “©
> P(B|A;) P(A)
el
Démonstration
D’apres la formule des probabilités totales : P(B) = Z P(B|A;) P(A)).

el
11 suffit donc d’appliquer le paragraphe précédent avec A = A;,.

Remarque

On applique souvent cette formule avec le systéme complet {A; A} ol A est un événement de
probabilité différente de 0 et de 1.

On obtient, pour B événement de probabilité non nulle :

PAB) P(BIA)P(A)

P(B|A) P(A) + P(BJ|A) P(A)

Exemple

On prend un dé au hasard parmi un lot de 100 dés dont on sait que 25 sont pipés. Pour un
1
dé pipé, la probabilité d’obtenir un 6 est de —.
On lance un dé et on obtient 6. Quelle est la probabilité que ce dé soit pipé?
On relance alors ce dé et on obtient a nouveau 6. Quelle est la probabilité que ce dé soit pipé?

Premiere question
On a, avec les notations précédentes, A : "le dé est pipé” et B : “on obtient un 6”.
D’ou, par application de la formule précédente, la probabilité cherchée :

12

. PBAPA 3 1
PAIBY = b Bia Py + B PG T2, 175 2
2 100 6 100

Deuxiéme question
On a, avec les notations précédentes, A : ”le dé est pipé” et B : “on obtient deux fois 6”.

D’ou, par application de la formule précédente, la probabilité cherchée :
1 25
P(B|A) P(A) 4100 3
(4]B) P(B|A)P(A) + P(B|A)P(A) 1 25 1 75 ~ 4

4100 ' 36 100

1.9 Evenements indépendants

1.9.1 Définition

Soit (€2,.4, P) un espace probabilisé.
Deux évenements A et B sont dits indépendants si, et seulement si, P(AN B) = P(A) x P(B).
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1.9.2 Remarques

— Si P(B) > 0, 'indépendance de A et de B équivaut a P(A|B) = P(A).

— L’indépendance est une relation symétrique entre les événements.

— Si un des deux événements A ou B a une probabilité nulle alors A et B sont indépendants.
En effet par croissance de P, P(AN B) = 0.

— 11 ne faut pas confondre indépendance et incompatibilité de deux éveénements.

Par exemple si on jette une piece de monnaie équilibrée, Q@ = {P, F'} et P(P) = P(F) = %
Les deux évenements élémentaires P et F' sont incompatibles mais pas indépendants :
P(PAF)=0ct P(P) x P(F) = %
Pour un exemple d’événements qui sont indépendants mais pas incompatibles, cf ci-
dessous.

— L’indépendance n’est pas une qualité intrinseque des événements. Elle dépend de la pro-
babilité considérée.
Considérons Q = [1;6], P, la probabilité uniforme et P, définie par :
Py(1) = Py(2) = 5, Po(8) = 5 et Po(4) = Py(5) = Po(6) = .
Considérons enfin les évenements A = {1;2} et B = {2;3}.

Ona AN B = {2}.
2 1 1
Pi(A) = Pi(B) = =g P(ANB) = o

A et B ne sont pas indépendants pour P;.

Parcontr(la: 1 1
NN
A
PQ(AQB):6:§X*

A et B sont indépendants pour Ps.

1.9.3 Indépendance et passage au complémentaire

Soit (€2,.4, P) un espace probabilisé.
Soient A et B deux éveénements indépendants.
Alors, les évenements A et B d’une part, A et B d’autre part, et enfin A et B sont indépendants.

Démonstration

A= (ANB)U (AN B), union disjointe donc :

P(ANB)=P(A) — P(ANB) = P(A) — P(A) P(B) car A et B sont indépendants.
P(ANB)=P(A)(1 - P(B)) = P(A) P(B).

A et B jouant des roles symétriques, on en déduit que A et B sont indépendants.

Enfin, remplacant A par A, on a d’apres le premier cas 'indépendance de A et B.

20



Probablités 2025 - 2026

1.9.4 Famille finie d’événements mutuellement indépendants

Soit (2,.4, P) un espace probabilisé.
On dit que n éveénements Aq, ..., A, sont mutuellement indépendants si, et seulement si :

VIC[Lin]I#0 P(ﬂAz) = [T P4y

el icl

Remarques
— Pour n = 2, cette notion se confond avec I'indépendance définie en 1.9.1.

Sin > 3, n évenements mutuellement indépendants sont indépendants 2 & 2 :
V(i,j) € [1;n]*i # j = A; et A; sont indépendants.
(il suffit de prendre I = {i;7} dans la définition)
mais la réciproque est fausse comme le montre ’exemple suivant :
On lance deux fois une piéce de monnaie équilibrée :
Q={(P,P),(P,F),(F,P),(F,F)} muni de la probabilité uniforme.
On consideére les trois événements suivants :

— 7A” : ”le premier lancer a donné pile”
— 7"B” : ”le deuxiéme lancer a donné pile”
— 7C” : "les deux lancers ont doriné le méme résultat”
1
1
7 C:{(P7P)7(F7F)}’ P(C):i
1
— AnB={(P,P)}, P(ANB) = 1
A et B sont indépendants.
1
— AnC={(P,P)}, P(ANC) = 1
A et C sont indépendants. .
— BNnC={(P,P)}, P(BNC) = 1

B et C sont indépendants.

— ANBNC ={(P,P)}, P(A“B”C):i

A, B et C ne sont pas mutuellement indépendants.
— La définition de I'indépendance mutuelle peut-étre formulée ainsi :
Soit (2,.A, P) un espace probabilisé.
Soit (A;)ier une famille finie d’événements.

Ces évenements sont dits mutuellement indépendants si, et seulement si, pour toute partie
finie J de I3, on a :

P (ﬂ Ai) =1 P4
icJ icJ
— Soit (£2,.A, P) un espace probabilisé.
Soit (A;)iesr une famille finie d’événements mutuellement indépendants.
Soit J une partie de I.
Les événements A; pour i dans J et A; pour i € I\ J sont également mutuellement
indépendants.

3. il va de soi qu’on suppose I et J non vides
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11 suffit de démontrer que si Ay, ..., A, sont mutuellement indépendants alors Ai, ..., A,_1
et A,, sont mutuellement indépendants.

Dans le cas général, on passe les évenements au complémentaire un par un, peu importe
qu’ils soient en derniére position ou non.

On suppose donc Ay, ..., A, mutuellement indépendants et on considére une partie de I
de [1;n] de la forme I; U {n} (si I ne contient pas n, il n’y a rien a démontrer).
Soit A = ﬂ Al

i€l

De la défintion découle :

P(4) = [ P(4)

i€l

P(ANA,) =P (ﬂ AZ-) =[] P(4)
i€l el
On en déduit P(AN Ay,) = P(A)P(A,).
A et A,, sont donc indépendants. Comme vu plus haut, on peut en déduire que A et A,
sont indépendants :

P ((m Ai) n An> = P(ANA,) = P(A)P(A,) = (H P(An) P(4,)
i€l i€l

et on montre ainsi, en revenant a la définition, que les événements Aq,..., A, 1 et A,
sont mutuellement indépendants.

On peut écrire la définition précédente avec I dénombrable et définir ainsi la notion de
famille dénombrable d’événements mutuellement indépendants.

Cette définition ne figure pas au programme.

X 2016

On a deux dés équilibrés : un bleu et un rouge.

On note A ’événement : ”la somme des deux est égale & 9.

Trouver deux événements relatifs au dé rouge tels que :

— P(ANnBNC)=P(A)P(B)P(C)

— P(ANB)+ P(A)P(B)

— P(ANC)#P(A)P(C)

— P(BnC)+ P(B)P(C)

Correction

L’univers 2 = [1;6]2, le premier terme étant le résultat du dé rouge, le second celui du

dé bleu. A .
On cherche d’abord ce qu’on peut dire en supposant que B et C' existent.

La probabilité de tout évenement est de la forme 36 ou N est le nombre de cas favorables.

0<PANBNC)< P(A) = % donc 36 x P(ANBNC) € {0;1;2;3;4}.
P(ANnBNC) =0 est impossible :

On aurait P(A)P(B)P(C) =0 donc P(B) ou P(C) =0.

En contexte fini, B ou C est I’événement impossible. A et () sont indépendants.
P(ANBNC) = P(A) est impossible :

On aurait P(A)P(B)P(C) = P(A) donc P(B) = P(C) = 1.

En contexte fini, B et C sont I’évenement certain. A et ) sont indépendants.
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1
On essaye avec P(ANBNC) = 36

1 1
P(B)P(C) = —— =~
(BYP(C) = 35pa) ~ 1
B et C sont de la forme b x [1;6] et ¢ x [1;6] avec b et ¢ inclus dans [1; 6].
19 ~ Card(b) x 6 x Card(c) x 6  Card(b) x Card(c)
Done 7 = 35 = PIB)P(C) = 36 x 36 - 36

D’ot Card(b) x Card(c) =9 avec Card(b) et Card(c) des entiers compris entre 0 et 6.
Donc Card(b) = Card(c) = 3.

b et ¢ ne peuvent pas étre disjoints : B et C' le seraient et on aurait P(ANBNC) =0
On tatonne un peu et on essaie :

b=1{1;2;3} et ¢ = {3;4;5} (mais d’apres 'ordinateur : b = ¢ = {1;2;3} fonctionne).
ANBNC ={(3,6)} de probabilité %

P(B)=pPC)=>20_1

On a bien P(ANBNC) z P(A)P(B)P(C).
AN B ={(3,6)} de probabilité %

On a bien P(AN B) + P(A)P(B).

ANC = {(3,6); (4,5); (5,4)} de probabilité %

On a bien P(ANC) # P(A)P(C) = 36

BN C = {3} x [1;6] de probabilité %
On a bien P(BNC) % P(B)P(C) = %
Solution avec Python

On représente les parties de [1; 6] par des listes de 0 et de 1 de longueur 6, 1 marquant
I’appartenance.

Compte tenu des indices de liste en Python, I’ensemble {2;4} est représenté par la liste
[(0,1,0,1,0,0].

Le cardinal d’une partie est la somme des éléments de la liste la représentant.

Comme on doit passer en revue toutes les parties de [1;6], la fonction suivant prend
en entrée une liste de longueur 6 représentant une partie de [1;6] et renvoie la liste de 0
et de 1 de longueur 6 qui suit 'entrée dans 'ordre lexicographique (sauf lorsque la liste
représente [1; 6] mais la fonction suivant n’est pas appelée avec cette entrée).

from time import clock

def suivant(E):
if E[5]==0:
E[5]=1
else:
i=5
while i>=0 and E[i]==1:
j—-=
if i>=0:
E[i]l=1
for j in range(i+1,6):
E[j]1=0
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debut =clock()
a=[0,0,1,1,1,1]
PA=4#P (A) *36

b=[0]%6
for i in range(2+%*6):
#calcul de P(B)*36
PB=sum(x for x in b)*6
c=[0]*6
for j in range(2+**6):
#calcul de P(C)*36
PC=sum(x for x in c)*6
#calcul de P(B inter C)*36
PBC=sum(b[i]*c[i] for i in range(6))*6
#calcul de P(A inter B)*36
PAB=sum(a[i]*b[i] for i in range(6))
#calcul de P(A inter C)*36
PAC=sum(a[il*c[i] for i in range(6))
#calcul de P(A inter B inter C)*36
PABC=sum(a[i]*b[i]*c[i] for i in range(6))
cond1=PABC*36*36==PA*xPB*PC
cond2=PAB*36 ! =PA*PB
cond3=PAC*36!=PA*PC
cond4=PBCx*36 ! =PB*PC
if condl and cond2 and cond3 and cond4:
B=[i+1 for i in range(6) if b[i]==1]
C=[i+1 for i in range(6) if c[i]==1]
print(B,C)
suivant (c)
suivant (b)

duree=clock()-debut
print (duree)

([4, 5, 61, [1, 2, 61)
([4, 5, 61, [1, 2, 5])
([4, 5, 61, [1, 2, 41)
(L3, 5, 61, [1, 2, 6])
([3, 5, 61, [1, 2, 5])
(3, 5, 61, [1, 2, 31D
([3, 4, 61, [1, 2, 61)
(03, 4, 61, [1, 2, 41D
([3, 4, 61, [1, 2, 31D
([3, 4, 51, [1, 2, 51D
([3, 4, 51, [1, 2, 4D
(L3, 4, 51, [1, 2, 31D
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(f1, 2, 61, [4, 5, 61)
(f1, 2, 61, [3, 5, 61)
(f1, 2, 61, [3, 4, 61)
(f1, 2, 61, [1, 2, 61)
(f1, 2, 51, [4, 5, 61)
(f1, 2, 51, [3, 5, 61)
(f1, 2, 51, [3, 4, 51)
(f1, 2, 51, [1, 2, 51D
(f1, 2, 41, [4, 5, 61)
([1, 2, 41, [3, 4, 61)
(f1, 2, 41, [3, 4, 51D
(f1, 2, 41, [1, 2, 41D
(f1, 2, 31, [3, 5, 61)
(f1, 2, 31, [3, 4, 61)
(f1, 2, 31, [3, 4, 51D
(r1, 2, 31, [1, 2, 31D
0.064684

1.10 Variables aléatoires indépendantes

1.10.1 Couple de variables aléatoires indépendantes

Soit (2,.4, P) un espace probabilisé.
Soient X et Y deux variables aléatoires discretes sur (€2,.4).
On dit que les variables aléatoires X et Y sont indépendantes, et on note X 1L Y, si, et seulement
si, pour toute partie A de X (Q2) et toute partie B de Y (2), les événements (X € A) et (Y € B)
sont indépendants.

1.10.2 Image de deux variables aléatoires par des fonctions

Soit (€2,.A, P) un espace probabilisé.
Soient X et Y deux variables aléatoires discretes sur (€2,.4).
Soient f une fonction définie sur X (£2) et g une fonction définie sur Y (2).
Si X et Y sont indépendantes alors f(X) et g(Y) sont indépendantes.

Démonstration

Soit A une partie de f(X(Q)).

Soit C' I’ensemble des antécédents des éléments de A par f :
C={xeX(Q)tq f(z) e A}

L’évenement (f(X) € A) est identique a ’évenement (X € C).

Soit B une partie de g(Y (£2)).

Soit D ’ensemble des antécédents des éléments de B par ¢ :

D ={yeY(Q)tqg(y) € B}

L’évenement (g(Y') € B) est identique a I’événement (Y € D).

X et Y sont indépendantes donc les évenements (X € C) et (Y € D) sont indépendants. On en
déduit que les évenements (f(X) € A) et (g(Y) € B) sont indépendants.
Donc les variables aléatoires f(X) et g(Y') sont indépendantes.
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1.10.3 Extension au cas de n variables aléatoires

Soit (€2,.4, P) un espace probabilisé.
Soient X7, ..., X, n variables aléatoires discretes sur (£2,.A4).
On dit que les variables aléatoires X7, ..., X, sont (mutuellement) indépendantes si, et seule-

n
ment si, pour tout (Ai,..., A,) € HP(XZ(Q)) les évenements (X; € A;) sont mutuellement
i=1

indépendants.
Si on s’en tient a la définition, cela signifie que :

VIC[Lin]I+#0 P (ﬂ(XZ € A1)> = HP(Xi € 4;) (o A; € P(X;(2)))
et on a nécessaireﬁnenti:el . ! .

V(A1 ..., Ay) € [[P(Xi() P (ﬂ(Xi c AZ-)) =[] P(xi € A)

La réciproque es‘ézéraie. En effet slizll est non vide ei::sltrictement contenu dans [1;n] :

p (ﬂ(xi € Ai)> = P ((ﬂ(xi S AZ-)) n ( N (Xie Xi<ﬂ))))

iel iel ie[1n]\I

- (HP(Xi eAi)) X ( II P eXz-(Q)))

icl i€[L;n]\I
= (HP(XieAi)) x( 11 1)
el te[Ln]\I
= [[PX;e€A)
i€l

On en déduit au passage que si I est une partie non vide de [1;n] alors les variables aléatoires
X;,1 € I sont indépendantes.

Pour tout ¢ € [1;n], soit f; une fonction définie sur X;(Q).

Si les variables aléatoires X1, ..., X, sont indépendantes alors il en est de méme des variables
aléatoires f1(X1),..., fn(Xn).

En effet, pour tout ¢ € [1;n] soit A; une partie de f;(X;(£2)) et B; P'ensemble des antécédents
des éléments de A; par f;.

Pour tout i € [1;n], les évenements (f;(X;) € A;) et (X; € B;) sont identiques.

Les variables aléatoires X7, ..., X, sont indépendantes donc les événements (X; € B;) sont in-
dépendants.

On en déduit que les évenements (f;(X;) € A;) sont indépendants.

Donc les variables aléatoires f1(X1),..., fn(Xy) sont indépendantes.

26



Chapitre 2

Les variables aléatoires et leurs lois

2.1 Loi d’une variable aléatoire discrete

2.1.1 Distribution de probabilités d’une variable aléatoire discréete

Soit (€2,.A, P) un espace probabilisé.
Soit X une variable aléatoire discrete sur (2, A, P).
On appelle distribution de probabilités de X la famille (P(X = z)),¢ v (q)-

2.1.2 Proposition

Soit (£2,.4, P) un espace probabilisé.
Soit X une variable aléatoire discréte sur (2, A, P).
P(X(€)) = [0;1]
A— Px(A)=P(X € A)
On l'appelle loi de X.

