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1 Modèle de Kolmogorov
Exercice 1 (Mines 2021)

Soit (Ω,A, P ) un espace probabilisé.
Soit A1, . . . , An des événements.
Soit Γn = {A1, A1} × · · · × {An, An}.
Calculer

∑
(B1,...,Bn)∈Γn

P (B1 ∩ · · · ∩Bn).

Correction
Explicitons l’énoncé.
Γn est l’ensemble des n-uplets (B1, . . . , Bn) où Bi est l’événement Ai ou son évènement contraire.
On cherche la somme des probabilités des intersectionsB1∩· · ·∩Bn lorsque le n-uplet (B1, . . . , Bn)
décrit Γn.
Soit ω ∈ Ω.
Pour tout i ∈ [[1;n]], ω appartient à Ai ou Ai. Notons Bi l’évènement auquel appartient ω.
On a (B1, . . . , Bn) ∈ Γn et ω ∈ B1 ∩ · · · ∩Bn.
On a donc : Ω =

⋃
(B1,...,Bn)∈Γn

(B1 ∩ · · · ∩Bn) (l’inclusion de droite à gauche est triviale)

Mais ces intersections sont deux à deux disjointes :
Soit (B1, . . . , Bn) et (C1, . . . , Cn) deux éléments distincts de Γn .
Il existe i ∈ [[1;n]] tel que Bi 6= Ci.
Mais alors Bi et Ci sont complémentaires et Bi ∩ Ci = ∅.
On en déduit que (B1 ∩ · · · ∩Bn) ∩ (C1 ∩ · · · ∩ Cn) = ∅.
Finalement, la somme cherchée est P (Ω) = 1.

Exercice 2 (Mines 2024)

Soit (Ω,A, P ) un espace probabilisé.
Soit A1, . . . , An des événements.
Soit Γn = {A1, A1} × · · · × {An, An}.
Calculer

∑
(B1,...,Bn)∈Γn

P (B1 ∪ · · · ∪Bn).

Correction
La première difficulté de l’exercice consiste à comprendre l’énoncé ie la notation

∑
(B1,...,Bn)∈Γn

P (B1 ∪ · · · ∪Bn).
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Dans le cas n = 1, Γ1 = {A1;A1} et la somme cherchée est P (A1) + P (A1) = 1.
Dans le cas n = 2 :
Γ2 = {A1;A1} × {A2;A2} =

{
(A1, A2), (A1, A2), (A1, A2), (A1, A2)

}
.

La somme cherchée est P (A1 ∪A2) + P (A1 ∪A2) + P (A1 ∪A2) + P (A1 ∪A2)

P (A ∪B) + P (A ∪B) = P
(
(A ∪B) ∪ (A ∪B)

)
+ P

(
(A ∪B) ∩ (A ∪B)

)
= P (A ∪B ∪B) + P

((
A ∩ (A ∪B)

)
∪
(
B ∩ (A ∪B)

))
= P (Ω) + P

(
A ∪

(
(B ∩A) ∪ (B ∩B)

))
= 1 + P (A ∪ ((B ∩A) ∪ ∅)) = 1 + P (A ∪ (B ∩A))
= 1 + P (A)

Donc pour n = 2, la somme cherchée est :
1 + P (A1) + 1 + P (A1) = 3
Dans le cas général :∑

(B1,...,Bn)∈Γn

P (B1 ∪ · · · ∪Bn)

=
∑

(B1,...,Bn−1)∈Γn−1

(
P (B1 ∪ · · · ∪Bn−1 ∪An) + P

(
B1 ∪ · · · ∪Bn−1 ∪An

))
=

∑
(B1,...,Bn−1)∈Γn−1

(1 + P (B1 ∪ · · · ∪Bn−1))

= 2n−1 +
∑

(B1,...,Bn−1)∈Γn−1

P (B1 ∪ · · · ∪Bn−1)

On doit donc déterminer un avec u1 = 1 et :
∀n ≥ 2 un = un−1 + 2n−1

Une récurrence triviale donne :
∀n ∈ N∗ un = 2n − 1

Remarque ∑
(B1,...,Bn)∈Γn

P (B1 ∪ · · · ∪Bn) +
∑

(B1,...,Bn)∈Γn

P (B1 ∩ · · · ∩Bn)

