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Exercice 1 (Mines 2018)

Soient X et Y deux variables aléatoires telles que :

∀(i, j) ∈ N2 P ((X = i) ∩ (Y = j)) = 1
e 2i+1j!

1. Trouver les lois de X et de Y .
2. Montrer que X + 1 suit une loi géométrique.

En déduire E(X) et V (X).
3. Donner E(Y ) et V (Y ).
4. X et Y sont-elles indépendantes ?
5. Calculer P (X = Y ).
Correction
1. X(Ω) = Y (Ω) = N.

Par application de la formule des probabilités totales avec le système complet d’évène-
ments ((Y = j))j∈N, on obtient :

∀i ∈ N P (X = i) =
+∞∑
j=0

P ((X = i) ∩ (Y = j)) = 1
2i+1 e

+∞∑
j=0

1
j!

= 1
2i+1

Par application de la formule des probabilités totales avec le système complet d’évène-
ments ((X = i))i∈N, on obtient :

∀j ∈ N P (Y = j) =
+∞∑
i=0

P ((X = i) ∩ (Y = j)) = 1
j! e

+∞∑
i=0

1
2i+1

= 1
j! e

Y suit la loi de Poisson de paramètre 1.
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2. (X + 1)(Ω) = N∗

∀i ∈ N∗ P (X + 1 = i) = P (X = i− 1) = 1
2i = 1

2

(
1− 1

2

)i−1
= p(1− p)i−1 avec p = 1

2
X + 1 suit la loi géométrique de paramètre 1

2.
D’après le cours sur la loi géométrique :
E(X) = E(X + 1)− 1 = 2− 1 = 1

V (X) = V (X + 1) = 1− 1/2
(1/2)2 = 2

Remarque
La loi de X+1 est celle du rang d’apparition du premier succès dans une suite d’épreuves
indépendantes où il y a deux issues possibles : le succès avec probabilité p = 1

2 et l’échec

avec probabilité 1− p = 1
2.

La loi de X est donc celle du nombre d’échecs enregistrés avant le premier succès.
3. D’après le cours sur la loi de Poisson : E(Y ) = V (Y ) = 1

4. ∀(i, j) ∈ N2 P (X = i)× P (Y = j) = 1
2i+1 ×

1
j! e = 1

e 2i+1j! = P ((X = i) ∩ (Y = j))
On en déduit que X et Y sont indépendantes.

5.

P (X = Y ) =
+∞∑
i=0

P ((X = i) ∩ (Y = i)) =
+∞∑
i=0

1
e 2i+1i!

= 1
2 e

+∞∑
i=0

1
2ii! = e1/2

2 e = e−1/2

2

On peut également calculer :

P (X > Y ) =
+∞∑
j=0

P (X > Y et Y = j)

=
+∞∑
j=0

P (X > j et Y = j)

=
+∞∑
j=0

P (X > j)P (Y = j) par indépendance

=
+∞∑
j=0

P (X + 1 > j + 1)P (Y = j) =
+∞∑
j=0

(1
2

)j+1 1
j! e

= 1
2 e

+∞∑
j=0

(1
2

)j 1
j! = e1/2

2 e

= e−1/2

2 = P (X = Y )
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P (X < Y ) =
+∞∑
j=0

P (X < Y et Y = j)

=
+∞∑
j=0

P (X < j et Y = j)

=
+∞∑
j=0

P (X < j)P (Y = j) par indépendance

=
+∞∑
j=0

(1− P (X ≥ j))P (Y = j) =
+∞∑
j=0

(1− P (X + 1 > j))P (Y = j)

=
+∞∑
j=0

P (Y = j)−
+∞∑
j=0

1
2j

1
ej!

= 1− e−1/2

On a bien trois nombres positifs de somme égale à 1.

Exercice 2 (Centrale 2018)

Soit p ∈]0; 1[ et q = 1− p.
On considère deux variables aléatoires X et Y sur un espace probabilisé dont la loi conjointe est
donnée par :

∀j ∈ [[0;n]] ∀k ∈ [[1;n]] P ((X = j) ∩ (Y = k)) =



qn

n
si j = 0

0 si j 6= 0 et k 6= j(
n

k

)
pkqn−k si j 6= 0 et k = j

1. (a) Déterminer les lois marginales de X et de Y .
(b) Déterminer l’espérance de Y .