L’application Px { est une probabilité sur P(X(2)).

Démonstration
— Si A e P(X(Q)), il est clair que Px(A) = P(X € A) € [0;1].
— Px(X(Q) = P(X € X(Q) = P() = 1
— Soit (Ap)nen une famille de parties deux a deux disjointes de X ().
Les évenements (X € A,,) sont deux & deux disjoints donc :
+oo +oo +oo +00 +o00
Px (U An> :P(Xe U An> :P(U(XeAn)> =Y P(Xed,) =) Px(4,)
n=0 n=0 n=0 n=0 n=0
Remarque
La loi Py de X est caractérisée par sa distribution de probabilité.
En effet, si on connait la loi de X on peut en déduire facilement sa distribution de probabilité :
Vee X(Q) P(X =z) =P (X € {z}) = Px {z})

Récirpoquement, si on connait la distribution de probabilité de X, on peut en déduire sa loi.
Soit A une partie de X ().
X () est au plus dénombrable donc A est au plus dénombrable.

PX(A):P(XGA):P<U(X:a)>:ZP(X:a)

acA a€A
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2.1.3 Notations

Soit (€2,.A, P) un espace probabilisé.
Soit X et Y deux variables aléatoires discretes sur (€, A, P).
On note X ~ Y lorsque X et Y suivent la méme loi ie :

i X(Q)=Y(Q)
ii Va€ X(Q) =Y(Q) P(X =a) = P(Y = a)

2.1.4 Image de deux variables aléatoires de méme loi par une fonction

Soit (£2,.4) un espace probabilisé et X, Y deux variables aléatoires discretes sur (£2,.4).
On suppose que X et Y ont la méme loi.
Soit f une fonction définie sur X () = Y (Q).
On a déja vu que f(X) et f(Y) sont des variables aléatoires.
On va montrer qu’elles ont la méme loi.
Pour cela, il suffit de montrer qu’elles ont la méme distribution de probabilités.

Soit z € f(X(Q)) = f(Y(2)).
Soit B I’ensemble des antécédents de z par f : B={x € X(Q) =Y (Q) tq f(x) = z}.
B est au plus dénombrable car B est inclus dans X (Q2) = Y (£2) qui est au plus dénombrable.
(f(X)Lz) = U X~Y(x) donc par o-additivité :
zeB

P(f(X)=2) =) P(X=ux)
reEB
(fY) H2) = U Y ~!(x) donc par o-additivité :
reB
P(f(Y)=z2)=> P(Y =x)
zeB

X et Y ayant la méme loi, donc la méme distribution de probabilité, P (f(X) =z) = P (f(Y) = z)

2.2 Indépendance des variables aléatoires et distribution de pro-
babilité

2.2.1 Cas de deux variables aléatoires

Soit (€2,.4, P) un espace probabilisé.
Soient X et Y deux variables aléatoires discretes sur (€2, .4, P).
Rappelons que cela revient a dire que (X,Y") est une variable aléatoire discréte.
X1Y =VY(zy e XQNY(Q) PX=zY=y)=PX=zx)P(Y =y)
ou la notation P(X = z,Y = y) désigne la probabilité de 1’événement

(X,Y) = (z,9)) = (X =) N (Y =y)

Démonstration

On suppose X 1L Y.

Par définition, pour tout A C X (Q2) et tout B C Y (Q2), les événements (X € A) et (Y € B) sont
indépendants.

En prenant A = {z} et B = {y}, on a l'indépendance des événements (X = z) et (Y =y) et la
relation P(X =z,Y =y) = P(X =z)P(Y =y)
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Réciproquement, on suppose :

V(z,y) e X()NY(Q) P(X =2,Y =y)=P(X =z)P(Y =vy)

Soient A C X(Q2) et B C Y (Q).

L’évenement (X € A)N (Y € B) est identique & I’événement U (X =z,Y =y).

(z,y)€EAXB
P(XeA)Nn(Y eB)) = Z P(X =z,Y = y) par incompatibilité
(z,y)€EAXB
= Z P(X =z)P(Y = y) par hypothese
(z,y)€AXB
- (T re-a) (z P(Y = y>)
€A yeEB

en appliquant sans probléme Fubini puisque tout est positif
= P(X € A)P(X € B) par incompatibilité

2.2.2 Un exemple utile de couple de variables aléatoires indépendantes

Soit (€2,.A, P) un espace probabilisé.
Soient A et B deux évenements indépendants.
14 et 15 sont deux v.a.r indépendantes.
Rappelons a cet effet que A et B d'une part, A et B d’autre part et A et B sont également
indépendants.
On calcule alors P(14 = 1,15 = 1) ainsi que les trois autres et on s’assure que la CNS de la
définition est vérifiée.
Je laisse ce soin au lecteur.

2.2.3 Cas de n variables aléatoires

Soit (€2,.4, P) un espace probabilisé.
Soient X7i,..., X, n variables aléatoires discretes sur (92,4, P).
X1,...,X, indépendantes <= V(x1,...,z,) € X1(2) x -+ x X,,(Q) P(X1 = z1,...,Xp, =

i=1

Démonstration

On suppose X1, ..., X, indépendantes.

Par définition, pour tout (Aj,...,A4,) € P(X1(2)) x -+ x P(X,(Q)) les évenements (X; €

Ay),..., (X, € Ay) sont indépendants.

En prenant A = {z;}, on a l'indépendance des événements (X; = x;) et la relation P(X; =
n

Tl Xp =ap) = HP(Xi = x;)
i=1
Réciproquement, on suppose :

V(z1,...,20) € X1(Q) X - x Xp(Q) P(X1 =1,..., X =2) = HP(XZ- = ;)
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Soit (A1, ..., An) € P(X1(Q)) x -+ x P(Xn()).

P(ﬁ(XieAi)> = P( U (Xlle,...,Xn:a:n)>
(z1,eesn)

=1 6A1><~~'><An
= Z P(Xy =1,...,X,, = z,) par incompatibilité
(11,...,xn)€A1><---><An
= Z P(X; =x)... P(X,, = x,) par hypothese

(Il,...,xn)GAl XX Ay

= ( > (P(Xy = ;1:1)) ( > P(Xo=1x9)...P(X,, = xn))
(2240 esn

T1€A; JEAa XX Ay
par Fubini

(w27"'=xTL)eA2><"'><ATL

et on itere le procédé.

2.2.4 Lemme des coalitions

Soit (2,.4, P) un espace probabilisé.
Soient X1,..., X, n variables aléatoires discretes sur (92, .4, P).
Soit m € [1;n — 1] (ce qui sous-entend n > 2).
Soit f une fonction définie sur X;(2) x -+ x X,,(Q2) et g une fonction définie sur X,,11(2) x
s X X (9).

Si les variables aléatoires X7, . .., X, sont indépendantes alors les variables aléatoires f(X7,..., X;,)

et 9(Xm+1,--.,Xy,) sont indépendantes.

Démonstration
On commence par montrer que les variables aléatoires (Xi,...,Xpm) et (Xpmt1,...,X,) sont
indépendantes.
Pour cela, on utilise la caractérisation de 2.2.1.
Soit (x1,...,&m) € X1(Q) X -+ X X (2) et (Tyms1y.- s Tn) € Xinp1(Q) x -+ x X, (92).

P (Xl, cee 7Xm) = (.Z‘l,. . .,xm), (Xm—i—l; e 7Xn) = (a;m+1, oo ,xn))
X1 le,...,Xn:{L‘n):P(Xl :1'1) X xP(Xn:acn)

- <ﬁ P(X; :m) X ( f[ P(X; =xz‘))

i=1 i=m-+1
Mais les variables aléatoires X1, ..., X,, sont mutuellement indépendantes donc :
m m
[[PXi==z)=P <ﬂ(Xi =z) | =P ((X1,....Xp) = (x1,...,2m))
i=1 1=1

n

On aaussi: P((Xmi1,--, Xn) = (Tmt1y- - Tn)) = H P(X; =)

Donc :

P((Xl,,Xm) :) (:101,...,a:m),(Xm+1,...,Xn) = (mm+1,...,xn)) :P((Xl,,Xm) = (CUl,...
X,

P((Xmy1,-- = (41, -5 Tn))
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et les variables aléatoires (Xy,..., X,,) et (X1, .., Xy) sont indépendantes.
On en déduit que les variables aléatoires f(X1,..., Xm) et g(Xm+1,- .., Xy) sont indépendantes.

2.2.5 Extension au cas d’un nombre quelconque de coalitions

P
Soient dy,...,d, € N* et n:Zdi.

i=1
Soit (£2,.A, P) un espace probabilisé.
Soient X7i,..., X, n variables aléatoires discretes sur (2, .4, P).

Soit f1 une fonction définie sur X;(2) x -+ x Xy, ().
Soit fo une fonction définie sur X4, +1(£2) x -+ X Xg,44,(92).

Soit f, une fonction définie sur Xg, 1.4 q, ;+1(2) X -+ X X;,(Q).

Si les variables aléatoires X1, ..., X, sont indépendantes alors les variables aléatoires f1 (X1, ..., Xq4,),
fo(Xayv1s s Xayvdy)s o fp(Xdy4otdy_y 415 - - - » Xpn) sONt indépendantes.
Démonstration

On raisonne par récurrence sur p.

La propriété est vraie pour p = 2.

Supposons la vraie pour p — 1.

On se place alors dans les hypotheses du théoreme.

D’apres le cas de deux variables aléatoires, les variables aléatoires

(fl(Xla ce. 7Xd1>7 fZ(Xd1+17 ce. 7Xd1+d2)7 ey fpfl(Xd1+~~-+dp72+1> cee 7Xd1+~~-+dp71)> et

fo(Xay 4 tdy 141, -, Xn) sont indépendantes.
D’apres ’hypotheése de récurrence, les variables aléatoires
X, Xay), s foo1(Xayvvdy 015+ - Xdy+td,,—y ) SONE indépendantes.

Soit A1 C f1 (X1(Q) x --- % Xa, (Q))

Soit Ap C fy (Xay -y +1() X -+ x X, ().

P (X1, Xa) € A) 00 (o X gotay 41505 Xn) € 4y))

= P((i(X0, o X)) € A) 00 (fpo1 Xy oty a1 Xy oty 1) € 4p))
x P (fp(Xd1+---+dp_1+17 o Xn) € Ap) par indépendance

= P(fi(X1,...,Xg) € A) X+ xP (fp—l(Xd1+-~~+dp,2+1, ooy Xdytotd, ) € Ap)

x P ( Fo(Xayoqdy 41,5 Xn) € Ap> par indépendance, en utilisant I’hypothese de récurrence

2.2.6 Suites de variables aléatoires indépendantes

Soit (2,.4, P) un espace probabilisé.
Soit (X, )nen une suite de variables aléatoires discretes sur (2, .A).
On dit que les variables aléatoires (X, )nen sont indépendantes si, et seulement si, pour toute
partie finie I = {iy,...,4,} de N, les variables aléatoires X;,,..., X; sont indépendantes.
On dit que les variables aléatoires (X, ),en sont indépendantes et équidistribuées, en abrégé i.i.d
si, et seulement si, elles sont indépendantes et de méme loi.
Par exemple le jeu de pile ou face infini avec probabilité p de faire pile, ie la répétition indéfinie
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du lancer d’une piéce ayant la probabilité p de tomber sur pile, est modélisé par une suite i.i.d
de variables de Bernoulli de parameétre p (ot on code pile par 1 et face par 0).

2.3 Loi géométrique

2.3.1 Introduction

On considére une piece de monnaie ayant une probabilité p de donner pile. On la lance
jusqu’a obtenir pile.
Combien de fois la lance-t-on ?
Ce nombre est aléatoire, que peut-on en dire ?
Plus généralement dans une série d’épreuves de Bernoulli (ie avec deux résultats possibles :
"Succes” avec la probabilité p et "Echec” avec la probabilité 1 — p), combien faut-il faire de
tentatives pour obtenir un premier succes ?

2.3.2 Temps d’attente du premier succes

Soit (€2, A, P) un espace probabilisé et (X, )nen+ une suite i.i.d de variables aléatoires de
Bernoulli de parameétre p €]0; 1].
min ({n € N* tq X,, =1}) si {n e N* tq X,, =1} # 0
+oosi {neN*tq X, =1} =10
On a déja vu que T est une variable aléatoire.
Déterminons sa loi de probabilité.
P(T=1)=PX,=1)=p
Pour tout n € [2;+o0] :

Soit T' = {

P(T=n) = P(Xi=0,...,Xn1=0,X,=1)
= P(X;=0)x--xP(Xp,-1=0) x P(X, =1) par indépendance
= (1-p)"'p

On remarquera que cette formule est valable pour n = 1.
On peut calculer P(T = +00) de deux fagons :

+oo
P(T=+400) = 1= p(l—p)"~"
n=1
400 P
= 1l-p) Al-p"=1-—"——
nz_:o( ) 1—(1-p)
=0
ou bien :
“+oo
P(T = 4+00) = P(ﬂ(Xn :0))
n=1
N
- 7 (e =o)
N
= lim P(X,, = 0) par indépendance
N—+o0 el
. _ WV
a N1—1>I-I|—1<>o(1 p) 0
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2.3.3 Définition

Soit p €]0;1].
Soit (€2,.A, P) un espace probabilisé.
Soit X une variable aléatoire discréte sur (€2, .4, P).
On dit que X suit la loi géométrique de parametre p si, et seulement si :

i X(Q)=N~
ii Vn e N* P(X =n) =p(1—p)"!
On note alors : X ~ G(p).

2.3.4 Relation P(X > k) = (1 —p)k

Soit (2,.4, P) un espace probabilisé.
Soit X une variable aléatoire discréte sur (€2, A, P) qui suit la loi géométrique de parameétre p.
Pour tout k € N, P(X > k) = (1 — p)*

Deux démonstrations sont possibles :
— Par le calcul

P(X > k) = P(U(X_l))_ io P(X =1)

+o0 +o0
= > pl-p)t=) p(1-p*t"
n=0

l=k+1
X +o00 N 1

= p(l=p" ) (A-p)" =p(l-p)—F—

nz;; 1—(1-p)
= (1-p)F

— Par l’interprétation en terme de temps d’attente
k
Si on reprend les notations de 2.3.2, 'événement (T > k) est I’événement ﬂ (X, =0).
n=1

k
Donc par indépendance, P(T > k) = H P(X,=0)=(1-p*

n=1

2.4 Des exemples

2.4.1 Mines 2018

On lance indéfiniment un dé équilibré.

1. Soit A, I'’événement "aucun 6 n’a été obtenu lors des n premiers lancers”. Déterminer
P(Ay).

Soit Fy, I'événement "le premier 6 est obtenu au k-ieme lancer”. Déterminer P(F}).

Soit K 1’événement "6 n’apparait jamais”. Exprimer K a l’aide des A,,. En déduire P(K).

Exprimer K en fonction des Fj,. Retrouver la valeur de P(K).

ATl

Soient G ’événement 76 apparalt une infinité de fois” et H 1’événement 76 apparailt a
tous les lancers sauf un nombre fini d’entre eux”. Calculer P(G) et P(H).
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Correction

On modélise le lancer indéfini d’un dé équilibré par un espace probabilisé (£2,.4, P) sur lequel
existe une suite (X,,)nen de variables aléatoires mutuellement indépendantes qui suivent toutes

la loi uniforme sur [1;6].

2. P(Fy) = P ((kﬁl(xi + 6))

i=1

Donc P(Fy) = <5>k_1 1

6 6

+o0o
3. K= ﬂ A, avec Apy1 C

n=1

Par continuité décroissante, P(K) =

—+00

An

i=1

lim P(A,)=0

n—-+0o

4. K = U Fj. ou les Fj, sont deux a deux incompatibles. Donc :

kl
—+00

WIS

k=1
On retrouve P(K)=0.

(5)

’“111

6 61-5/6

5. G = ﬂ U( on obtient 6 au 7™ lancer).

n>1i>n

On note C, ’événement : U( on obtient 6 au 7™ lancer).

Cn+1 c Cp.

>n

Par continuité décroissante, P(G) = lim P(C,).

n—-+o0o

34
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Probablités 2025 - 2026

Cherchons P(C,,).

Vn e N* P(C,) = 1—P(Cn)=1—P<+(O]o (Xi¢6)>

i=n-+1
N
= 1— lim P (Xi
Niriloo :O * 6
N
= 1— i
M H P(X; # 6) par indépendance
i=n+1
N
= 1— lim H >
N—+o00 =1 6
N—-n
— 1- i (7)
N—+o0 \ 6
= 1-0=1

On en déduit que P(G) = 1.