=
∑

(B1,...,Bn)∈Γn

P (B1 ∪ · · · ∪Bn) +
∑

(C1,...,Cn)∈Γn

P
(
C1 ∩ · · · ∩ Cn

)
=

∑
(B1,...,Bn)∈Γn

(
P (B1 ∪ · · · ∪Bn) + P

(
B1 ∩ · · · ∩Bn

))
=

∑
(B1,...,Bn)∈Γn

(
P (B1 ∪ · · · ∪Bn) + P

(
B1 ∪ · · · ∪Bn

))
=

∑
(B1,...,Bn)∈Γn

1 = 2n

Exercice 3
Soit (Ω,A, P ) un espace probabilisé.
Démontrer l’inégalité de Bonferroni :

∀(A1, . . . , An) ∈ An P

(
n⋃

r=1
Ar

)
≥

n∑
r=1

P (Ar)−
∑

1≤r<k≤n

P (Ar ∩Ak)
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Correction
On raisonne par récurrence sur n.

• n = 1 : à gauche, on a P (A1) et à droite P (A1)− 0 donc la propriété est vraie au rang 1.
• n = 2 : P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2) : la prorpiété est vraie au rang 2 et

il y a même égalité.
• On suppose la propriété vraie au rang n.

P

(
n+1⋃
r=1

Ar

)
= P

(
n⋃

r=1
Ar

)
+ P (An+1)− P

(
An+1 ∩

(
n⋃

r=1
Ar

))

≥
n∑

r=1
P (Ar)−

∑
1≤r<k≤n

P (Ar ∩Ak) + P (An+1)− P
(

n⋃
r=1

(An+1 ∩Ar)
)

Or, par la sous-additivité :

P

(
n⋃

r=1
(An+1 ∩Ar)

)
≤

n∑
r=1

P (An+1 ∩Ar)

Donc P
(

n+1⋃
r=1

Ar

)
≥

n+1∑
r=1

P (Ar)−
∑

1≤r<k≤n+1
P (Ar ∩Ak)

Remarque
L’exercice peut également se traiter avec la linéarité et la croissance de l’espérance.
Soit (A1, . . . , An) ∈ An.

P

(
n⋃

r=1
Ar

)
= E

1 n⋃
r=1

Ar


n∑

r=1
P (Ar)−

∑
1≤r<k≤n

P (Ar ∩Ak) =
n∑

r=1
E (1Ar )−

∑
1≤r<k≤n

E (1Ar∩Ak
)

Il suffit donc de montrer : 1 n⋃
r=1

Ar

≥
n∑

r=1
1Ar −

∑
1≤r<k≤n

1Ar∩Ak
.

Si aucun des évènements Ai n’est réalisé l’inégalité est vraie : 0 ≥ 0.
Si p ≥ 1 évènements Ai sont réalisés :
1 n⋃

r=1
Ar

= 1

n+1∑
r=1

1Ar −
∑

1≤r<k≤n+1
1Ar∩Ak

= p−
(
p

2

)
= p(3− p)

2

De plus 1− p(3− p)
2 = 2− 3p+ p2

2 = (2− p)(3− p)
2 ≥ 0.

Exercice 4 (Lemmes de Borel-Cantelli)

Soit (Ω,A, P ) un espace probabilisé.
Soit (An)n∈N une suite d’évènements.
On note B = {ω ∈ Ω tq ω ∈ An pour une infinité de n}.

1. Montrer : B =
+∞⋂
n=1

(+∞⋃
k=n

Ak

)
2. Premier lemme de Borel-Cantelli

On suppose que la série de terme général P (An) converge.
Montrer que P (B) = 0.