2. (a) Déterminer la covariance de X et de Y .
(b) X et Y sont-elles indépendantes ?

Correction
1. (a) • X(Ω) = [[0;n]]

Par application de la formule des probabilités totales avec le système complet
d’évènements ((Y = k))1≤k≤n, on obtient :

P (X = 0) =
n∑
k=1

P (X = 0, Y = k) =
n∑
k=1

qn

n
= qn =

(
n

0

)
p0qn−0

∀j ∈ [[1;n]] P (X = j) =
n∑
k=1

P (X = j, Y = k) = P (X = j, Y = j) =
(
n

j

)
pjqn−j

X suit la loi binomiale de paramètres n et p.
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• Y (Ω) = [[1;n]]
Par application de la formule des probabilités totales avec le système complet
d’évènements ((X = j))0≤j≤n, on obtient :

∀k ∈ [[1;n]] P (Y = k) =
n∑
j=0

P (X = j, Y = k) = P (X = 0, Y = k) + P (X = k, Y = k)

= qn

n
+
(
n

k

)
pkqn−k

(b)

E(Y ) =
n∑
k=1

kP (Y = k) =
n∑
k=1

k

(
qn

n
+
(
n

k

)
pkqn−k

)

= qn

n

n∑
k=1

k +
n∑
k=1

k

(
n

k

)
pkqn−k

= qn

n

n(n+ 1)
2 +

n∑
k=0

k

(
n

k

)
pkqn−k

= (n+ 1)qn

2 + np cf espérance de la loi binômiale

2. (a) Cov(X,Y ) = E(XY )− E(X)E(Y ) = E(XY )− np
((n+ 1)qn

2 + np

)
On applique le théorème de transfert à la va réelle discrète Z = (X,Y ) :

E(XY ) =
n∑
j=0

n∑
k=1

jkP (X = j, Y = k) =
n∑
j=0

(
j

n∑
k=1

kP (X = j, Y = k)
)

=
n∑
j=1

(
j

n∑
k=1

kP (X = j, Y = k)
)

=
n∑
j=1

j (jP (X = j, Y = j)) =
n∑
j=1

j2
(
n

j

)
pjqn−j

=
n∑
j=0

j2
(
n

j

)
pjqn−j

= E(B2) où B ↪→ B(n, p)
= V (B) + E(B)2 = npq + n2p2

= np(np+ q)

La covariance de X et de Y est donc :

np(np+ q)− np
((n+ 1)qn

2 + np

)
= np

(
q − n+ 1

2 qn
)

= npq

(
1− n+ 1

2 qn−1
)

(b) La première idée qui vient est d’utiliser ce qui précède.
Si n = 1, la covariance est nulle mais cela ne permet pas de conclure.
Si n = 1, Y = 1 ps donc X et Y sont indépendantes.
Si n ≥ 2, la covariance est non nulle en général et dans ce cas X et Y ne sont pas

4



TD Probabilités 2025-2026 Chapitre 3, Correction

indépendantes.

Toutefois la covariance est nulle pour q =
( 2
n+ 1

)1/(n−1)
∈]0; 1[ (rappelons que les

cas p = 0 et p = 1 sont exclus).
Mais cela ne permet pas de conclure.
P (X = 1, Y = 2) = 0
Mais P (X = 1) > 0 et P (Y = 2) > 0 donc X et Y ne sont pas indépendantes.

Remarque
On peut se contenter de résoudre l’exercice comme ci-dessus mais on peut aussi se demander
quel protocole conduirait à deux variables X et Y ayant une telle loi conjointe.
La loi de X étant claire, examinant la loi de Y conditionnellement à (X = j).

∀(j, k) ∈ [[0;n]]× [[1;n]] P (Y = k|X = j) = P ((X = j) ∩ (Y = k))
P (X = j)

La loi conjointe est dans l’énoncé et la loi marginale de X est calculée dès le début.
Si j = 0 :
∀k ∈ [[1;n]] P (Y = k|X = 0) = qn/n

qn
= 1
n

Conditionnellement à (X = 0) la loi de Y est uniforme sur [[1;n]].
Si j 6= 0 :
∀k ∈ [[1;n]] \ {j} P (Y = k|X = j) = 0
P (Y = j|X = j) = 1
Conditionnellement à (X = j), Y est constante égale à j.
Cela suggère que Y = X si X est non nul et que Y = Z suit une loi uniforme si X est nulle.
On peut reprendre l’exercice depuis le début :
Il existe un espace probabilisé (Ω1,A1, P1) sur lequel sont définies deux variables aléatoires
indépendantes X1 qui suit la loi binomiale de paramètres n et p et Z1 qui suit la loi uniforme
sur [[1;n]].