H = [J () ( on obtient 6 au i°™ Jancer).

n>1i>n
On note D,, I'événement : ﬂ( on obtient 6 au 7™ lancer) = ﬂ (X; =6).
i>n i>n
Dn C D7L+1 .
Dy = () (Xi =6) = (Xpn+1=6)N ( N (Xi= 6)) = (Xp11=6)NDyi1 C Dyt
i>n i>n+1

Par continuité croissante, P(H) = lim P(D,).
n——+00
Cherchons P(D,,).

Vn e N* P(D,) = P( ﬁo (Xi_6)>

i=n+1

i=n+1

= li P(X dé d
N —1>I—Ii-loo 4_1_!& ) par indépendance
Moo
= lim H -
N—+o0 i—ni1 6

1 N—n
= lim ()
N—+o0o \ 6
=0
On en déduit que P(H) = 0.

2.4.2 Exemple 2

On dispose d’une urne contenant au départ une boule blanche et on joue indéfiniment a pile
ou face avec une piece parfaite. A chaque fois qu’on obtient face, on ajoute une boule noire au
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contenu de 'urne et la premiere fois qu’on obtient pile, on tire au hasard une boule de 1'urne.
Quelle est la probabilité d’obtenir une boule blanche ?

On note T le rang d’obtention du premier pile.
1
T est une variable aléatoire qui suit la loi géométrique de parametre 3 On ne prend pas la peine

d’expliciter ’espace probabilisé sous-jacent.
Par la formule des probabilités totales, la probabilité de I’évenement cherché, qu’on note E est :

Too too n—1
P(E) = Y. P(E|T=n)P(T=n)= 1<1_;> %

n=1 n=1

+oo n
1/1
= — (=] =In(2) ~
n§:1:”(2> n(2) ~ 0,69

2.4.3 X 2016

On imagine un jeu télévisé ou les candidats doivent franchir des murs successifs. Le candidat
perd s’il ne franchit pas un mur, continue sinon.

N 1
La probabilité que le candidat passe le k™€ mur est de —.

On note X la variable aléatoire égale au nombre de murs franchis par le candidat.
1. Donner la loi de X.
2. Donner l'espérance, puis la variance de X (si elles ont un sens).

On trouve : E(X)=e—1, B(X?)=e+1, V(X) =3e— €%

Correction
Ce type d’exercice pose un probleme de modélisation. La modélisation classique consiste a consi-
dérer (2, A, P) un espace probabilisé sur lequel existe une suite (X, ),en+ de variables aléatoires

indépendantes, X, suivant la loi de Bernoulli de parametres —.
n

Les néophytes pensent a une autre modélisation :
+o0

Q= (U {(1,1,... k fois 1, 1,0)}) U{(1,1...,1;...)} (on observera que le premier mur est tou-
k=1

jours franchi). Cette fois les épreuves successives ne sont pas indépendantes : 'existence d’une
k'eme épreuve dépend des précédentes. Une phrase comme ”La probabilité que le candidat passe

le k™ mur est de E” devient problématique. Il s’agit plutét d’une probabilité conditionnelle :

. 1
la probabilité de franchir le k™€ mur sachant qu’on a franchi les k — 1 premiers est T Rappelons

que l'indépendance n’est pas une propriété intrinseque des événements mais une propriété des
probabilités.

L’utilisation de l'indépendance dans le premier cas, de la formule des probabilités composées
dans le second donne : ) )

1

* Sk)=1x2x...—=—.
Vk €e N* P(X > k) 1><2>< E =
Par continuité décroissante :
P(X = 400) = 0.
En toute rigueur X (2) = N*U{+o00} mais P(X = +00) = 0 donc on considérera que X (2) = N*.

1 1 k
VE>1P(X=k)=PX>k)—-PX>k+1)=—— =
2P =R = P2 k) = P2 D) = 5= G = Gy
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2.4.4 Exemple 3

A et B jouent au jeu suivant :
A commence a jouer. Il lance deux dés cubiques parfaits.
Si la somme des points obtenus est 6 alors A gagne sinon B lance les deux dés et gagne si la
somme des points obtenus est 7.
Sinon A lance de nouveau les deux dés et ainsi de suite.
Préférez-vous étre A ou B?

Il faut commencer par déterminer la probabilité que la somme des points obtenus soit 6 ou
7.
On modélise le lancer de deux dés ainsi :
— O = [1;6]?
— P est la probabilité uniforme.
L’événement : ”la somme des points obtenus est 6” est :

(5=16)={(51) (45, 2);(3,3);(2,4); (1,5)}

Sa probabilité est 36 ~ 0,139.

L’événement : ”la somme des points obtenus est 7” est :
(5=1)={(6,1);(5,2); (4,3);(3,4); (2,5); (1,6)}

6 1
babilité est — = -~ ~ 0,1
Sa probabilité es 366 0,167

P(S =6) < P(S=17) mais c’est A qui commence.

Passons au jeu proprement dit.
On le modélise par un espace probabilisé (2,4, P) sur lequel existe une suite (X, )nen+ de va-

5 1
riables aléatoires indépendantes telles que X,, ~ B () si n est impair et X,, ~ B (6) sin est

36
pair.
+oo
(A gagne) = U (Xi=0)N(X2=0)N---N(Xp—1 =0)N (X2, =0) N (Xgpt1 = 1)), union dis-
p=0
jointe d’intersections d’événements indépendants.
Donc :
“+o0o
P(A gagne) = Y (P(X1=0)x-+x P(Xg, =0) x P(Xon41 =1))
p=0
oo p p
- E0-0-8)3
— 36 36/ 36
p=0
(1 5)(1 6)_31><30_155
36 36/) 362 216
5 1 5 216=6x36 5x6
P(A = — = -
(4 gagne) 36 | _ 155 ~ 36 216 155 61
216
30
= — ~0,492
61 ’

Il n’est pas a priori clair que P(B gagne) = 1 — P(A gagne) : I’événement "le jeu ne s’arréte
pas” est :

37



Probablités 2025 - 2026

E=X1=0Nn(X2=0)N--N(Xgp_1=0)N (X, =0)N--- 0.
Néanmoins :

400
P(E) = P <ﬂ (Xop—1=0)N (X = 0)))

k=1

K

k=1

K—+4o00

K
= lim <H P ((Xor—1=0) N (Xop = 0)))
k=1

par indépendance des variables aléatoires (Xop_1, Xox) (avec le lemme des coalitions)

(-3 (-2)"

= 0

Remarques
D’autres méthodes sont possibles.
— A gagne s’il fait 6 avant que B ne fasse 7 donc P(A gagne) = P(X; < X3) ou X et Xy
5 6
t d indépendantes, X1 ~ — ) et Xo~ — .
sont des va indépendantes, X1 ~ G <36) et Xo~G <36)
+oo
P(Agagne) = Y P((X1<Xy)N(X1=k))
k=1
formule des probabilités totales avec le SCE (X = k)xen-
+oo
= Y Pk<Xy)N (X1 =k))
k=1
+oo
= Z P(k < X9)P(X1 = k) par indépendance
k=1
+00
= Z P(k < X9)P(X1 = k + 1) par indépendance
k=0
+oo k k
1\* 5 5
5663
= 6/ 36 36
5 1 _ 5x216  5x6x36
36~ 1—155/216 36 x61 36 x 61
30
61

P(B gagne) =1 — P(A gagne) = 2—1

Ici cette formule est correcte car on a d’emblée négligé le cas ou le jeu ne se terminerait
pas en prenant X; et Xy a valeurs dans N* et non dans N* U {4o00}.

Evidemment cette opération est légitime : on a négligé un évenement de probabilité nulle,
donc indiscernable de ’évenement impossible du point de vue des probabilités.

— On note E; I'événement : "on obtient 6 au premier lancer”.
On note Ey I’événement : “on n’obtient pas 6 au premier lancer et on obtient 7 au second”.
2
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On note F3 ’événement : “on n’obtient pas 6 au premier lancer et on n’obtient pas 7 au
second”.

(E1, B9, E3) est un systéme complet d’événements.

On note AV I’événement : "le joueur A est déclaré vainqueur” et BV 1’événement : "le
joueur B est déclaré vainqueur”.

P(AV) = P(AV|Ey) P(E1) + P(AV|E;) P(E») + P(AV|E3) P(E3)

C e G eonp e (- 2) (1- ) pan

5 155
= —+—P(A
36 + 216 (4V)
30
D : P(AV) = —
onc : P(AV) o1
De méme :

P(BV) = P(BV|E))P(E\)+ P(BV|Ey) P(E3) + P(BV|E3) P(E3)

_ 0><P(E1)+1><<1—?i3>366+(1—356> <1—366)P(BV)

31
Donc : P(BV) = 6l

P(AV) + P(BV) =1 donc le jeu se termine presque stirement.

Remarque
On peut justifier rigoureusement que P(AV|E3) = P(AV), mais la méthode perd de son
intérét :

P(E5 et A gagne apres 2p + 1 coups)
P(E3)
P(X1 = O,XQ = O,...,Xgp = 0,X2p+1 = 1)
P(X1=0,X,=0)
P(X; =0)P(X2 =0)P(X3=0)...P(Xg, =0)P(Xopy1 =1)

Vp > 1 P(A gagne apres 2p + 1 coups |E3) =

P(X1=0)P(X2=0)
par indépendance
P(X3=0)...P(X2, =0)P(Xopt1 =1)
= P(X1=0)...P(Xgp—2=0)P(Xop—1 =1)
car X; et X;_9 ont la méme loi
= PX1=0,X2=0,...,X0p-2=0,X9,_1 =1)
= P(A gagne apres 2p — 1 coups)
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On alors :

P(A gagne|E3) = P (UOA gagne apres 2p + 1 coups |E3)
+oo =
= Z P(A gagne apres 2p + 1 coups |E3)
=0
ppar incompatibilité et parce que P(.|E3) est une probabilité
= P(A gagne au premier coup|F3) + ioP(A gagne apres 2p — 1 coups)
=1
= 0+ P(A gagne) = P(A gagne) ’

2.4.5 Exemple 4

A et B participent a un jeu qui consiste en une succession de parties indépendantes.
Chaque partie est gagnée par 'un des deux joueurs, A avec la probabilité p, B avec la probabilité
qg=1-p (p€l0;1]).

Le jeu se termine des qu'un joueur a gagné deux parties de plus que 'autre, ce joueur étant
déclaré vainqueur.
Quelle est la probabilité que A gagne ?

On modélise la succession de parties indépendantes par une suite de variables aléatoires i.i.d
(X )nen+ sur un espace probabilisé (€2, A, P), les X,, suivant la loi de Bernoulli de parametre p.
n

Apres n parties, A en a gagné S, = Z Xi et Bn—5,.

k=1
La différence de parties gagnées entre les deux joueurs est |25, — n|.
L’événement ”A gagne a la n-iéme partie” s’écrit :
(1251 =1 #2)N(]2S2 = 1| #2)N---N(|2Sp—1 — (n—=1)| £2) N (2S5, —n =2)
255, — k a la parité de k donc ne peut valoir 2 si k est impair.
Donc A ne peut gagner qu’a lissue d’une partie de rang pair.

On note AVa, I'événement : “le joueur A est déclaré vainqueur a I'issue de la (2n)™ partie”.
400

On note AV I’événement : "le joueur A est déclaré vainqueur” : AV = U AVay.
n=1

Examinons AV5,,.

AV, = (’252 — 2| * 2) n---N (’25271_2 — (27‘L — 2)‘ * 2) N (2S2n —2n = 2)

ou encore :

(‘52—1’ il)ﬂ<‘54—2’il)ﬁ”-ﬁ(’SQn_Q—(n—l)’ il)ﬂ(SQn—HZI)
Supposons cet évenement réalisé.

So = X1+ X2 #0,2 avec X; et Xy € {0;1} donc (X1, X2) = (0,1) ou (1,0) et Sy = 1.
Sp=8 +Xs+Xg4=1+4+ X3+ X4 #1,3donc X3+ Xy #0,2.

On en déduit (X3, X4) = (0,1) ou (1,0) et Sy = 2 et ainsi de suite donc :

n—1

AV2'rL C (m ((XQk—laXQk) € {(07 1)> (1a 0)})) N ((X2n717X2n) = (17 1))
k=1
On montre facilement ’inclusion inverse.

En d’autres termes, au cours des deux premieres parties, A en a gagné une et B une (sinon AV,
ou AV; est réalisé). Et ainsi de suite par tranche de deux.
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2 2

+oo
— p p
P(AV) =p*> (2pg)" " = =
— 1—2pg 1-—2p+2p?

2
De méme P(BV) = - q2 .
— 2pq

p?+q¢®>=(p+q)? —2pg =1—2pq donc P(AV) + P(BV) =1 : le jeu se termine ps.

Remarque

Une autre méthode est possible :

(X1,X2) = (1,1), noté (X;1,X2) = (1,0), (X1,X2) = (0,1) et (X1,X2) = (0,0) forment un
systéeme complet d’évenements.

P(AV) = P(AV|(X1,X2) = (1,1)) P(X; =1, X, = 1) + P(AV|(X1, X2) = (1,0)) P(X; = 1, X5 = 0)
+P(AV|(X1,X32) = (0,1)) P(X1 = 0, X5 = 1) + P(AV|(X1, X3) = (0,0)) P(X; = 0, X5 = 0)
= 1xP(X;=1,X,=1)+P(AV)P(X; =1,X, = 0) + P(AV) P(X; = 0, X, = 1)
+0 x P(X; =0, X, =0)

= p2 +2pg P(AV)

2

D7Ol\1 : P(AV) = 1_p7m

2.4.6 Loi de Poisson

— Introduction

Un compteur Geiger est un appareil de mesure permettant de compter le nombre de

particules « (entre autres) venant frapper un capteur.

La physique du phénomene permet de faire les hypotheses suivantes :

— Le nombre moyen de particules détectées entre les instants ¢1 et to est proportionnel
Aty —ty.

— Ce nombre est variable, c’est en fait une variable aléatoire d’espérance a x (ta — t1)
ol a est une constante. La loi de cette variable aléatoire ne dépend que de t2 —t; (et
non de t; ou t3).

— Les nombres de particules détectées pendant des intervalles de temps deux a deux
disjoints sont des variables aléatoires (mutuellement) indépendantes.

Il s’agit alors de déterminer la loi du nombre de particules détectées pendant un intervalle

de longueur T, disons [0; T'] pour simplifier.

T
A cet effet on découpe [0; 7] en n intervalles! de longueur At = —.
n

Le nombre moyen de particules détectées pendant un de ces n intervalles est aAt = a—.
n

Si At est trés petit, la probabilité que deux particules soient détectées peut-étre considé-
rée comme négligeable. Le nombre de particules détectées suit donc une loi de Bernoulli

de parametre aAt = a—.
n
Le nombre de particules détectées pendant [0; 7] suit donc une loi binomiale de para-

metres n et a—
n

P(X =k) = (Z) (azl“)k (1 B aan S (al’;/;)k o—aT

1. en toute rigueur ces intervalles doivent étre semi-ouverts ie de la forme [t; tp+1]

41



Probablités 2025 - 2026

Démonstration
ny n! ~nn—-1)...(n—k+1) nfk
k) kl(n—Ek) k! n—+oo k!

In <(1 - ag)nk> =(n—Fk)n (1 — anT> ~n _ZT = —aT

n—k
Donc <1 — a,) —— el
n n——+o0o
— Définition
Soit A > 0.
Soit (£2,.A, P) un espace probabilisé.
Soit X une variable aléatoire discrete sur (2, .4, P).

On dit que X suit la loi de Poisson de parametre A si, et seulement si :
i X(Q)=N

)\k
ii Vke NP(X =k) = e_/\ﬁ

On note alors : X ~ P ().

— Remarque
La loi de Poisson est explicitement au programme.

2.5 Couples de variables aléatoires

2.5.1 Loi conjointe d’un couple de variables aléatoires

Soit (€2,.4, P) un espace probabilisé.
Soient X et Y deux variables aléatoires discretes sur (€2, .4, P).
On a vuen 1.3.5 que C = (X,Y) est également une variable aléatoire.
On appelle loi conjointe de X et de Y la loi de C' au sens de 2.1.1.
Elle est caractérisée par la distribution de probabilités de C' ie la famille (P(X = 2,Y = y)) ., ec(@)-
Comme C'(£2) n’est pas toujours immédiat, on préfere s’intéresser a la famille (P(X = z,Y = 9))(, ,)ex(0)xv
méme si certains des événements sont impossibles.

Plus généralement, si X1, ..., X,, sont n variables aléatoires, (X1, ..., X,) est une variable aléa-
toire dont la loi est appelée loi conjointe des n variables aléatoires X1,..., X,.

Elle est caractérisée par les nombres P(X; = x1,..., X, = x,) pour (z1,...,2,) € X1(Q) X
X X (92).

2.5.2 Lois marginales d’un couple de variables aléatoires

Soit (€2,.4, P) un espace probabilisé.
Soit (X,Y’) un couple de variables aléatoires discretes.
On appelle lois marginales de (X,Y"), la loi de X et la loi de Y.
Si on connait la loi conjointe de X et de Y, on peut déterminer les lois marginales de (X,Y").
En effet, d’apres la formule des probabilités totales :
VeeX(Q)P(X=2)= > PX=uaY=y)
yeY (Q)

42



Probablités 2025 - 2026

VyeY(Q)PY =y)= > PX==zY=y)
zeX(Q)

Par contre, si on connait les lois marginales on ne peut pas déterminer la loi conjointe : on
ignore les liens entre X et Y.