3
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3. Second lemme de Borel-Cantelli
On suppose que les An sont mutuellement indépendants et que la série de terme général
P (An) diverge.
Montrer que P (B) = 1.
Indication :
On pourra utiliser, après l’avoir démontrée, l’inégalité :
∀x ∈ R 1− x ≤ e−x

Correction

1. ω ∈
+∞⋃
k=n

Ak ⇐⇒ ∃k ≥ n tq ω ∈ Ak

ω ∈
+∞⋂
n=1

(+∞⋃
k=n

Ak

)
⇐⇒ ∀n ∈ N ∃k ≥ n tq ω ∈ Ak

⇐⇒ {k ∈ N tq ω ∈ Ak} n’est pas majoré
⇐⇒ {k ∈ N tq ω ∈ Ak} est infini
⇐⇒ ω ∈ B

2. On note Cn =
+∞⋃
k=n

Ak.

∀n ∈ N Cn+1 ⊂ Cn : Cn = Cn+1 ∪An

Par continuité décroissante :

P (B) = P

(+∞⋂
n=1

Cn

)
= lim

n→+∞
P (Cn)

Par sous-additivité :

0 ≤ P (Cn) ≤
+∞∑
k=n

P (Ak) −−−−−→
n→+∞

0 : reste d’une série convergente

Donc P (Cn) −−−−−→
n→+∞

0
Donc P (B) = 0.

3. B =
+∞⋃
n=1

(+∞⋂
k=n

Ak

)
Par sous-additivité :

P (B) ≤
+∞∑
n=1

P

(+∞⋂
k=n

Ak

)
Il suffit donc de prouver :

∀n ∈ N∗ P
(+∞⋂

k=n

Ak

)
= 0

Fixons donc n ∈ N∗.
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P

(+∞⋂
k=n

Ak

)
= lim

N→+∞
P

(
N⋂

k=n

Ak

)
(justifié en cours).

P

(
N⋂

k=n

Ak

)
=

N∏
k=n

P (Ak) par indépendance

=
N∏

k=n

(1− P (Ak))

≤
N∏

k=n

e−P (Ak) tout est positif

≤ e
−

N∑
k=n

P (Ak)
−−−−−→
N→+∞

0

D’où le résultat.

Exercice 5 (X 2017)

On range n boules distinctes dans n boîtes.
Probabilité qu’une seule boîte soit vide et équivalent quand n→∞ ?

Correction
Il y a une seule boîte vide si, et seulement si, il y a une boîte vide, une boîte qui contient deux
boules et n− 2 boîtes qui contiennent une boule.
L’univers Ω est ici [[1;n]]n de cardinal nn et il y a équiprobabilité.
Pour construire un cas favorable, on :

• choisit la case vide : n choix
• choisit la case qui contient deux boules : n− 1 choix

• choisit les deux boules en question
(
n

2

)
choix

• répartit les n− 2 boules restantes dans n− 2 boules
On en déduit :

pn =
n(n− 1)

(
n

2

)
(n− 2)!

nn

= n(n− 1)
2

n!
nn

∼ n2

2

√
2πn(n/ e)n

nn
=
√

2π
2 n5/2 e−n

Exercice 6 (Mines-Telecom 2023)

On dispose de deux urnes : l’urne numéro 1 qui contient 3 boules blanches et 5 boules noires et
l’urne numéro 2 qui contient 2 boules blanches et 3 boules noires.
On tire la première boule dans une des urnes, tirées au sort avec équiprobabilité des deux urnes.

5
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On note la couleur de la boule et on la remet dans l’urne dont elle provient.
Si la boule est blanche, le prochain tirage se fera dans l’urne numéro 1. Si elle est noire, dans
l’urne 2.
On note pn la probabilité de tirer une boule blanche au n-ième tirage.

1. Exprimer pn+1 en fonction de pn.
2. Déterminer pn.

Correction
1. Pour tout n ∈ N∗, on note An l’évènement : la n-ième boule tirée est blanche.

On note A0 l’évènement : le premier tirage se fait dans l’urne 1.
Par la formule des probabilités totales :

p1 = P (A1) = P (A1 | A0)P (A0) + P (A1 | A0)P (A0)

= 3
8 ×

1
2 + 2

5 ×
1
2

= 15
80 + 16

80 = 31
80

Ensuite, toujours avec la formule des probabilités totales :

∀n ∈ N∗ pn+1 = P (An+1) = P (An+1 | An)P (An) + P (An+1 | An)P (An)

= 3
8pn + 2

5(1− pn)

= − 1
40pn + 2

5

Cette formule est valable pour n = 0 en prenant p0 = 1
2.