Plus généralement, si (Xi,...,X,) est une famille de variables aléatoires, les lois marginales
de (Xq,...,X,) sont les lois des variables aléatoires X7,..., X,,.
Si on connait la loi conjointe des X; on peut déterminer les lois marginales :
Vi € [1;n] Va; € Xi(Q) P(X; = ;) = > P(Xi=z1,...,X, =x,)
@)jemmngpe 11 X5(Q)
Je[Ln]\{}

Par contre, si on connait les lois marginales on ne peut pas déterminer la loi conjointe.

2.5.3 Loi conditionnelle de Y sachant un événement A

Soit (€2,.4, P) un espace probabilisé.
Soit Y une variable aléatoire sur (2, A, P).
Soit A un évenement tel que P(A) > 0.

A — [0;1]

B Ps(B)=P(B|A)
Y est également une variable aléatoire sur (€, .4, P4) (cela ne dépend que de la tribu).

On appelle loi de Y sachant A la loi de Y dans cet espace probabilisé.

PY(9)) - [0:1]

B— Py(YeB)=P(YeB|A)

Un cas particulier fréquent est celui de A = (X = z) ou (X,Y’) un couple de variables aléatoires.

L’application Py { est une probabilité sur (£2,.4).

C’est I'application {

Exemple
Soit X ~ B(n,p) et Y une variable aléatoire & valeurs dans N telle que la loi conditionnelle de
Y sachant X = k est B(k, q).

1. Montrer : Va € [0;n] Vi € [a;n] <;> <7Z> = (Z) (?:3)

2. Déterminer la loi de Y.

Correction

La situation modélisée dans I'exercice est la suivante :

On lance une piece de monnaie n fois.

La probabilité d’obtenir face est p €]0; 1[.

On obtient X fois face.

On lance alors une deuxieme piece de monnaie X fois.

La probabilité d’obtenir face est ¢ €]0;1].

On cherche la loi de Y, le nombre de faces lors du deuxieme lancer.
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va € [Oin] Vi € fosn] (i) CL) - a!(iiioz)! z'!(nni i)l

2. Soit [ € N. .
PY =1 = ZP(Y =X =k)P(X =k)
k=0
PY=lX=k =0sik<l

Cela se produit forcément si [ > n donc :
Vi>nP(Y=10)=0

" (k n
Ve [o;n] P(Y =1) = {1 — g)k F1—pn*
€ [0;n] P(Y =10) kz::l<Z>Q( q) <k>p( p)
On applique la premiére question avec | = « et k = i.

Vie[on] P(Y=1) = 3 (7) (Z - ;) ¢1 - pFa—pn*

.y L ,
" )(1 —' P —p)" T =kl

Finalement Y ~ B(n, pq).

2.5.4 Un autre exemple de couple de variables aléatoires non indépendantes

Soit (X,Y) un couple de variables aléatoires a valeurs dans N? tel que :

(5 + k)NTF

V(. KYEN?2P(X =4.Y =k) =
(4, k) € ( 7, ) ojIKT

(A >0)

1. Déterminer .

2. Trouver les lois de X et de Y.
X et Y sont-elles indépendantes ?

3. Les 5/2 calculeront E(2X), E(2X+Y) et retrouveront le résultat de la question précédente.

Correction
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1.
+00 400
1 = Y PX=4Y=k=) > PX=jY=k)
(4,k)EN2 §=0 k=0
_ f(f (j+k)AJ’+k) +Z<AJ f(ﬁm )
20 \io ejlk! = ey'k : k!
Mais :
400 )\k A
YA eR Z o= e
)\k 400 )\k 400 )\l
D I v e
prr k! = k! = (k—1)! = !
= e
D'ou :

+00 +00 j j

1 = Z( ]e)‘+)\e’\)>zz<e’\_1 <3A,+>\/\'>>
=0 =0 Joo
A—

= e )\e + Ae ) = el onet = 20!
On pose t = 2.
Q0P l=le=tel l=le=nt+t-1=9(t)=0
1
Vt>0<p’(t):;+1>0
 croit strictement de —oo a +o0.
it e RE tq ¢(t) =0

t = 1 est racine évidente donc :
JIN>0tq20e2M 1 =1

1
Clest A = —
es 5

La loi de X a déja été calculée :

j 1\ 1
GENP(X =) = (N = () 5o

2) 271
25 +1 o—1/2
AR
IR ABWE
(J, k) — (j+')k:' est symétrique en (4, k) donc :
ejlk!
% +1
Wk ENP(Y = k) = e/

(2 +1)(2k + 1)
221kl o

j+k

20tk 1kl e

V(j, k) EN? P(X = j)P(Y = k) =

V(i k) €N P(X = j,Y = k) =

X et Y ne sont pas indépendantes. Par exemple, P(X = 0,Y = 0) = 0 et P(X =

0)P(Y =0)= .
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+00 ~ —1/2 +00 o ; ~1/2
27+1 _ e 2j+1 e 3
Xy _ Z j 1/2 Z _ 9 12
2 )_. 2 21 ¢ T T i 2 (2€+e)_2e

3
De méme, E(2Y) = = e!/2
Donc E(2X)E(2Y) = %e
Pour calculer £ (2X +Y), plusieurs méthodes sont possibles :

— On commence par déterminer la loi de X + Y.

(X +Y)(Q) CN

P P k+p—k 1
W ENP(X +Y =p) = ZP<X=’C»Y=P*’“:prfkk!(p—k)!z

1 1 1 p 1
N e2pzk!(p—k:)! e2pp'zk'

p 1 —9p
2P pl p!

k]

=

Il

(e
R
>3
~—

Il

m\*—‘

Le calcul de E(2X*Y) est alors standard. On peut aussi remarquer que X +Y — 1 ~
P(1) et utiliser la fonction génératrice.

BE(2X*Y) = 2e.

E@XTY) # E(2X)E(2Y) : on retrouve : "X et Y ne sont pas indépendantes”

E(2X+Y) _ JiOJiOQ]—i-k ]‘1‘143 _+ZOO Z op D
20tkjlkle . 2rjlkle
j=0 k=0 p=0 \j+k=p
+00 P +00 -1 P
_ 1 pe p
1
po( im0 Fl(p — R)! p=0 =AU
“+o0o 2pe—1

 _=2ete?
p=1 (p_ 1)'
= 2e

2.5.5 Un exemple surprenant de couple de variables aléatoires indépendantes

Un autostoppeur attend au péage d’une autoroute pendant une certaine période. On admet
que le nombre de véhicules franchissant le péage pendant cette période est une variable aléa-
toire N ~ P(A). A chaque fois qu’un véhicule franchit le péage, il lance une piéce truquée (la
probabilité d’amener pile est p €]0;1][).

On note P le nombre de piles obtenus et F' le nombre de faces.
P et F sont indépendantes.
Démonstration

— Loi du couple (P, N) :

V(k, ) EN2 P(P=k,N=1)=PP=kN=1)x P(N=1I)
Il est clair que la loi de P sachant N =1 est B(l,p) donc :
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sik>l,P(P=k,N=1)=0
k Py
Sikec[0;]] P(P=k,N=1)= ( >pk(1—p)lke)‘
— Loide P

+o00 +o00 <l> N Ik _)\)\l
VEENP(P=k) = Y PP=kN=0)=> [, |Q-p' e

1=0 = \F i
+oo l
_ l A
= ey (| -p)
= \k [!
400 l
I A
k —X -k
D D —
g kNl — E)! !
k ,—X\ Foo
_ b€ 1 ikt s
= 1 Z 5(1 P)'A i=1—k
b=l
_ e \E M1-p) (Ap)* o
k! k!
P suit une loi de Poisson de parametre Ap.
— Loide F':
F suit une loi de Poisson de parametre Aq. (¢ =1 —p)
— Indépendance de P et de F':
V(i,j) eN> P(P=i,F=j) = P(P=i,N=i+j)= it ‘(1 — )je—kﬂ
D) AN
- gt PTG
G2V C2 S N (Y S C 2V o
T g g
_ (p.A)z e—/\p (q%‘)j e—)\q
7! 4!

= P(P=1i)x P(F =)

Variantes

— Centrale 2016
Une tortue pond des oeufs. On note N la variable aléatoire comptant le nombre d’oeufs
pondus. N suit une loi de Poisson de parametre A € R’ . Chaque oeuf a une probabilité
p €]0; 1[ de donner naissance a une tortue.

1. Trouver la loi de D, la variable aléatoire comptant le nombre de descendants de la
tortue.

2. D et N sont-elles indépendantes ?

D et N ne sont pas indépendantes : si elle I’étaient, la loi de D conditionnellement a
(N = n) serait indépendante de n.
Par contre D et N — D sont indépendantes.

— Mines 2016
Un promeneur se balade en forét pour ramasser des champignons. Il a une probabilité p

47



Probablités 2025 - 2026

de trouver un bolet et une probabilité ¢ = 1 — p de trouver une morille.
Soient X la variable aléatoire qui compte le nombre de bolets trouvés, Y celle qui compte
le nombre de morilles et N le nombre total de champignons.
On suppose que N suit une loi de Poisson de parametre A € RY .
1. Déterminer la loi du couple (N, X).
2. Déterminer la loi de X.
3. X et Y sont-elles indépendantes ?
— Exercice 1 (CCP 2019)
On considere un péage avec m guichets.
Soit N le nombre de voitures passant au péage pendant une heure. On suppose que
N = P(N).
Soit X}, la variable aléatoire égale au nombre de voitures passant au k-iéme guichet.
P(Xy=ilN=n)?
P(X,=1)?

2.5.6 Somme de deux variables aléatoires indépendantes suivant une loi de
Poisson

Soit (€2,.A, P) un espace probabilisé.
Soient X et Y deux variables aléatoires discrétes indépendantes sur (2, .4, P).
On suppose X ~ P(A) et Y ~ P(u) (A, p) € (R%)?).
Alors X +Y ~ P(A+ p).

— Ce résultat ne figure plus au programme. On en verra une deuxiéme démonstration dans
le cours sur les séries génératrices.

Démonstration
X(Q)=Y(Q2)=Ndonc (X +Y)(2) CN

VEeNP(X+Y =k) = P(U((X:l)m(szr—l))>
=0

k
= > P(X =1Y =k —1) par incompatibilité 2 & 2
=0

k
= ZP(X =1) P(Y =k — ) par indépendance de X et de Y’
—0

ko k1 ~(\u) K
= Zi.e” a et =2 - > i At
2 k) K&k D)
—(\tp) P (k)
e
_ 3 N
kb \d
—(A+w)
e
= — O+t

— La technique ici employée pour déterminer la loi de X 4+ Y peut s’appliquer & un couple
de variables aléatoires discrétes indépendantes suivant des lois autres que la loi de Pois-
son.Elle peut étre adaptée au cas ou X et Y ne sont pas indépendantes mais oti on connait
la loi conjointe.
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— Ce résultat peut-étre généralisé, par récurrence, a la somme de n variables aléatoires
indépendantes.
Soit (€2,.A, P) un espace probabilisé.
Soient X1, ..., X, n variables aléatoires discrétes mutuellement indépendantes sur (2, A, P).
On suppose : Vi € [1;n] X; ~ P(N\;)
n n

Alors » X ~P (Y N
i=1 i=1
n—1
En effet, d’apres le lemme des coalitions, Z X, et X,, sont indépendantes.
i=1
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Chapitre 3

Moments des variables aléatoires

3.1 Espérance

3.1.1 Cas des variables aléatoires positives

Soit (€2,.A, P) un espace probabilisé.
Soit X une variable aléatoire discrete a valeurs dans [0; +oo].
L’espérance de X est définie par :
E(X)= > aP(X=x)
z€X(Q)
avec la convention zP(X = x) = 0 lorsque x = +00 et P(X = 400) = 0.

3.1.2 Espérance d’une variable aléatoire qui suit une loi géométrique

Soit (2,.4, P) un espace probabilisé.
Soit X une variable aléatoire qui suit la loi géométrique de parametre p (p €]0;1[).

Ce résultat figure explicitement au programme.

Démonstration
X(Q) =N~
—+oo —+00
E(X)=)Y nP(X=n)=pY n(l—p)""!
n=1 n=1
Or :
+o0o 1
-y = (=)

n=
En dérivant, ce qui est légitime :

+oo
1
- 1;1 =
vt €] ,[nZ::lnt e
Or 1 —p €]0;1] donc :
p p 1

1-(1-p)*> » p
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3.1.3 Espérance d’une variable aléatoire qui suit une loi de Poisson

Soit (€2,.4, P) un espace probabilisé.
Soit X une variable aléatoire qui suit la loi de Poisson de parametre A (A € RY).
EX)=2A

Ce résultat figure explicitement au programme.

Démonstration
X(Q)=N
—+oc0o —+oc0
E(X) = Y nP(X=n)=)_ nP(X=n)
n=0 n=1
A Jrzo:o At A A
= e~ =Xe " Xe
— (n—1)!
= A

3.1.4 Un exemple de variable aléatoire positive d’espérance infinie

On effectue des tirages dans une urne contenant une boule blanche et une boule noire dans
les conditions suivantes :

— si on tire une boule noire on arréte.

— si on tire une boule blanche on la remet dans I’'urne avec une autre boule blanche.
Soit X le rang d’obtention de la boule noire.

+o00
Calculer P(X =n) et Z P(X =n).
n=1

Quelle est ’espérance de X 7

Correction

X(Q) =N*"U{+o0}

On note B, : “on tire une boule blanche au n*™® tirage”

P(X=n) = P(Bin---NB,1NB,)
= P(B;) x P(Bs|By) x -+ x P(Bp|B1N---NBp_1)
1 2 1+n-2 1
= —Xz=X-X X
2 3 24n—-2 24+n-1
1 2 n—1 1
= —Xz=X-X X
2 3 n n+1
B 1
n(n+1)
“+o0o “+oo
1 1 1
ZP(in)zZ(— >:1— lim — =1
— — \n n+1 n—+oon
n=1 n=1
+00
P(X=+00)=1-> P(X=n)=0
n=1

On peut aussi utiliser la continuité décroissante :
(X =+00) = ﬂ(X>n)
n>0
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(X >n) = BiN---N B, de probabilité i

On tire ps la boule noire (au bout d’un nombre fini de tirages)
Par contre le temps d’attente moyen est infini :

+oo
1
EX)= ) aPX=z)=) T = +00
zeX(Q) n=1" +
1
En effet nP(X =n) = T est le terme général d’une série divergente a termes réels positifs.
n

3.1.5 Cas des variables aléatoires a valeurs dans [0; +oc]

Soit (€2,.4, P) un espace probabilisé.
Soit X une variable aléatoire discréte a valeurs dans N U {+o0}.

+0o0 +o0o
Alors E(X) =Y P(X >n)=>»_ P(X >n).
n=1 n=0
Démonstration
VneNP(X>n)= > P(X=k)
ke[n;+o0]

On introduit donc la famille (un,k)(n k) définie par :
P(X=k)sik>n

O0sik<n
D’apres le théoréme de Fubini :

EN* X [0;4-00]

nk —

JrXO:OP(XZn) = Z( Z Un,k)

n=1 neEN* \ ke[0;4o0]
S o
ke[0;400] \nEN*
k
= 0+ ), < P(X:k)) + ) P(X =+00)
keN* \n=1 neN*
Si P(X = +00) = 0, cette formule devient :
+oo
Y P(X>n)= )Y kP(X=k) =E(X)
n=1 keN*
+o0o
Si P(X = +00) > 0 alors cette formule devient Z P(X >n)=+o0et:
n=1

E(X)= > nP(X=n)=+o0
nef0;+o00]
Il y a bien égalité.

3.1.6 Cas des variables aléatoires complexes

Soit (£2,.4, P) un espace probabilisé.
Soit X une variable aléatoire discréte a valeurs dans R ou C.
On dit que X est d’espérance finie si la famille (zP(X = z)),¢ v (q) est sommable.
Dans ce cas, la somme de cette famille est appelée espérance de X et se note E(X) :
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E(X)= > aP(X=x)
zeX(Q)
On dit que X est une variable aléatoire centrée si, et seulement si, X est d’espérance nulle.
En d’autres termes :
Z || P(X =2) < 400
zeX ()
Y aP(X=1z)=0

zeX(Q)

X centrée <—

3.1.7 Exemple

Soit (€2,.A4, P) un espace probabilisé.
Soit X une variable aléatoire discréte sur (2,.4) a valeurs dans Z telle que :

VnEZP(X:n):%

1. Déterminer a.
2. Montrer que X est d’espérance finie et calculer son espérance.
Correction

1. On détermine a en écrivant que Z P(X =n)=1.
nez

—+00 1
Onadonca<1+222n> =1
n=1

(Techniquement, on utilise la sommation par paquets en écrivant Z = Z* U {0} UZY )

1
DOHCGZT125

an
2. Pour tout n € N*, soit u, = — > 0.

on
11 1
un+1:n+ 1 <1

U, n 2 n—+oo 5

Donc la série de terme général u,, converge.
+oo
Z In| P(X =n) =2 Z U, < 400 donc X a une espérance.
nez n=1
On peut alors pour calculer I'espérance utiliser la sommation par paquets de la méme
+oo +o0
o _ —na na

maniere : E(X) = Z o + Z — =0

n=1 n=1
ou utiliser la décomposition Z = {0} U{-1;1} U{-2;2} U... :
+00 +oo
E(X)=> (nP(X =n)+(-n)P(X=-n))=)_ 0=0
n=1

n=1

3.1.8 Théoréme du transfert

Soit (€2,.4, P) un espace probabilisé.
Soit X une variable aléatoire discrete sur (£2,.4). Soit f une application & valeurs réelles ou
complexes définie sur X (€2).
f(X) est d’espérance finie si et seulement si la famille (f(z)P(X = )),cx(q) est sommable.
Dans ce cas, on a :
E(f(X) = 3 f@)P(X =)

z€X(Q)
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Démonstration
f(X) est d’espérance finie
= Y WP(X)=y) < +oo
YEF(X(Q))
= ¥ (|y| > P& =x>) < +oo
YEF(X(Q)) z€X(Q) tq f(z)=y
car (f(X) =y) = U (X =)
z€X(Q) tq f(z)=y
= 3 ( > If@) P = x>) < +o00
yef(X(Q2) \zeX(Q) tq f(z)=y
= Z |f(x)P(X = x)| < co (sommation par paquets)
z€X(Q)
<= lafamille (f(z)P(X = )),cx(q) est sommable
On a alors :
BUO) = 3 () =y
yef(X(Q
yef(X ) xGX t01 f(x)=y
= ( f@ﬂ%szg
yEf(X Q) ;BEX(Q) tq =y
= fL’ =
xeX )
Remarque

c?>C

La formule s’applique aux couples de variables aléatoires. Par exemple avec f
(,y) =z +y

on obtient pour deux variables aléatoires complexes d’espérance finie :
E(X+Y)= Z (z+y)P(X =2,Y =vy)
(z,y)EX (2)XY ()
La formule s’étend aussi aux n-uplets de variables aléatoires et donne par exemple :
EX1+ -+ X,) = > (w1 + -+ 2,)P(X1 = 21,..., X, = )
(21,500020) EX1 () X X X (Q)

3.1.9 Linéarité

Soit (€2,.A, P) un espace probabilisé.
Soient X et Y deux variables aléatoires complexes discrétes d’espérances finies.
Alors pour tous a et b dans C, aX + bY est une variable aléatoire discréete d’espérance finie et :
E(aX 4+bY)=aE(X)+bE(Y).

Démonstration
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Soit (a,b) € C2.

Soit C25C
oi
(z,y) — ax + by

> et by P(X =Y =y)
(zY)EX ()XY ()
< > (allel+blly) P(X =2,Y =y)
(zy)EX ()XY ()
< > (Z (|a!|w+!b!|yy)P(X:x,Y:y))
zeX(Q) \yeY (Q)
< > (la||z| P(X )+ Y (Z |b|\y|P(X:;p,y:y))
z€X () zeX () \yeY (Q)
< lalB(XD+ > (Z Iblly!P(X:x,Y:y))
yey (Q) \zex(Q)
< Jal B(IXD+ > (Bllyl P(Y =)
yey (Q)

< lal E(IX]) + [ E(]Y]) < 400

D’apres le théoreme de transfert, a X + bY est d’espérance finie.
Toujours d’apres le théoreme de transfert :

E(aX +0bY) = Z (az +by)P(X =2,Y =y)
(z,y)eX(Q)xY(Q)

— Z ( Z (aaz—}—by)P(X:Jf,Y:?/))

zeX(Q) \yeY (Q)
= Y awPX=2)+ > (Z byP(sz,Yzy))
z€X(Q) z€X(Q) \yeY(Q)
= aB(X)+ > ( > byP(X y))
yeY (Q) \zeX(Q)
= )+ Z byP(Y
yeY (Q)

= aBE(X)+bE(Y)

Exemple d’application

On lance une piece de monnaie n fois. La probabilité d’obtenir face, pour chaque lancer indivi-
duel, est p €]0;1].

Une série est une suite de lancers qui donnent le méme résultat.

Par exemple dans la suite FFPFPPF, il y a cinq séries.

Quelle est ’espérance du nombre de séries ?

Correction
Le nombre de séries est égal a 14+le nombre de changements ou on appelle changement le cas ou
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deux lancers successifs donnent des résultats différents.
Il peut étre tentant de dire que le nombre de changements suit la loi binomiale de parameétres
n — 1 et r ou r est la probabilité que deux lancers successifs donnent deux résultats différents
mais il y a un probleme d’indépendance.

Adoptons des notations plus précises.

On note X; la variable aléatoire qui vaut 1 si on obtient face au ™€ lancer, 0 sinon.
(Xi)1<i<n est une famille de variables aléatoires mutuellement indépendantes qui suivent toutes
la loi de Bernoulli de parametre p.

Pour tout ¢ compris ente 1 et n — 1, on pose Y¥; = 1x,2x,,,-

a changement entre les lancers numéros i et ¢ + 1, 0 sinon.
n—1

Le nombre de séries est N =1 + Z Y;.
=1
Pour tout ¢ compris entre 1 et n — 1, Y; suit la loi de Bernoulli de parametre :

T:P(Y; = 1) :P<)(Z iXi—l—l) :P(XZ = 1,Xi+1 :())—l-lj()(Z :O,XZ‘+1 = 1) :2p(1 —p)
On a donc par linéarité de I'espérance :
E(N)=1+2(n—-1)p(1—p)

1
On peut observer que E(N) est maximale lorsque p = =. Si p est proche de 0 ou de 1, la piece

En d’autres termes, Y; vaut 1 siily

tombe & peu pres tout le temps du méme c6té et il y a une seule série.

Revenons sur la loi de N :

P(Yi=1,Ys=1) = P(X;=0,Xo=1,X5=0)+P(X; =1,Xo =0, X3 = 1)
= p(1—p)?+p*1—p)=p(l—p)(1—p+p)
= p(1—-p)
PY1=1)PYo=1) = r=4p*’(1-p)? =4p(1—p)P(Y1 =1,Y, =1)

On trouve facilement :
dp(l-p)=l<=p=;

2
1
Sip# 2 Y1 et Ys ne sont pas indépendantes, N ne suivra pas une loi binomiale.
1
Si p = —, on ne peut rien dire pour 'instant mais on va montrer que si p = 3 les variables
aléatoires Y7,...,Y,_1 sont mutuellement indépendantes.

Il s’agit donc de démontrer, pour tout n > 2 :

Ve, .. en1) €{0; 1} L P(Y1 =€1,...,.Yn 1 =€ 1) =P(Y1 =¢€1) X --- x P(Y, = ¢,)

{0;13" —{0; 13"

(1, xn) = (T1,21, -+ -y Zn—1)
{0:1)2 = {051}

zi =08l x; = xiq1 ie 2, = 0(z4,Tiq1) avec 0 4 (z,y) > 1six £y

On fixe n > 2 et on considere CID{ ou z; = 1siz; # xiqq et

(,y) = 0siz=y
® est injective :
Supposons ®((a1,...,an)) = ((b1,...,bn)).
On a a; = by : c’est la premiére composante de ®((ay,...,a,)) = ®((by,...,by)).
Supposons (a1, ...,ar) = (by,...,bg).
Considérons zi la (k + 1)-eéme composante de ®((ay,...,a,)) = ®((b1,...,bn)).
Si zr, = 0 alors agy1 = ak et bpyr1 = by donc agq1 = bra1.
Sizp=1alors agy; =1—ay et byrg =1 — by donc agy1 = bg41.
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On montre donc par récurrence finie que ag =

(bi,...,bn).

bx, pour tout k compris entre 1 et n ie (aq, . ..

aan)

® est bien injective. Comme ’ensemble de départ et ’ensemble d’arrivée sont finis et de méme

cardinal, ® est bijective.

1))

On a alors :

V(er,...,en1) € {0;1}"71

P(Yl =€l,...,Yn1 = 6n—l)
= PX1=0Y1=¢€,....Yh 1= 1)+ PX1=1Y1=€,....,Y 1 =€,1)

par la formule des probabilités totales
= P(X1=0,0(X1,X2) =¢€1,...,0(Xp_1,Xp) =€n—1)

+P(X1 = 1,(5<X1,X2) = €1,.. -;5(Xn—1;Xn) = fn—l)
= P(@((Xl,...,Xn)):(0,61,...,€n_1))—i—P(q)((Xl,..., )):(1761, '7671—1))
= P((X1,. X)) =701, en 1)) + P (X, X)) = 07 (L,
= P((X1,....Xn)=(e1,...,en)) + P((X1,....,Xpn) = (fl,...,fn))

ou (e1,...,ep) = 71((0 €1y y€n_1)) €t (fi,..., fn) = ((1,61,...  En—1))
= HP H (X; = f;) par indépendance

i=1 i=1

L |
= H -+ H — car les X; ont toutes la méme loi

=1 2 i=1 2

1\ " 1 n—1
— 9 ) = (=2
) <2> <2>
1

= PMi=e)x---xPY,=¢,) carr=2p(l —p) = 5 ici

Yo

2)

3.1.10 Positivité de ’espérance

Les variables aléatoires Y7, ...

Danscecas,N1~B<n1,

Soit (2,.4, P) un espace probabilisé.

1 sont mutuellement indépendantes.

Soit X une variable aléatoire réelle discrete positive et d’espérance finie.

Alors E(X) > 0.
De plus, si E(X) = 0 alors

P(X =0)=1.

Démonstration
Comme X est positive, E(X)

z€X(Q)

> aP(X =

C’est une somme de nombres positifs donc elle est positive.
De plus si E(X) = 0 alors pour tout x € X(Q2), zP(X = z) = 0. Donc pour tout x non nul

P(X =z)=0.
On en déduit P(X #0) =0 puis P(X =

0) = 1.
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3.1.11 Croissance de ’espérance

Soit (2,.A, P) un espace probabilisé.
Soient X et Y deux variables aléatoires réelles discrétes d’espérances finies.
On suppose X <Y.
Alors E(X) < E(Y).

— Ce résultat se démontre en combinant la linéarité et la positivité de ’espérance.
— En particulier si X > a alors F(X) > a.
De méme, si X < b alors E(X) <b.

3.1.12 Utilisation d’une majoration

Soit (2,.4, P) un espace probabilisé.
Soit X une variable aléatoire a valeurs complexes.
Soit Y une variable aléatoire a valeurs réelles positives.
Si|X| <Y etsi E(Y) < +oo alors X est d’espérance finie.

Démonstration

B(X)) = > klP(X=2)= } (\xl > P(XZ:L“aYZy))
)

zeX () zeX(Q yeyY (Q)

= > D llPX=2Y=y

2€X(Q) yeY (Q)

Soit (z,y) € X(Q) x Y(Q).

Si|z| <yalors || P(X =2,V =y) <yP(X =2,Y =y)

Si|z| > yalors P(X =xz,Y =y) =0donconaaussi |z| P(X =z,Y =y) <yP(X ==z,Y =y).
On en déduit :

E(|z])

IN

Y ) yP(X=aY =y)

z€X(Q) yeY (Q)

yeY (Q) ze X ()

> yPY =y)=E(Y) <+
yeY (Q)

IN

IN

3.1.13 Espérance du produit de deux variables aléatoires indépendantes

Soit (€2,.A, P) un espace probabilisé.
Soient X et Y deux variables aléatoires réelles discrétes d’espérances finies.
On suppose X et Y indépendantes.

Alors XY est une variable aléatoire réelle discrete d’espérance finie et :
EXY)=EX)E(Y)
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Démonstration
E(XY]) = > 2y P(X = 2,Y = y)
(z,y)€X(Q) XY (Q)
= Z |z| P(X = z) ly| P(Y = y) par indépendance

(z,y)eX(Q)xY ()

- (Z \x|P(X:x))><( > Iy!P(Yzy))

z€X(Q) yeyY (Q)
= E(X]|) x E(]Y]) < +o0

Donc XY a une espérance finie.

On a alors :
E(XY) = > zyP(X =z,Y =y)
(z,y)eX(Q)xY ()
= Z zP(X = 2)yP(Y = y) par indépendance
(2,5)EX(Q) XY (Q)
zEX(Q) yeY ()
= E(X)xE(Y)
Remarque
— La réciproque est fausse : E(XY) = E(X) E(Y) n’implique pas I'indépendance de X et
de Y.
Exemple

Soit (£2,.A, P) un espace probabilisé.
Soit X une v.a.r telle que X (Q) = {—2; —1;1;2} suivant une loi uniforme.

Soit Y:1X2 . L1
B(X)=~(-2)+-(-1)+-1+-2=
< 4( e 4(1 4 1+4 f 1
E(XY)=E(X?) = 1 (—8) + 1 (1) + 1 1+ 1 8 = 0 (par le théoreme de transfert)
Ona E(XY)=EX)E(Y)

Mais X et Y ne sont pas indépendantes :
PX=1,Y=4)=0
P(X=1)= 1 1
P(Y:4):P(X:20uX:—2):§
— On démontre facilement par récurrence le résultat suivant :
Soit (£2,.A, P) un espace probabilisé.
Soient Xi,..., X, n variables aléatoires complexes mutuellement indépendantes, toutes
d’espérance finie.
X1...X,, est alors d’espérance finie et :

E (ﬁ XZ-> = ﬁ E(X;)
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3.1.14 Modele de diffusion de Bernoulli (1769)

Une urne R contient n boules rouges.
Une urne B contient n boules bleues.
A chaque étape, une boule est tirée au sort dans chaque urne et on les échange.

9 k
Montrer que le nombre moyen de boules rouges dans 'urne R apres 'étape k est g 1+ <1 — ) ) .
n

— Premiere méthode : point de vue macroscopique
On note X}, le nombre de boules rouges dans R apres k étapes.
Apres k étapes, 'urne R contient donc Xj, boules rouges et n — X, boules bleues. L’urne
B contient n — X}, boules rouges et X boules bleues.
Xo =N
Vk e N* Xp, = X1 — 14, + 1p,
ou pour tout k € N* :
Aj est ’évenement : “on tire une boule rouge dans I'urne R a ’étape k”
By est ’évenement : “on tire une boule rouge dans I'urne B a 1’étape k”
Par linéarité de I'espérance :
Vk € N* E(Xk) = E<Xk71) - E(lAk) + E(lBk) = E(kal) - P(Ak) + P(Bk)
Par la formule des probabilités totales :

7

VkEN" P(Ay) = Y P(AXp1=14) P(Xp1=1) =) — P(Xp_1=1)
=0

i=0 n
1
= EE(kal)
- . N = n—i ‘
P(By) = P(By|Xj—1 =) P(Xj—1 =1i) = ) - P(Xp-1=1)
=0 i=0
~ - lex
= —E(X

On a donc : 5
Vk e N* B(Xp) =1+ (1 — ) E(Xk-1)
n
On a affaire a une suite arithmético-géométrique. C’est une situation classique.
On cherche le point fixe :

2
l:1+<1—n>l:1+l—l<:>l:

|3

2n
On a donc :

BE(Xy) = 14 (1 _ i) B(Xp 1)

o

On fait la différence : 5
n n
VeeN* B X)) —=—=(1—— ) E(Xx_q)— =
e B - 5 = (1-2) (B - 3)
Donc : . .
2 2
VkENE(Xk)—Z:<1—> (E(XO)—Z>:(1_>Z

On conclut facilement.
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— Deuxiéme méthode : point de vue microscopique
Les boules rouges sont numérotées Ry, ..., R,.
1 si R; est dans 'urne R apres k étapes

On note Y ; = {

0 sinon

n
Le nombre de boules rouges dans 'urne R apres I’étape k est Z Y5
i=1
Son espérance est :

Y E(Yi;) = Zn:P(Yk,izl)
=1

n
= Z P(R; est dans I'urne R apres k étapes)
i=1

= nP(R; est dans I'urne R apres k étapes)
Or :

P(R; est dans I'urne R apres k étapes) = P(R; a été tirée un nombre pair de fois)

= Z P(R; a été tirée [ fois)

0<i<k
[ pair

- )T

0<2m<k

k 1 2m+41 1 k—2m—1
Le calcul de cette somme est classique : on introduit : Z ( ) () (1 — ) .

0<2mal<k 2m +1 n n
On a:
2m k—2m 2m—+1 k—2m—1
> () )00 () G0
0<am<k \“/) \Tt n 0<amii<k \2M T n n
1\™ 1\F—m 1 1\*
A R R R
0smer \) A\ n n n
et
2m k—2m 2m—+1 k—2m—1
> () )00 () G0
0<2m<k 2m n n 0<2mrl<k 2m +1 n n
1\™ 1\Fk—m 1 11\* 2\ %
A O R R
0k I n n n nn n

En sommant, on trouve :
k 1 2m 1 k—2m 9 k
2 2 () Q) (0) = ()
0<ame<k \2M) \1 n n

On conclut facilement.
Le calcul de la variance n’est pas facile car les Y}, ; ne sont pas indépendantes. On a par exemple

n
ZYM =n-—1
i—1
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3.2 Variance

3.2.1 Un résultat préliminaire

Soit (€2,.4, P) un espace probabilisé.
Soit X une variable aléatoire réelle discrete.
Si X2 est d’espérance finie alors X est elle-méme d’espérance finie.