2. L’équation x = −x40 + 2
5 possède une et une seule solution : l = 16

41.

∀n ∈ N pn+1 = − 1
40pn + 2

5
et l = − 1

40 l + 2
5 donc :

∀n ∈ N pn+1 − l = − 1
40(pn − l)

Donc :
∀n ∈ N pn = l +

(−1
40

)n

(p0 − l) = 16
41 +

(−1
40

)n 9
82

Exercice 7

On jette de manière répétée une pièce de monnaie.
A chaque fois la probabilité d’obtenir face est p ∈]0; 1[.
Déterminer pn, la probabilité d’obtenir face un nombre pair de fois au cours de n lancers.

Correction
• Première méthode

On note E2k l’évènement : ”on obtient 2k fois face”.
P (E2k) se calcule avec la loi binomiale. Donc :

pn =
∑

0≤2k≤n

(
n

2k

)
p2k(1− p)n−2k

6
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Pour calculer pn, on introduit qn =
∑

0≤2k+1≤n

(
n

2k + 1

)
p2k+1(1− p)n−2k−1

pn + qn =
∑

0≤l≤n

(
n

l

)
pl(1− p)n−l = (p+ 1− p)n = 1

pn − qn =
∑

0≤l≤n

(−1)l

(
n

l

)
pl(1− p)n−l = (−p+ 1− p)n = (1− 2p)n

pn = 1
2 + 1

2(1− 2p)n

En particulier, si p = 1
2 alors pn = 1

2.

Dans tous les cas, pn −−−−−→
n→+∞

1
2 (−1 < 1− 2p < 1)

• Deuxième méthode
On considère une série de n lancers et on note En l’évènement :”on obtient face un nombre
pair de fois” .
On note A l’évènement : ”le premier lancer donne face”.

pn = P (En|A)P (A) + P (En|A)P (A)
= pP (En−1) + (1− p)P (En−1) = p(1− pn−1) + (1− p)pn−1

= p+ (1− 2p)pn−1

l = p+ (1− 2p)l ⇐⇒ 2pl = p

⇐⇒ l = 1
2

En faisant la différence membre à membre, on a :
∀n ≥ 2 pn −

1
2 = (1− 2p)

(
pn−1 −

1
2

)
On en déduit :
∀p ≥ 1 pn = 1

2 + (1− 2p)n−1
(
p1 −

1
2

)
p1 = 1− p car 0 est pair et 1 impair.
Finalement : pn = 1

2 + 1
2(1− 2p)n

Remarque :
Comment justifier rigoureusement la formule : pn = pP (En−1) + (1− p)P (En−1) ?
Le recours aux variables aléatoires simplifie la rédaction, qui reste fastidieuse.
On note Xk la variable aléatoire qui vaut 1 si on obtient face au k-ième lancer, 0 sinon.
LesXk sont mutuellement indépendantes et suivent toutes la loi de Bernoulli de paramètre
p.

Evidemment le nombre de faces obtenus au cours des n premiers lancers est
n∑

k=1
Xk et

suit la loi binomiale de paramètres n et p ce qui nous ramène à la première méthode mais
ce n’est pas le point de vue adopté pour cette seconde méthode.
On note En = {(x1, . . . , xn) ∈ [[0; 1]]n tq Card({i ∈ [[1;n]] tq xi = 1}) est pair}.
P (En) = P ((X1, . . . , Xn) ∈ En)
En est la réunion de :
{(x1, . . . , xn) ∈ [[0; 1]]n tq Card({i ∈ [[1;n]] tq xi = 1}) est pair et x1 = 0}
et de :