Démonstration

— Premiére méthode
Soit x € R.
Si|z| > 1 alors : |z| < 22 et |2 <14 22
Si |z| <1, alors |z| < 1+ 22
Donc dans tous les cas : |[X| <1+ X2
Par hypothese, X? a une espérance finie. La variable aléatoire constamment égale & 1
aussi donc par linéarité, 1 + X? a une espérance finie.
Par majoration, X est d’espérance finie.
— Deuxiéme méthode
D’aprés le théoréme de transfert, la famille (z*P(X = z)),ex(q) est sommable.
Il s’agit de prouver que la famille (v P(X = 7)),cx () est sommable.
Soit J une partie finie de X ().

S eP(X=2)] = Y /P(X=2) /P(X=0)l|

zed zed
< ZP(X:x) ZxQP(X::U)
zeJ zeJ
< > PX=2z) | > a?P(X=ux)
zeX(Q) TEX(Q)
< V1/B(x?) = /B(X?)

Donc la famille (zP(X = z)),ex () est sommable.
De plus on a |E(X)| < E(|X|) < VE(X?).

Remarque

On peut aller plus loin :

Mines 2017

Soit X une variable aléatoire discrete possédant un moment d’ordre n > 2.
Montrer que pour tout k € [1,n — 1], X posséde un moment d’ordre k.

Correction

Vo € RT zF < 1+ 2™ en distinguant les cas z < 1 et = > 1.

On en déduit | X*| = [X|* <14 [X|" =1+ |x7|

Par hypothese, X™ a une espérance finie. La variable aléatoire constamment égale a 1 aussi donc
par linéarité, 1 4+ | X|" a une espérance finie.

Par majoration, X* est d’espérance finie
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3.2.2 Définition de la variance

Soit (€2,.A, P) un espace probabilisé.
Soit X une variable aléatoire réelle discréte telle que X? soit d’espérance finie.
On appelle alors variance de X le réel V(X) = E (X — E(X))?) = E(X?) — E(X)%

Justification de la définition

(X —BE(X))?=X?2-2E(X)X + E(X)?

X? a une espérance finie.

X a une espérance finie donc 2E(X)X aussi.

E(X)? est une constante.

D’aprés la linéarité de I'espérance, (X — E(X))? a bien une espérance.

De plus :

E (X — E(X))?) = B(X?) = 2B(X)E(X) + E(X)?E(1) = E(X?) - E(X)?
On retrouve : |E(X)| < VE(X?)

3.2.3 Positivité de la variance

Soit (€2,.4, P) un espace probabilisé.
Soit X une variable aléatoire réelle discréte telle que X? soit d’espérance finie.
On a vu que V(X) est alors un nombre réel.

Ce nombre est positif.
C’est trivial sous la forme V(X) = E ((X — E(X))?).

Si V(X) = 0 alors il existe un nombre a tel que P(X = a) = 1.
En effet, £ (X — E(X))?) =0 donc X = E(X) ps.

3.2.4 Ecart type

Soit (€2,.4, P) un espace probabilisé.
Soit X une variable aléatoire réelle discréte telle que X? soit d’espérance finie.
On appelle écart type de X et on note o(X) le réel positif o(X) = /V(X).
On dit qu’une variable aléatoire est réduite lorsque son écart type est égal a 1.

3.2.5 Variance d’une variable aléatoire qui suit une loi géométrique
Soit (€2,.4, P) un espace probabilisé.
Soit X une variable aléatoire qui suit la loi géométrique de parametre p (p €]0;1]).

1—-p
VX)) ==

Ce résultat figure explicitement au programme.

Démonstration

X(Q)=N*"={n,n>1}

Pour tout n € N*, on note u, = n?p(1 — p)
Vn € N* u, >0

et

1 2
Un n n—+00

n—1
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Donc E Uy, converge.
X a bien une variance.

“+oo
viel-L1[— = Y "
n=0

“+o00

—1

5 = Znt”
(1—1) =

+o0
a0 = t(l—t)2= ;ntn

+oo
(1-t)72+2t1—t)% = > a2t
n=1

D’ou :
+o0
E(X?) = Y n’p(l-p"!
n=1
= p(A-(=p) 2 +20-p)(1-(1-p) )
1 2—2p p+2—-2p 2-—p
N p<p2+ p? )Z » P
Enfin :

V(X)=E(X? -E(X)?= - ==

3.2.6 Variance d’une variable aléatoire qui suit une loi de Poisson

Soit (2,.A, P) un espace probabilisé.
Soit X une variable aléatoire qui suit la loi de Poisson de parametre A (A € RY).
V(X)=A

Ce résultat figure explicitement au programme.

Démonstration

X(Q)=N
)\n

Pour tout n € N*, on note u,, = nQ—' e A
n!

Vn € N* u, >0

et )

1 A
u"+1:(n+2) 0<1
Up, n n+1 no+oo

Donc E Uy, converge.
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X a bien une variance.

+o0 2An +o0 2An 1 n—l

E(X?) = Zn _)‘Zn = _/\Z =)
Y Ak 7A Ak
= Ae ];)kJrlk'_)\ Zkk'—i-e

Ak —+o00 Ak 1

= A+ N *AZ

= /\+>\e*AZk

= A+ N

Donc V(X) = A+ A2 - X2 =)

3.2.7 Effet d’une homothétie ou d’une translation

Soit (2,4, P) un espace probabilisé.
Soit X une variable aléatoire réelle discréte telle que X? soit d’espérance finie.
Soient a et b deux réels.

aX + b est une variable aléatoire réelle discrete dont le carré a une espérance finie et :
V(aX +b) = a?V(X)

Démonstration

aX + b= f(X) est une variable aléatoire réelle discrete.
(aX 4 b)? = a®X? + 2abX + b?

X? a une espérance finie.

X a une espérance finie.

b? est une constante.

D’aprés 3.1.9, (aX + b)? a une espérance finie.

De plus :

V(aX +b) = E((aX+b— BaX +1))) = E((aX +b—aE(X) —b)*) = E ((a(X - B(X)))’)
= EB(a*(X - E(X))’) = a®E ((X - B(X))?)
= a*V(X)

Exemple
Soit (£2,.4, P) un espace probabilisé.
Soit X une variable aléatoire réelle discréte telle que X2 soit d’espérance finie et telle que
V(X) #0.
. X - E(X)
Soit Y = W
Y est une variable aléatoire réelle discréte dont le carré a une espérance finie et :
EY)=0et V(Y) =
En d’autres termes, Y est a la fois centrée et réduite.

3.2.8 Inégalité de Cauchy-Schwarz

Soit (€2,.4, P) un espace probabilisé.
Soit X et Y deux variables aléatoires réelle discretes.
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On suppose que X2 et Y2 sont d’espérances finies.

Alors XY est d’espérance finie et E(XY)? < E(X?)E(Y?)

De plus, il y a égalité si, et seulement si il existe a € R tel que P(Y = aX) =1 ou b € R tel que
P(X=0bY)=1

Démonstration
V(z,y) € R? |zy| <

Donc |XY| < X2 4+ Y2

X? et Y? ont, par hypothése, une espérance finie donc, par linéarité, X2 4+ Y2 a une espérance
finie.

On en déduit par majoration que XY a une espérance finie.

2,2
x
+ < 2% + y? (classique)

Soit t € R.
(tX +Y)2 =t2X2% 4 2tXY + Y? a une espérance finie comme combinaison linéaire de variables
aléatoires d’espérance finie.
Vt EREPE(X?) +2tE(XY)+ EY%) =E(tX +Y)?) >0
— Premier cas : E(X?) > 0, ou ce qui revient au méme P(X # 0) > 0
On a affaire a un trindme du second degré de signe constant donc :
A=4E(XY)? -4E(X?)E(Y?) <0
On en déduit E(XY)? < B(X?)E(Y?).
— Deuxiéme cas : X =0 ps
XY =0psdonc E(XY)?=0< E(X>)E(Y?) =0
Supposons qu’il y ait égalité dans 'inégalité de Cauchy-Schwarz.
Si X =0 psalors P(X =bY) =1 avec b =0.
Dans le cas contraire, A = 0 donc il existe ¢ € R tel que E((tX +Y)?) = 0.
Donc P(Y =aX) =1 avec a = —t.

Supposons qu'il existe un réel a tel que P(Y = aX) = 1.

Si X =0 ps alors comme vu ci-dessus, il y a égalité.

Sinon, Y — aX = 0 ps donc a?E(X?) —2aE(XY)+ E(Y?) = E((Y —aX)?) =0

Donc le trinéme t?E(X?) + 2tE(XY) + E(Y?) a au moins une racine réelle (—a) et A > 0.
Comme A <0, A =0 et il y a égalité dans 'inégalité de Cauchy-Schwarz.

3.2.9 Covariance de deux variables aléatoires

Soit (€2,.4, P) un espace probabilisé.
Soit X une variable aléatoire réelle discrete telle que X? soit d’espérance finie.
Soit Y une variable aléatoire réelle discréte telle que Y2 soit d’espérance finie.
On appelle covariance de X et de Y et on note Cov(X,Y) le réel :
Cou(X,)Y)=E(X-EX))(Y-E(Y)))=EXY)-EX)E®Y)

Justification de la définition
(X—EX)Y-EY)=XY-EX)Y-EY)X+EX)EY)
XY est une v.a.r discrete d’espérance finie.

E(X) est une constante et Y une v.a.r discréte d’espérance finie.
E(Y) est une constante et X une v.a.r discréte d’espérance finie.
E(X)E(Y) est une constante.

Donc (X — E(X))(Y — E(Y)) a une espérance finie et par linéarité :
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E((X - E(X))(Y — BE(Y))) = E(XY) — E(X)E(Y) — E(Y)E(X) + E(X)E(Y) = E(XY) —
E(X)E(Y)

Il résulte de ? que si X et Y sont indépendantes alors Cov(X,Y") = 0.
La réciproque est fausse.

3.2.10 Variance d’une somme finie de variables aléatoires

Soit (€2,.A4, P) un espace probabilisé.
Soient X1,..., X, n variables aléatoires discretes possédant toutes une variance.
n

Alors E X; posséde une variance et :

v(ixz) ZV )+2 > Cov(X;, X;)

1<i<j<n

En particulier, si ces variables sont deux a deux indépendantes alors :
n n

% (Z Xi> =Y V(X
i=1 i=1

Démonstgation

Soit S = ZXZ

=1

Z X7+2 ) XX
1<i<j<n
Les Xi2 et les X;X; ont toutes une espérance finie donc 52 a une espérance finie et S a une

variance.

V(S) = EB(S*) - E(S)?

E(X})+2 Y E <iE )

Il
M:

=1 1<i<j<n =1
n n

= Y EX})+2 > EX:X;)-> EX;)*-2 Y E(X)E(X))
i=1 1<i<j<n i=1 1<i<j<n

I

.
Il
—

(B(XD) - E(X)?) +2 > (B(X:X)) - B(X;)B(X)))

1<i<j<n

Il

N
I
—

V(X)) +2 Y Cou(Xy, X;)
1<i<j<n
Exemples
— Soit (X;)ien+ une suite de variables aléatoires mutuellement indépendantes qui suivent
toutes B(p).
Pour tout ¢ € N*, soit Y; = XiXit1.
1. Quelle est la loi de Y; 7

n
2. Soit S, = > V.
i=1
Trouver 'espérance et la variance de .S,.

Correction
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PY;=1) = P(X;=1,X;11=1)=PX,; =1)P(X;41 =1)
= p2
Y; ~ B(p?)
2. E(S,) =) E(Y;

=1

=Y V)42 > Cou(Y;,Y))

=1 1<i<j<n
V(Y;) = p*(1 - p?) car Y; ~ B(p?).
Sij>i+2, Cou(Y;,Y;) =0cary; = X;X;41 et Y; = X; X4 sont indépendantes (cf
le lemme des coalitions).

Cov(Yi,Yiy1) = E(YiYip1) = E(Y)E(Yi1) = B(Xi X7 Xiya) — p'
= B(XiXit1Xit2) — p* car X211 = Xia
= pP—pl

V(Sy) = np®(1—p°)+2(n—1)p°(1—p)
= p’(1—p) (n+np+2(n—1)p)
P*(1—p) ((3n—2)p+n)

— On consideére n cartes numérotées de 1 a n.
On permute au hasard les cartes de ce jeu et on note Y la variable aléatoire égale au
nombre de cartes qui occupent leur place naturelle.
On cherche 'espérance et la variance de Y.

Correction .
On note X, — {1 s% la k'°™€ carte est a sa place
0 sinon
(n-—D1! 1 . s
X~ B(p)avecp=P(X=1) = — = (indépendant de k, commenter, symétrie
n! n
des roles).
n n 1
Y =Y X; donc E(Y Z (Xp)=n-=1
— — n
k=1 . =
VYy)=V (Z Xk> mais quid de 'indépendance ?
k=1
Pour k # 1, XX, {1 s% la k™€ carte et la 1™ sont & leurs places
0 sinon
B B o (m=2)r 1
XXy ~B(r)avecr=P(X=1,X;=1) = o nn=D)
Cov(Xp, X)) = E(XpX1) — B(Xp)E(X) ! ! 1( ! 1)
ov == —_— = - — = — P
ho R b : nn—1) n? n\n—-1 n
B 1
 n(n—1)2
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Cette covariance est positive : si la k'™ est & sa place, la 1¥™® a plus de chances de Iétre,
cfn=2ou3.
D’ou :

V) = Y V(X)) +2 > Cou(X, X))
k=1 1<k<i<n

(n—1) 1
2 n?(n —1)

1 1 1 1 1
—no (1o D) m1- o
n
1

n
= np(l—p)+2
n n n n

Tout cela sans calcul de la loi.
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Chapitre 4

Fonctions génératrices d’une variable
aléatoire a valeurs dans N

4.1 Définitions et exemples

4.1.1 Définition

Soit (€2,.4, P) un espace probabilisé.
Soit X une variable aléatoire a valeurs dans N.
On appelle fonction génératrice de la variable aléatoire X la fonction Gx définie par

Gx(t) = B (t¥) = io P(X = n)t"
n=0

Remarques

— La fonction Gx est la somme d’une série entiere.
Vn € NVt € [-1;1] |P(X =n)t"| < P(X = n) indépendant de t et terme général d’une
série convergente.
On en déduit que la série entieére converge normalement sur [—1; 1].
Il en résulte :

— La série entiere Z P(X =n)t" a un rayon de convergence supérieur ou égal a 1.
n>0

— La fonction Gx est continue sur [—1;1].

Notons qu’on a systématiquement Gx(0) = P(X =0) et Gx(1) = 1.

— La loi d’une variable aléatoire X a valeurs dans N est caractérisée par sa fonction géné-
ratrice Gx.
En effet si on connait Gx, qui est la somme d’une série entiére, on peut récupérer les
nombres P(X = n) pour n € N qui sont ses coefficients.
Rappelons qu’on a :

(n)
VneNP(X =n)= Gx '(0).

En particulier si deux variables aléatoires a valeurs dans N ont la méme fonction généra-
trice, elles ont la méme loi.
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4.1.2 Exemples

Je cite le programme.

Les étudiants doivent savoir calculer rapidement la fonction génératrice d’'une variable aléatoire
de Bernoulli, binomiale, géométrique, de Poisson.

— Variable aléatoire constante ou presque siirement constante
Soit (£2,.A, P) un espace probabilisé.
Soit X une variable aléatoire telle que :
dnp e Ntq P(X =ng) =1
Alors G x est définie sur R et :
Vte RGx(t) =1t"

— Variable aléatoire suivant une loi de Bernoulli
Soit (€2,.A, P) un espace probabilisé.
Soit X une variable aléatoire telle que :
P(X=1)=p€|0;1[et P(X =0)=1—p.
G x est définie sur R et :
VieRGx(t)=1—p+pt

— Variable aléatoire suivant une loi binomiale
Soit (€2,.A, P) un espace probabilisé.
Soit X une variable aléatoire qui suit la loi binomiale B(n,p) (n € N*, p €]0;1])
G x est définie sur R et :
VieRGx(t) =1 —p+pt)"

Démonstgation
Gx(t) =Y P(X = k)t car X () = [0;7].
k=0
G'x est donc bien définie sur R comme toute fonction polynémiale.

n n

VEERGx(t) = Y. <Z>pk(1 —p)" R =" (Z) (pt)F(1 —p)n*
k=0 k=0
= (pt+1-—p)"

On verra une autre preuve plus loin.

— Variable aléatoire suivant une loi géométrique
Soit (£2,.A, P) un espace probabilisé.
Soit X une variable aléatoire qui suit la loi géométrique G(p) (p €]0; 1[).