7
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{(x1, . . . , xn) ∈ [[0; 1]]n tq Card({i ∈ [[1;n]] tq xi = 1}) est pair et x1 = 1}
Donc En est la réunion de :
{(x1, . . . , xn) ∈ [[0; 1]]n tq x1 = 0 et (x2, . . . , xn) ∈ En−1}
et de :
{(x1, . . . , xn) ∈ [[0; 1]]n tq x1 = 1 et (x2, . . . , xn) ∈ [[1;n− 1]] \ En−1}
On en déduit :

P (En) = P ((X1, . . . , Xn) ∈ En)
= P ((X1, . . . , Xn) ∈ {(x1, . . . , xn) ∈ [[0; 1]]n tq x1 = 0 et (x2, . . . , xn) ∈ En−1})

+P ((X1, . . . , Xn) ∈ {(x1, . . . , xn) ∈ [[0; 1]]n tq x1 = 1 et (x2, . . . , xn) ∈ [[1;n− 1]] \ En−1})
par incompatibilité

=
∑

(x2,...,xn)∈En−1

P ((X1, . . . , Xn) = (0, x2, . . . , xn))

+
∑

(x2,...,xn)∈[[1;n−1]]\En−1

P ((X1, . . . , Xn) = (1, x2, . . . , xn))

=
∑

(x2,...,xn)∈En−1

P (X1 = 0)P (X2 = x2) . . . P (Xn = xn)

+
∑

(x2,...,xn)∈[[1;n−1]]\En−1

P (X1 = 1)P (X2 = x2) . . . P (Xn = xn) par indépendance

= (1− p)
∑

(x2,...,xn)∈En−1

P (X1 = x2) . . . P (Xn−1 = xn)

+p
∑

(x2,...,xn)∈[[1;n−1]]\En−1

P (X1 = x2) . . . P (Xn−1 = xn)

car les variables aléatoires ont toutes la même loi
= (1− p)

∑
(x2,...,xn)∈En−1

P ((X1, . . . , Xn−1) = (x2, . . . , xn))

+p
∑

(x2,...,xn)∈[[1;n−1]]\En−1

P ((X1, . . . , Xn−1) = (x2, . . . , xn)) par indépendance

= (1− p)P ((X1, . . . , Xn−1) ∈ En−1) + pP ((X1, . . . , Xn−1) ∈ [[1;n− 1]] \ En−1)
= (1− p)P (En−1) + pP (En−1)

Exercice 8 (Mines 2018)

On considère un panier de r pommes rouges et v pommes vertes. On pioche et on mange une à
une les pommes au hasard. On s’arrête quand il n’y a plus que des rouges. Quelle est la proba-
bilité que l’on ait mangé toutes les pommes ?
Remarque
L’énoncé est ambigü :
S’il ne reste que des pommes rouges, c’est qu’il en reste et on ne peut donc pas les avoir toutes
mangées.
Je pense donc qu’il s’agit de calculer la probabilité de manger toutes les pommes rouges avant
d’avoir fini les vertes.
Par exemple on ne peut pas terminer avec une seule pomme rouge : après avoir mangé r+ v− 1
pommes, on constate qu’il ne reste qu’une rouge et on s’arrête avant d’avoir mangé toutes les
pommes.

8
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Correction
Plusieurs méthodes sont possibles.

• Première méthode
On explicite Ω.
Il est assez naturel de prendre pour Ω l’ensemble des mots de v+ k lettres sur l’alphabet
{V,R} avec v fois la lettre V et k fois la lettre R avec 0 ≤ k ≤ r, la dernière lettre étant
un V .
Y a-t-il équiprobabilité ? Répondre à cette question me paraît difficile a priori.
On calcule la probabilité de chaque mot avec la formule des probabilités composées.
La probabilité d’un mot sera un produit de v + k quotients. Au dénominateur on a
(r + v)(r + v − 1) . . . (r + v − (v + k − 1) = (r + v) . . . (r − k + 1) = (r + v)!

(r − k)! .

Au numérateur, on a dans un ordre variable v(v−1) . . . 1 et r(r−1) . . . (r−k+1) = r!
(r − k)!

Il y a donc équiprobabilité, la probabilité de chaque mot étant 1(
r + v

r

) = 1(
r + v

v

)
La probabilité cherchée est celle de l’ensemble des mots pour lesquels k = r, il y en a(
v + r − 1

r

)
ie le nombre de façons de placer les lettres R.

La probabilité cherchée est donc :(
v + r − 1

r

)
(
r + v

v

) = (v + r − 1)!
r!(v − 1)!

r!v!
(r + v)! = v

r + v

Remarque
En écrivant que P (Ω) = 1, on a :

r∑
k=0

(
v + k − 1

k

)
=
(
r + v

v

)
• Deuxième méthode
Les pommes rouges sont notées R1, . . . , Rr, les vertes V1, . . . , Vv.
On prend Ω l’ensemble des permutation de {R1, . . . , Rr, V1, . . . , Vv} ie on poursuit le
processus fictivement même si il ne reste que des boules rouges. Le cardinal de Ω est
(r + v)! et il y a équiprobabilité.
Le nombre de cas favorables est le nombre de ω ∈ Ω tel que ωr+v ∈ {V1, . . . , Vv} soit :
(v choix de la dernière pomme verte) ((r + v − 1)! positionnement des autres boules)
On en déduit facilement la probabilité cherchée : v

r + v
.

• Troisième méthode
On note pr,v la probabilité cherchée.
pr,0 = 0 (pour r > 0) et p0,v = 1
En conditionnant par la couleur de la première boule tirée :
pr,v = r

r + v
pr−1,v + v

r + v
pr,v−1

On calcule pr,v pour les petites valeurs de r et de v, on intuite pr,v = v

r + v
et on conclut

par une récurrence sur r + v.

Exercice 9

9
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Loïc joue une suite de parties de poker avec deux autres joueurs de cartes.
A chaque partie, il gagne avec la probabilité 1/3. Les parties sont supposées indépendantes les
unes des autres.
Soit k un entier strictement positif fixé. Loïc décide d’arrêter de jouer dès qu’il gagne k parties
de suite. Pour n ∈ N∗, on note pn la probabilité pour que Loïc joue exactement n parties.

1. Calculer pk.
2. Montrer, en considérant le rang de la première partie perdue par Loïc, que :

∀n ≥ k pn+1 = 2
3

k−1∑
i=0

(1
3

)i

pn−i

3. Pour k = 2, calculer pn (n ∈ N∗).
Correction

1. pk est la probabilité que Loïc gagne les k premières parties donc pk =
(1

3

)k

.

2. On note A l’évènement : ”Loïc gagne les k premières parties”.
Pour tout i ∈ [[1; k]], on note Ri l’évènement : ”Loïc gagne les i − 1 premières parties et
perd la ième”.
(A,R1, . . . , Rk) est un système complet d’évènements.
Pour tout n ∈ N, Gn est l’évènement : ”Loïc joue exactement n parties”.

∀n ≥ k pn+1 = P (Gn+1)

= P (Gn+1|A)P (A) +
k∑

i=1
P (Gn+1|Ri)P (Ri)

P (Gn+1|A) = 0 car n+ 1 > k

∀n ≥ k pn+1 =
k∑

i=1
P (Gn+1|Ri)P (Ri)

=
k∑

i=1
pn+1−i

2
3

(1
3

)i−1

= 2
3

k−1∑
j=0

pn−j

(1
3

)j

On peut également rédiger ainsi :

Gn+1 ⊂
k⋃

i=1
Ri : si Loïc joue n + 1 > k parties il a forcément perdu une des k premières

parties.

Donc : Gn+1 = Gn+1
⋂(

k⋃
i=1

Ri

)
=

k⋃
i=1

(Gn+1 ∩ Ri) et on retrouve la formule : pn+1 =

k∑
i=1

P (Gn+1|Ri)P (Ri)

Remarque
Justification de la formule P (Gn+1|Ri) = pn+1−i ?

On va plutôt justifier : P (Gn+1 ∩Ri) = 2
3

(1
3

)i−1
pn+1−i

10
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On note Ei l’évènement :”Loïc joue et gagne la i-ième partie” et Fi l’évènement :”Loïc
joue et perd la i-ème partie”.