1
Le domaine de définition de G x est }—; — | et:
1—-p ' 1—p
1 1 pt

Vie | ———:;——| Gx(t) = ———F———

] 1—p 1p[ x(®) 1—t(1-p)
Démonstration
Gx est la somme de la série entiére Z p(1 — p)" 1" ou encore Z pt (1 —p)t)" L.

n>1 n>1
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1 1
Donc le domaine de définition de Gx est }—1; T—5 [ et :
-—p L=Dp
1 1 pt

Vie |———; —— Gx(t):m

1—p'1—p
— Variable aléatoire suivant une loi de Poisson
Soit (€2,.4, P) un espace probabilisé.
Soit X une variable aléatoire qui suit la loi de Poisson P(A) (A € R).
G x est définie sur R et :
Vt € R Gx(t) = M1

Démonstration

()" -

. . A"
G x est la somme de la série entiere Z Z_ ™M™ ou encore Z
n! n!

n>0 n>0
Donc le domaine de définition de Gx est R et :
Vt € R Gx(t) = eMt=1)

4.2 Fonction génératrice et moments d’une variable aléatoire

4.2.1 Fonction génératrice et espérance d’une variable aléatoire

Soit (€2,.A, P) un espace probabilisé.
Soit X une variable aléatoire a valeurs dans N.
X admet une espérance E(X) si, et seulement si, Gx est dérivable en 1.
Si tel est le cas, on a E(X) = G’y (1).

Démonstration

Il s’agit de prouver :

La famille (nP(X = n))nen est sommable <= Gx est dérivable en 1

Comme il s’agit famille de nombres positifs indéxée par N, cela revient a prouver :
Z nP(X =n) converge <= Gx est dérivable en 1

n>0

— On suppose que Z nP(X = n) converge.
n>0
— Premier cas : R > 1
Gx est C*® sur | — R; R[, dérivable terme a terme donc Gx est dérivable en 1 et :

+00 +o00
Gx(1) =) nP(X =n)1"" =) nP(X =n) = E(X)
n=1 n=0

— Deuxiéme cas : R =1
0;1] - R
Pour tout n € N, soit f, 10 1]
t— P(X =n)t"

— Pour tout n €N, f,, est C! sur [0;1].
— La série de fonctions Z fn converge simplement sur [0; 1].
n>0
— Vn e N*Vt € [0;1] f.(t) = nt" 'P(X =n) (et fo =0)
n €N |f1ll. = sup [f4(6)] = nP(X = n)
te[0;1]

73



Probablités 2025 - 2026

Donc la série de fonctions Z f1, converge normalement sur [0; 1].
n>0
Donc Gy est C! sur [0;1] et
+00
vt € [0;1] G (t) = > nP(X =n)t"!

n=1

En particulier, Gx est dérivable en 1 (Gx n’est pas définie a droite en 1) et
+oo +oo

Gx(1)=> nP(X =n)=)Y_ nP(X =n)=E(X)
n=1 n=0

— La démonstration de la réciproque n’est pas exigible.
On suppose que la série Z nP(X = n) diverge.
n>0

R=Rey (Y P(X=n)t"| =Roy | Y nP(X =n)t"""| <1
n>0 n>1
Comme on sait que ce rayon de convergence est supérieur ou égal a 1, ona : R = 1.

vt e [0;1[ G (t) = JionP(X = n)t"!
n=1
G%(t) = io n(n—1)P(X =n)t"2>0
n=2

Donc G’y est croissante sur [0; 1].
Donc G’y (t) o [ = sup G'x(t) € [0; +o9]

t<1 te[0;1]

Supposons | < +00 :

N 400
VN e NVt € [0;1] Z( —nt”1>0) z:nP(X:n)tr“1

n=1 =1
et : !

+o00
VEe[0;1] > nP(X =n)t"! <1
n=1

Donc :

N
VN eNVte[0;1] > nP(X =n)t""' <1

n=1
On fait te]I\lde'e tvers1a N fixé :
VN EN > nP(X =n)<I<+oo

n=1
La suite des sommes partielles de la série a termes positifs Z nP(X = n) est majorée.
n>0
Donc Z nP(X = n) converge : absurde.
n>0
Donc G’y (t) 2_}—11> +o0.
<
G x étant continue sur [0; 1] on peut invoquer le théoréme de la limite de la dérivée pour
%})tertlir : Gl
x(t) = Gx(1) oo,
t—1 t—1
t<1

Donc Gx n’est pas dérivable en 1.
Par contrapposition :
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G x dérivable en 1 — Z nP(X =n) converge
n>0

4.2.2 Fonction génératrice et variance d’une variable aléatoire

Je cite le programme.

Utilisation de Gx pour calculer E(X) et V(X).

Soit (£2,.A, P) un espace probabilisé.
Soit X une variable aléatoire a valeurs dans N.

On a sans probleme :

+00
Vte] - L;1[Gx(t) = > nP(X=n)t""
n=1
“+00
Gxt) = Y nn-1)P(X=n)t""?>0
n=2
Supposons que X2 a une espérance finie (c’est la condition de définition de V(X)) vue plus haut).
X a alors une espérance finie (donc Gx est dérivable en 1).
Donc Z nP(X =n) et Z n?P(X = n) convergent.
n>0 n>0
Donc Z n(n —1)P(X = n) converge.
n>0
On a alors comme précédemment, G x est deux fois dérivable en 1 et :

+oo
Gx(1) = Y n(n-1)P(X =n)

n=0

= FE(X(X —1)) par le théoréme de transfert
E(X?-X)=E(X?) - E(X)

Mais V(X) = E(X?) — E(X)? donc :
Gx(1) = V(X)+E(X)*-E(X)
= V(X)+G%x(1)” - Gx(1)
et :
V(X) = G%(1) = G (1) + G (1)
4.2.3 Exemple
Considérons le programme suivant :

def recherche maximum(t):
maxi=t [0]
for v in t:
if v>maxi:
maxi=v
return(maxi)
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Combien d’affectations effectue-t-i1 7 En d’autres termes, combien de fois s’éxécute maxi=v ?

Nous allons modéliser la situation de la maniére suivante :

On recherche le maximum de n nombres deux & deux distincts.

Il y a n! permutations de ces entiers, on les suppose équiprobables.

Dans ce cadre, le nombre d’affectations est une variable aléatoire. Il s’agit d’en déterminer I’es-
pérance.

Soit n > 1.

Soit &, = [0;n[.

Soit 2, 'ensemble des bijections de &, sur lui-méme.

(Bien stir, les t; & trier ne sont pas forcément compris entre 0 et n — 1. Il faudrait introduire

Tn = {xo0;...;2p—1} avec z; < x;41 et une bijection ¢ de &, sur T, par exemple i — x;.
serait {@op™! o € o([0;n — 1[)} mais il s’agit d’'un modele)
Qn — [1;7]

Soit A,
{w € Q,, — nombre d’affectations dans le tri de w(0)w(1)...w(n —1)

Ap(w) = Card ({z € [1;n] tq w(i) > o Jnax 1w(j)}> +1 (qui correspond a l'affectation initiale).
<5<
A, est une variable aléatoire et on cherche son espérance.
An(2) = [1;n].
On note p, ; = P(A, = k) avec par convention p, o = 0 et :
Vk>n+1 pn =0
0;n—1
On note X, = [0;m ]
wrw(n—1)
w e (X, =j) <= w(n—1) = j et w réalise une bijection entre [0;n — 2] et [0;n[\{j}
Card (X, =7)) = (n—1)!
n—1)! 1

PXn=7) = Card(Qn) n

Vn>2VkeN p,, = P(A,=k)
1
= P(A,, = k| X, =1)P(X, =) probabilités totales

3

3
|

T
3 o
|
-

(]

P(A, = k| X, =1)

S|
:N
ol
N @

P(A, = k| X, =1)ouil n’y a pas d’affectation pour le dernier

SEE
|
=)

_l_

S|
HDM: w

(An = k|X, =n—1) ouil y a une affectation pour le dernier

) + P(An_l =k—1)

3 3l

1
= Pn-1k + —Pn-1k-1
n n
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Soit G4, la fonction génératrice de A,,.

Vie R Gy, (t) = an,ktk Pn,o = 0 et la somme est en fait finie

1 k
= Pn—1k + pn1k1t

1
= (1 n) )+ = an La-1th
- (1= Z gt
( n) >+nzpn

1t t+n—1
= (1=-=+ LT
(1= 5+ 1) Gan =G0
D’ou :
~t+k
VnZQVteRGAn(t):Hi(GAI = ,HHk

k
k=1
La loi de A, est "connue” : P(A, =1) est le coefficient de tl dans G4, (t).

Vt >0 In(Ga,( Zln (t+k)—1In(n!)

On derlve

vt >0

nz—:l

k= 0

GA (t
D’ou : .
Gy, (1) e

Ga,()=1_ 1+k kz::l

x| =

Donc :
E(A) =Y % ~n (n)

k=1

4.3 Fonctions génératrices et sommes de variables aléatoires in-
dépendantes

4.3.1 Fonction génératrice de la somme de deux variables aléatoires indépen-
dantes

Soit (€2,.4, P) un espace probabilisé.
Soient X et Y deux variables aléatoires indépendantes a valeurs dans N.
OHaZGx+y:GX XGY
Plus précisément si on note Rx le rayon de convergence de la fonction génératrice de X et Ry
celuide Y, on a:
Vit G] —min (Rx, Ry ); min (Rx, Ry)[ Gxiy(t) = Gx(t) x Gy (t)
En particulier, on a dans tous les cas :
Vt el — 11 Gxyy(t) = Gx(t) X Gy (t)

Cette formule est en fait vraie dans tous les cas sur [—1;1].
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Démonstration
— Premiére preuve

Vt €] — min (Rx, Ry ); min (Rx, Ry)[ Gx (t) x Gy (t)

+0o0 “+oo
= (Z P(X = n)t”> X (Z P(Y = n)t")
n=0 n=0
“+o00 n
= > (Z P(X =p)P(Y =n —p)> t"

n=0 \p=0

cf le cours sur les séries entieres
—+o00

= Y P(X+Y =n)t"
n=0

= Gx4v(t)

— Deuxiéme preuve
Soit ¢t €] — min (Rx, Ry ); min (Rx, Ry)[.
X et Y sont indépendantes donc tX et t¥ aussi
Comme t¥X et t¥ ont une espérance finie :

Gxiy(t) = EEY)=EXt¥) = Et™) E(tY)
= Gx(t) x Gy(t)

Enfin pour l'extension a [—1; 1], on utilise la continuité des séries génératrices sur [—1; 1].

4.3.2 Exemple d’application

Soit (€2,.4, P) un espace probabilisé.
Soient X et Y deux variables aléatoires discrétes indépendantes sur (€, A, P).
On suppose X ~ P(A) et Y ~ P(u) (A, p) € (R%)?).
Alors X +Y ~ P(A+ p).

Démonstration

Vi eR Gxiy(t) = Gx(t) x Gy(t) = 71 eplt=l) — Al=DHu(t=1)
O+ (1)

= Gz(t)si Z ~PA+pu)
Donc X +Y ~ P(A+ )
(Rappelons que la fonction génératrice caractérise la loi)
4.3.3 Fonction génératrice de la somme de plusieurs variables aléatoires in-
dépendantes

Soit (2,.4, P) un espace probabilisé.
Soient X1,..., X, n variables aléatoires indépendantes a valeurs dans N.

n
On a GX1+...+Xn == H C;'X2
i=1
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Plus précisément si on note Ry, le rayon de convergence de la série génératrice de X;, on a :

vt €] —- @ign(RXi); 112,'%1”(1%&)[ Gxy ot X, (1) = 1:[1 Gx,(t)

En particulier, on a dans tous les cas :
n

vt e [-1;1] Gxperx, (8) = [[ Gx. (1)
i=1

Ce résultat se déduit par récurrence immeédiate et utilisation du lemme des coalitions de 4.3.1.

4.3.4 Exemple d’application

Soit (€2,.A, P) un espace probabilisé.
Soit X une variable aléatoire qui suit la loi binomiale B(n,p) (n € N, p €]0; 1])
G x est définie sur R et :
VieERGx(t)=(1—p+pt)”

Démonstration

Il n’est pas forcément possible d’écrire X = Y1+---+Y,, avec Y1, ..., Y, indépendantes et suivant
la loi de Bernoulli de parametre p.

Par contre, il est possible de construire (€', A, P’) un espace probabilisé sur lequel existent
Y1,...,Y, n variables aléatoires mutuellement indépendantes suivant la loi de Bernoulli de pa-
rametre p.

Yi+---+Y, ~B(np)

Donc Gx = Gy,+.y, = G{‘/l
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Chapitre 5

Inégalités probabilistes

5.1 Inégalité de Markov

Soit (2,.4, P) un espace probabilisé.
Soit X une variable aléatoire réelle discrete d’espérance finie.
On suppose en outre :

i X(Q) CRy
iim=FEX)>0
Alors :
VAER, P(X >Am) <

>| =

Démonstration

Soit Y = 1x>am-

Y ~ B(p) avec p = P(X > \m).

Vw € QAmY (w) =4 (w) siwé¢ (X > Am)
Am < X(w) siw € (X > Am)

Donc :
Yw € Q AdmY (w) < X(w)
Donc \omY < X

En pratique, on rédige plus rapidement :

AmY = Amlx>iym
_Jo<X (X>0)siX <Am
ol am < Xsi X > Aam

< X dans tous les cas

Par croissance et linéarité de ’espérance :
AmE(Y) < E(X)

AmP(X > m) <m

Apres simplification par m > 0 :

1
P(X > m) < X Cette inégalité n’est pas d’une grande précision :

1 1
Si A <1, on écrit P(X > Am) < 3, avee + > 1.

81



Probablités 2025 - 2026

5.2 Inégalité de Bienaymé-Tchebychev

Soit (2,4, P) un espace probabilisé.
Soit X une variable aléatoire réelle discréte telle que X2 soit d’espérance finie.
On a alors, en notant m 'espérance de X et o2 sa variance :

[\

Va>0P(|X —m|>a) SU—Q
a
Démonstration
Y = (X —m)? a une espérance finie (cf?).
EY)=V(X)=o0?
— Premier cas : 0 >0
D’apres 'inégalité de Markov :
1
v/\>0P(YzA02)§X

a2
On prend A = — >0
o

Ya>0P (X -m)?>a?) <2
a
D’ou :
o2
Va>0P(|X —m|>a)<—
a
— Deuxiéme cas : 0 =0
V(X)=02=0
P(X=m)=1

lO

Va>0P(|X—m|2a)—0<¥

5.3 Remarque

Ces inégalités ont un intérét essentiellement théorique. Elles fournissent des majorations tres
médiocres des probabilités considérées.

1
Supposons par exemple X ~ 3 (10, 2).

1 1 1
On a donc : .
P(|X =5 24) < o5 ~0,156
Mais :

P(X—5>4) = P(X=0)+P(X=1)+

- e

210 512 0.0

— 10)
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5.4 Loi faible des grands nombres

5.4.1 Théoréme

Soit (2,.A, P) un espace probabilisé.
Soit (X;)n>1 une suite de variables aléatoires i.i.d ayant une variance finie.

n
On note S, = Y Xj, m = E(X1) et 0 = 0(X1). Alors :
k=1

iVe>0P(

1

Lo, - m‘ > ) — 0
n n—-+oo

ii Plus précisément :

2

1
Ve>0P(‘Sn—m‘ 26) < %
n ne
Démonstration
p(5) =y mxy =Ly m-
n) n- Ve pLmEm
i=1 =1
Sh 1 " 1 & o .
Vi—)= —QV ZXi =— Z V(X;) car les X; sont mutuellement indépendantes mais on
n n i=1 (L

peut remarquer qu’il suffit qu’elles soient deux a deux indépendantes.
S, 1 o?

V <n> = 72710'2 = —
n n n

On applique alors I'inégalité de Bienaymé-Tchebychev :

2 2
ve>0P( ze>§0/nza

1
S —m o
n " €2 ne2

5.4.2 Remarques

— Je cite le programme :

Les étudiants doivent savoir retrouver, avec o = o(X1) :

g

On peut affaiblir les hypotheses : il suffir que les X, soient deux a deux indépendantes
et aient toutes la méme espérance et la méme variance.

1 o?
Sn—m‘ > e> <—
n ne

5.5 Un exemple

Soit o € R

o
. N ’ . LY n
On considére la série entiere E — "
n!
n>0
«

Pour tout n € N, on note a,, = -
n!

Soit r € RY.

Vn € N* aq,7" > 0 et :

n+1 1\
W:(1+) T o<1
anr" n n+1 n—stoo
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D’apres la régle de d’Alembert, la série de terme général a,r" converge pour tout r > 0.

Le rayon de convergence de série entiére E —a: est donc infini.
n!
n>0

On en déduit par linéarité que pour tout polyndéme P la série entiére Z ——22" a un rayon de

n>0

Pn) .,
n!
convergence infini.

Si o = p est un entier naturel, le calcul de la somme est facile.
k-1

On pose Hy =1 et pour tout k € N*, Hy, = H(X —1).
=0
La famille (Hy, ..., Hp) est une famille de polynémes de R,[X].