On note φi


{0; 1} → {Ei, Fi}
0 7→ Fi

1 7→ Ei

On note EN = {(x1, . . . , xN ) ∈ {0; 1}N tq ∀i ∈ [[1;N − k]] (xi, xi+1, . . . , xi+k−1) 6=
(1, . . . , 1) et (xN−k+1, . . . , xN ) = (1, . . . , 1)}.
Gn+1 =

⋃
(x1,...,xn+1)∈En+1

(φ1(x1) ∩ · · · ∩ φn+1(xn+1))

Ri = φ1(1) ∩ · · · ∩ φi−1(1) ∩ φi(0)
En+1 ∩ {(x1, . . . , xn+1) tq x1 = · · · = xi−1 = 1 et xi = 0} est égal à :
{(x1, . . . , xn+1) tq x1 = · · · = xi−1 = 1 et xi = 0 et (xi+1, . . . , xn+1) ∈ En+1−i} noté Fn+1

En notant ψ


{0; 1} → R

0 7→ 2
3

1 7→ 1
3

et en utilisant la formule des probabilités composées :

P (Gn+1 ∩Ri) = P

 ⋃
(x1,...,xn+1)∈Fn+1

(φ1(x1) ∩ · · · ∩ φn+1(xn+1))


=

∑
(x1,...,xn+1)∈Fn+1

P (φ1(x1) ∩ · · · ∩ φn+1(xn+1))

=
∑

(xi+1,...,xn+1)∈En+1−i

(1
3

)i−1 2
3ψ(xi+1) . . . ψ(xn+1)

=
(1

3

)i−1 2
3

∑
(xi+1,...,xn+1)∈En+1−i

ψ(xi+1) . . . ψ(xn+1)

=
(1

3

)i−1 2
3

∑
(xi+1,...,xn+1)∈En+1−i

P (φ1(xi+1) ∩ · · · ∩ φn+1−i(xn+1))

=
(1

3

)i−1 2
3P

 ⋃
(xi+1,...,xn+1)∈En+1−i

(φ1(xi+1) ∩ · · · ∩ φn+1−i(xn+1))


=

(1
3

)i−1 2
3P (Gn+1−i)

=
(1

3

)i−1 2
3pn+1−i

3. k = 2 donc :
∀n ≥ 2 pn+1 = 2

3

(
pn + 1

3pn−1

)
La résolution suit la méthode habituelle :
Equation caractéristique : r2 = 2

3r + 1
9

Racines : r = 1±
√

3
3

∃(A,B) ∈ R2 tq ∀n ∈ N∗ pn = A

(
1 +
√

3
3

)n−1

+B

(
1−
√

3
3

)n−1

11
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On utilise p1 = 0 et p2 = 1
9.

On trouve :

∀n ≥ 1 pn =
√

3
18

(1 +
√

3
3

)n−1

−
(

1−
√

3
3

)n−1


Exercice 10

Trois joueurs A, B et C jouent de la façon suivante :
A et B jouent la première partie. Le perdant est remplacé par C pour la deuxième partie. Le
perdant de cette deuxième partie est remplacé par le perdant de la première partie. Le jeu se
poursuit ainsi jusqu’à ce qu’un joueur gagne deux fois de suite ; ce joueur est déclaré vainqueur.
On suppose qu’à chaque partie, la probabilité de gain de chacun des joueurs est 1/2.

1. Soit n ∈ N. Quelle est la probabilité que A soit déclaré vainqueur :
(a) à l’issue de la (3n)ième partie ?
(b) à l’issue de la (3n+ 1)ième partie ?
(c) à l’issue de la (3n+ 2)ième partie ?

2. Quelle est la probabilité que A soit déclaré vainqueur ?
3. Quelle est la probabilité que C soit déclaré vainqueur ?

Correction
1. Si A gagne la première partie, s’enclenche le processus suivant :
• A gagne la première partie contre B.
• A perd la seconde partie contre C.
• C perd la troisième partie contre B.
• B perd la quatrième partie contre A.