Elle est échelonnée en degré donc elle est libre.
Elle a p+ 1 = dim (Rp[X)) éléments donc c’est une base de R,[X] et :
P

Wag, . ..,ap) €RPT tq XP = i H.

1=0
Par comparaison des coefficients dominants, on a a, = 1.

+00 . p +00 p H
n a Hy(n)
wer X = 5 (Sl
n=

n=0 \I=0
p +oo
H,
= Z (al Z l(n):r”> par simple linéarité
n!
=0 n=0
p +00
—1)...(n—=101+1
_ Z (alzn(” ) '(n + )xn>
n!
=0 n=l
3 (3 )
= aj z"
1=0 = (n=1)!

On en déduit :

On va montrer :
Z Lx ~r—+4oo \/Eex
n=0

mais le calcul de la somme n’est plus faisable.
Il's agit de prouver

+
Z 1 fﬂx”e_x—>0

ezf \/E = n' T—+00
ou encore n
1 o
Ve>03A>0tqVe > A E:ﬁx”e*x—l <e
\/5 — n'
n=0
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“+oo
n
On remarque que pour x > 0, Z ilx” e ¥ = E(vX;) ou X, est une variable aléatoire qui
n!
n=0
suit la loi de Poisson de parametre .

Soit € > 0.
Soit i €]0; 1[ & choisir plus tard en fonction de € et seulement en fonction de e.

1 = X
Vz>0|2\/ﬁx"e_x—l FE =1 -1
\/'En() z

— nl!

fpavm-i -

[x [ x

= E( xxllxx—mlow) -1+ E ( ;1Xx—m|znx>‘
[x [x

E( ;1|Xx—x|<nar) -1 +E< ;1|Xa;—l’|277$>

[ X
V91— nl\XI—x|<nx < f1|Xz—:c|<77:c < Vvi+ 771|Xz—cc|<77a:

En effet si | X, — x| > nz alors I'inégalité s’écrit 0 < 0 < 0 et
si | Xy — 2| < nz alors —nr < X; — 2 < nz donc (1 —n)z < X, < (1 +n)z puis

IN

/X

I—1n< /== < T+7 qui est I'inégalité voulue.
T
On en déduit :

[ X
VI—=nP (| Xy — x| <nz)<E < xle$|<m:> < V1T+nP (| Xy — x| < nx)

Donc :

X
VI=7 (1= P (X, — | 2 n2) < B (x/;uxzmgc) < VTF7 (1= P (X, — 2l > )
Donc :

X
VI=n=1=yT=nP(|X; — 2| 2 nz) <E <\/;1|xx_m<m>1 < VI =n=1=VT+nP(|X; — 2| > nz)
Mais par inégalité triangulaire :
(VI=n—=1=VI=nP(X; —2| 2 nz)| < 1= VI =0+ P(X; -z >nz)
et :

[VI+n—1— V1+nP(| Xz —2z| >2nx)| < V14+n—1+ VT1+nP (| Xy — x| > nx)
On en déduit :

X
E 711|Xm—x\<nx -1

<max(1— I-n,VIT+n—-1)+ V1+nP (| X, —z| > nx)

Par ailleurs avec Cauchy-Schwarz :

X
E (\/xhxzwnx)
X

1/2

) (e (0n))”
()" (2 () ”

VP (X, — 2] > )

IN
&S|
—

IN

IN
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On a donc :

Ve >0 f"_x—l

k22

< max(l— V1— ,vl—l—n—l)—l— V14+nP (| X, —z| >nz) +

max (1 — /1 — ,\/W—l)o——ﬁ()donc:
n—0

dn €]0; 1] tq max (1 — /1 — ,\/m—l)gg
On a alors :
V(Xy2) 1

v14+n—— — 0 donc :

7]35‘ T—r+00
1
dry >0tqVe > 21 V1+n—- <

n°x
Enfin : 1
VP ([ Xz — 2] > nz) <

) URVES
— 0 donc :
n \/5 r—r—+00

1
dxs > 0tq Va > o
n

Wl m

ax (r1,z2) alors :
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Annexe A

Ensembles dénombrables

A.1 Définition des ensembles dénombrables

Un ensemble est dit dénombrable si, et seulement si, il est en bijection avec N ie s’il peut
étre écrit en extension {z;,7 € N} avec des x; distincts.
Un ensemble est dit au plus dénombrable si, et seulement si, il est en bijection avec une partie
I de N ie s’il peut étre écrit en extension {z;,7 € I'} avec I une partie de N et des z; distincts.
Les ensembles au plus dénombrables sont les ensembles finis ou dénombrables.

A.2 Exemples et propriétés

A.2.1 Parties d’un ensemble dénombrable

Une partie d'un ensemble dénombrable est au plus dénombrable.

La démonstration n’est pas au programme.

A.2.2 7 est dénombrable

Ce résultat est explicitement au programme mais pas sa démonstration.
... =2 -1 0 1 2 ...
( 3 1 0 2 4 )
N—-Z
Soit ¢ ¢ n+— n/2 si n est pair
n— —(n+1)/2 si n est impair
En d’autres termes :
Vp €N o(2p) =p
VpEN" o(2p—1)=—p
© est bien une application de N dans Z.
 est injective :
Supposons ¢(n1) = p(ng).
ny et ng ont la méme parité : si n est pair, ¢(n) > 0 et si n est impair, p(n) < 0.
Si nq et ng sont pairs, alors % = % et n1 = no.
ni+1  ng+1
2 2

Si ny et ng sont impairs, alors — et n1 = no.
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 est surjective :
Sin €N, n=p(2n).
SineZ* alorsn=p(2(—n)—1) et 2(—n) —1 € N.

@ est donc une bijection de N sur Z et Z est dénombrable.

A.2.3 Produit cartésien d’un nombre fini d’ensembles dénombrables

Si Fy, ..., E, sont n ensembles dénombrables alors E1 X - -+ X FE, est un ensemble dénom-
brable.
Ce résultat est mentionné dans le programme.
Par contre, la démonstration n’est pas au programme.
Elle se fait par récurrence sur n.
La propriété est triviale pour n = 1 et se démontre comme suit pour n = 2.
On commence par montrer que N? est dénombrable en explicitant une bijection de N sur N2

10
45
36 46
8
28 37 47
21 29 38 48
6
15 22 30 39 49
10 16 23 31 40
4
6 11 17 24 32 41
3 7 12 18 25 33 42
2
1 4 8 13 19 26 34 43
0 2 5 9 14 20 27 35 44
0
0 2 4 6 8 10

(1,7) se trouve sur la méme couche que (0, + 7).
Sur les couches précédentes, il y a eu :

NG 1
1+24--+(i+j) = (HJ)(Z;‘]JF )
Sur la couche de (0,4 + 5), (i, ) est le (i + 1)me,

éléments.

N2 — N* NZ 5 N
Donc ¢ i Vi 4 5+ 1 et @ i Vi 4 G+ 1 sont des

bijections.

Justifions le rigoureusement.
¢ va bien de N2 dans N : (i + j)(i + j + 1) est pair.
Supposons ¢ (i1, j1) = ¢(i2, j2)-
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Supposons i1 + j1 < iz + Jo.

(i2 +j2)(ia + o+ 1) (i1 +j1)(i1 + 51 +1)

11—ty = 5 _ 5

i2+j2 i1+J1

= D k=) k
k=0 k=0

i2+J2

= Z k
k=i1+j1+1

> 11+ +1

DOHCi12i1+(i2+j1 ZO)+1>i1.

On aboutit & une absurdité.

Idem si on suppose i1 + j1 > i2 + Jo.

Donc i1 + j1 = i2 + jo.

(i1, 71) = @(i2, j2) donne alors iy = ig, puis j; = Jo.
( est injective.

Soit N € N. .
Soit (8p)nen = (n(n—i—)) .
2 neN
— s50=0

— (Sn)nen est strictement croissante

— Sp ——— “+00
n—-+4o0o

Donc :

dng € N tq spy < N < Sppt1
0< N —8py < Spgtl —Sng =N0 + 1
On pose i = N — sy, € [0;n0].

j = ng — ¢ est bien défini.

(i,7) € N% et ¢(i,j) = N.

 est surjective.

Donc ¢ est bijective.

Soient ensuite E et F' deux ensembles dénombrables.
Il existe e une bijection de F sur N et f une bijection de F' sur N.
{EXF%N2

(z,y) = (e(z), f(y))

E x F est en bijection avec N.

est une bijection de E x F sur N2. Comme N? est en bijection avec N,

Eyx- - xEup1 — (B X X Ey) X Eppq

Enfin, pour passer du rang n au rang n+1, on remarque que
(:Clv <o ,xn+1) = ((2?1, s ’xn)vanrl)

est une bijection.

Remarque

Q est un ensemble dénombrable.

Ce résultat n’est pas mentionné dans le programme.
Le principe de la démonstration est le suivant :
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tout rationnel strictement positif r s’écrit de maniere unique

r="2ou (p,q) € N* x N* et PGCD(p,q) = 1, ce qui permet de mettre en bijection Q et une
q
partie de N2,

A.2.4 Remarque

Il existe des ensembles infinis qui ne sont pas dénombrables.
Cette propriété n’est pas mentionnée dans le programme et ne peut donc a priori pas faire
I’'objet de questions pendant les concours. Il s’agit toutefois d’un point de culture générale et il
me parait indispensable d’en avoir entendu parler.
L’exemple le plus frappant est celui de R : R est un ensemble infini non dénombrable.
En effet, il a été vu en premieére année que tout réel appartenant a [0;1[ a un, et un seul,
développement décimal propre ie x € [0; 1] s’écrit de maniére unique z = 0,¢j¢2...¢p ... avec
cn € [0;9] et ¢, qui n’est pas égal a 9 & partir d’un certain rang.
Supposons R dénombrable.
Il existerait une bijection ¢ de N* sur [0;1].
Pour tout n € N*, ¢(n) = 0,c}cs ... (développement décimal propre de ¢(n)).
dp,=1sic}=0
dp=0sic}#0
Le nombre 0,d1ds ... est dans [0;1] et il est différent de tous les p(n).
On aboutit donc a une contradiction.

Soit (dp)nen+ la suite définie par {

A.2.5 Union au plus dénombrable d’ensembles dénombrables

Une union au plus dénombrable d’ensembles dénombrables est un ensemble dénombrable.
Plus précisément, soit I un ensemble non vide au plus dénombrable et (F;);c; une famille d’en-
sembles dénombrables. Alors :

U FE; est un ensemble dénombrable.
el

La démonstration est hors programme.
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Annexe B

Familles sommables

B.1 Familles sommables de réels positifs

B.1.1 Définitions
Soit (z;)ier une famille au plus dénombrable de réels positifs.
On dit que la famille (x;);c; est sommable si, et seulement si, Z xj,J partie finie de I » est
jedJ
majoré.

Si la famille (z;);e; est sommable, sa somme est Z T; = sup Z zj | €R.

: JCI -
= J finie Jjes
Si la famille (z;);e; n’est pas sommable, par convention sa somme est Z T; = +00

el
On généralise cette notion au cas ou les x; peuvent prendre la valeur +o0 :
si 'un des z; est infini, la famille (z;);c; n’est pas sommable et par convention sa somme est

in = +00

el

B.1.2 Lien avec les séries

— Si (z;)ier est une famille finie de réels positifs, sa somme Zml telle qu’on vient de la
el
définir est la méme que sa somme habituelle, somme qui peut étre calculée en additionnant
les éléments de la famille dans n’importe quel ordre.
— Soit (zy)nen une suite de réels positifs.
(Zn)nen est sommable <= la série Z Tp converge

n>0
+oo
Dans ce cas, la somme Z xy telle qu’on vient de la définir est égale a la somme Z T
neN n=0

de la série.
— Soit I un ensemble dénombrable et (x;);c; une famille de réels positifs.
Soit ¢ une bijection de N sur I ie une énumération des éléments de I : I = {p(0); ¢(1);...}.

(zi)ier est sommable <= la série Z Ty(n) CONVErge
n>0
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“+o0o

Dans ce cas : sz = Z Tp(n)
i€l n=0

On voit donc que dans une famille sommable 'ordre de la sommation n’a pas d’impor-

tance.

B.1.3 Sommation par paquets

Soit (x;)ier une famille au plus dénombrable d’éléments de [0; +o0].
On suppose que I se décompose en [ = U I, ou K est au plus dénombrable et les I sont deux

keK
a deux disjoints.

domi=) (D w
icl keK \i€ly
Rappelons que toutes ces sommes peuvent prendre la valeur 4oc.

B.1.4 Théoréme de Fubini

Soient I et J deux ensembles au plus dénombrables.
Soit (2;,5)(i,j)erx.s une famille de nombres réels positifs.

Y =X (T ) - X (T
(,)elxJ il \jeJ jeJ \iel
ces sommes pouvant étre égales a +oc.

B.2 Familles sommables de nombres complexes

B.2.1 Définition

Soit (x;)ier une famille au plus dénombrable de nombres complexes.
On dit que la famille (z;);c; est sommable si, et seulement si, la famille (au plus dénombrable
de réels positifs) (|x;])ier est sommable.

Si les z; sont tous réels, on définit y; = sup(0,z;) € Ry et z; = —inf(0,2;) € Ry et on a
T =y — % et |zi| = yi + 2.

Zyi < Z |z;| < +o00 donc la famille (y;);er est sommable.

iel icl

De méme la famille (z;);cr est une famille sommable de réels positifs.

Zyi et Z z; sont donc définies et on définit Z x; par Z:c, = Z Yi — Z 2
icl icl icl icl icl iel
Dans le cas général, on pose y; = Re(x;) et z; = Sm(z;).

S lwil <\ y? + 22 =) |ai| < +oo donc la famille (y;)ies est sommable.
icl icl icl

De méme la famille (z;);er est une famille sommable de nombres réels.

Zyi et Z z; sont donc définies et on définit Z T; par le = Z Y + iz Zi

el el icl iel iel el

92



Probablités 2025 - 2026

B.2.2 Lien avec les séries

— Si (#;)ier est une famille finie de nombres complexes, c’est une famille sommable et sa
somme Z x; telle qu’on vient de la définir est la méme que sa somme habituelle, somme
el
qui peu%ceétre calculée en additionnant les éléments de la famille dans n’importe quel
ordre.
— Soit (xy)nen une suite de nombres complexes.
(Zn)nen est sommable <= la série Z Ty converge absolument

n>0
—+00
Dans ce cas, la somme Z Ty telle qu’on vient de la définir est égale & la somme Z Tn
neN n=0

de la série.
— Soit I un ensemble dénombrable et (z;);c; une famille de nombres complexes.
Soit ¢ une bijection de N sur [ ie une énumération des éléments de I : I = {¢(0); ¢(1);...}.
(x4)icr est sommable <= la série Z Ty(n) coOnverge absolument
n>0

+oo
Dans ce cas : Z T; = Z Tp(n)
i€l n=0

On voit donc que dans une famille sommable 'ordre de la sommation n’a pas d’impor-
tance.

B.2.3 Propriétés

— Croissance
Soit (x;)icr une famille au plus dénombrable de nombres complexes.
Soit (y;)ier une famille de réels positifs.
On suppose :
— Viel ’%Z‘Syz
— La famille (y;);er est sommable
Alors la famille (z;);er est sommable.

Soient (x;)icr et (y;)ier deux familles sommables de nombres réels telle que :

On a : Zwl < Zyz
iel iel
— Linéarité

Soit (z;)ier et (yi)ier deux familles au plus dénombrables de nombres complexes.
Si ces deux familles sont sommables alors pour tout (\, x) € C2, la famille (Az; + py;)icr
est sommable et :
SO+ py) =AY wmi+p )y yi
iel icl iel
— Sommation par paquets
Soit (z;)ier une famille au plus dénombrable de nombres complexes.
On suppose que I se décompose en I = U I, ou K est au plus dénombrable et les I

keK
sont deux a deux disjoints.

Il y a équivalence entre

(i) La famille (x;);es est sommable.
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i€l

(ii) Pour tout k € K, la famille (x;);cs, est sommable et la famille (Z \xl|> est
keK

sommable, ce qui peut s’écrire Z (Z ]xz\) < —+o00.

keK \i€l}
On a alors :
dowi=) (D
iel keK \icl,

Théoréme de Fubini
Soient I et J deux ensembles au plus dénombrables.
Soit (2;,5) (i j)erx.s une famille de nombres complexes.

(aci,j)(i’j)eli sommable <= Z (Z |z ; ) < 400
jeJ

i€l
= Z (Z ‘l’i,j|> < 400
jeJ \iel
On a alors :
S w-Z(Tm)-Z(5m)
(¢,5)EIXJT el \jeJ jed \iel

Produit de deux sommes

Soit (x;);c; une famille au plus dénombrable et sommable de nombres complexes.
Soit (y;j)jes une famille au plus dénombrable et sommable de nombres complexes.
Alors la famille (:L‘z-yj)( ; est sommable et :

4,7)EIX
(Z ﬂfz) X (Z yj) = Z LYy
iel jeJ (i,5)eIxJ
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