La liste des gagnants est ACBACBA . . . .
A ne peut alors gagner qu’à la 3n+ 2ième partie où n ∈ N.
Dans la cas où A perd la première partie, la liste des gagnants est BCABCA . . . .
A ne peut alors gagner qu’à la 3n+ 1ième partie où n ∈ N∗.
Si on note AVn l’évènement : ”A est déclaré vainqueur à l’issue de la nième partie” on a :
• ∀n ∈ N a3n = 0
• ∀n ∈ N∗ a3n+1 = 1

23n+1 (a1 = 0)

• ∀n ∈ N a3n+2 = 1
23n+2

Attention à ce calcul
Il faut être attentif à l’indépendance.
On note Ai l’évènement : ”A gagne la i-ième partie”.
On note Bi l’évènement : ”B gagne la i-ième partie”.
On note Ci l’évènement : ”C gagne la i-ième partie”.
A1 ∩ B2 = ∅ alors que P (A1) > 0 et P (B2) > 0 (cf la situation où B gagne les deux
premières parties)
La calcul doit être mené ainsi :

P (AV3n+2) = P (A1 ∩ C2 ∩B3 · · · ∩A3n+1 ∩A3n+2)
= P (A1)× P (C2|A1)× P (B3|A1 ∩ C2) . . .

12
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2. P (A gagne) =
+∞∑
n=1

1
23n+1 +

+∞∑
n=0

1
23n+2 = 5

14.

Par symétrie, P (B gagne) = 5
14.

3. Les déroulements qui permettent à C de gagner sontACBACB . . . ACC etBCABCA . . . BCC.

P (C gagne) = 2
+∞∑
n=1

1
23n

= 2
7.

P (A gagne) + P (B gagne) + P (C gagne) = 1 : le jeu se termine ps.

Exercice 11 (Mines 2023)

Soient n ∈ N∗ et a un diviseur de n.
On note D(a) = {k ∈ [[1;n]] tq a|k}.
On se place dans l’espace probabilisé ([[1;n]],P([[1;n]]), P ) où P est la probabilité uniforme.

1. Calculer P (D(a)).
2. Soient p1, . . . , pl les diviseurs premiers de n.

Montrer que les D(pi) sont mutuellement indépendants.
3. Soit B = {k ∈ [[1;n]] tq k et n sont premiers entre eux}.

Calculer P (B).
Correction

1. a est un diviseur de n donc il existe b ∈ N∗ tel que n = ab.
D(a) = {a; 2a; . . . ; ba} est de cardinal b.
P (D(a)) = b

n
= 1
a
.

2. Il s’agit en fait de montrer que si q1, . . . , qk sont des nombres premiers 2 à 2 distincts et
divisant n alors :

P

(
k⋂

i=1
D(qi)

)
=

k∏
i=1

P (D(qi))

Or
k⋂

i=1
D(qi) = D(q1 . . . qk)

L’examinateur a demandé de le justifier.
On procède par double inclusion.
Si un nombre est divisible par q1 . . . qk alors il est divisible par chaque qi donc :D(q1 . . . qk) ⊂

k⋂
i=1

D(qi).

Réciproquement, soit b un nombre divisible par chaque qi.
b est divisible par q1 donc b = q1b1 avec b1 entier.
q2 est un nombre premier qui divise q1b1 donc q2 apparaît dans la décomposition en fac-
teurs premiers de q1b1. Comme q1 est un nombre premier différent de q2, il faut que q2
apparaisse dans la décomposition en facteurs premiers de b1.
Donc b1 = q2b2 avec b2 premier et b = q1q2b2 et on itère le procédé.
En tous cas :

P

(
k⋂

i=1
D(qi)

)
= P (D(q1 . . . qk)) = 1

q1 . . . qk

=
k∏

i=1

1
qi

=
k∏

i=1
P (D(qi))

13
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3. B =
l⋃

i=1
D(pi) donc B =

l⋂
i=1

D(pi)

Les D(pi) étant mutuellement indépendants, il en est de même de leurs complémentaires
et :

P (B) =
l∏

i=1
P
(
D(pi)

)
=

l∏
i=1

(
1− 1

pi

)
=

l∏
i=1

pi − 1
pi
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