On pose Y1 = 1X1=0Z1 +X1 =
{
Z1 si X1 = 0
X1 si X1 6= 0

Concrètement, on procède à n expériences indépendantes avec une probabilité p de succès. Si
on a eu au moins un succès, on reçoit autant de jetons que de succès. Si on n’a eu aucun succès,
on tire au sort un nombre compris entre 1 et n et on reçoit autant de jetons. On s’intéresse au
nombre de jetons reçus.
X1(Ω1) = [[0;n]] Y1(Ω1) = [[1;n]]

∀k ∈ [[1;n]] P (X1 = 0, Y1 = k) = P (X1 = 0, Z1 = k) égalité des évènements par double inclusion
= P (X1 = 0)× P (Z1 = 0) par indépendance

= qn

n

Soit j ∈ [[1;n]].
Si X1 = j alors X1 6= 0 et Y1 = 1X1=0Z1 +X1 = X1.
On en déduit que si k est différent de j alors (X1 = j)∩ (Y1 = k) est l’évènement impossible, de
probabilité nulle.

De plus (X1 = j) ∩ (Y1 = j) = (X1 = j) de probabilité
(
n

j

)
pjqn−j .

X1 et Y1 ont donc la même loi conjointe que X et Y .
La loi marginale de X1 est ici une donnée de l’exercice.
Pour la loi marginale de Y1 (qui est aussi celle de Y ) :
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Soit k compris entre 1 et n :

P (Y1 = k) = P (1X1Z1 +X1 = k)
= P (((X1 = 0) ∩ (Z1 = k)) ∪ (X1 = k)) égalité des évènements par double inclusion
= P ((X1 = 0) ∩ (Z1 = k)) + P (X1 = k) par incompatibilité
= P (X1 = 0)× P (Z1 = k) + P (X1 = k) par indépendance

= qn

n
+
(
n

k

)
pkqn−k

On a ensuite :

E(Y1) = E(1X1Z1 +X1)
= E(1X1Z1) + E(X1) par linéarité de l’espérance
= E(1X1)× E(Z1) + E(X1) par indépendance
= P (X1 = 0)× E(Z1) + np en utilisant l’espérance d’une Bernoulli et d’une binomiale
= qnE(Z1) + np

Reste à calculer l’espérance de Z1 :

E(Z1) =
n∑
k=1

kP (Z1 = k) =
n∑
k=1

k
1
n

= 1
n

n∑
k=1

k = 1
n
× n(n+ 1)

2

= n+ 1
2

Le calcul de la variance de Y est envisageable :

E(Y 2) = E(Y 2
1 ) = E

(
12
X1=0Z

2
1 + 21X1=0X1Z1 +X2

1

)
= E

(
1X1=0Z

2
1 +X2

1

)
car 12

X1=0 = 1X1=0 et 1X1=0X1 = 0

= E(1X1=0)× E(Z2
1 ) + E(X2

1 )
= P (X1 = 0)× E(Z2

1 ) + V (X1) + E(X1)2

= qnE(Z2
1 ) + np(1− p)− n2p2

Comme on a déjà l’espérance de Y1, il ne nous manque plus que l’espérance de Z2
1 .

Le théorème de transfert donne :
E(Z2

1 ) =
n∑
k=1

k2P (Z1 = k) = 1
n

n∑
k=1

k2

On a donc besoin de
n∑
k=1

k2.

On peut la connaître :
n∑
k=1

k2 = n(n+ 1)(2n+ 1)
6 .

On peut la retrouver algébriquement :
(k + 1)3 − k3 = 3k2 + 3k + 1
En sommant de k = 1 à k = n, on obtient :
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(n+ 1)3 − 1 = 3
n∑
k=1

k2 + 3n(n+ 1)
2 + n

d’où :
n∑
k=1

k2 = 1
3

(
n3 + 3n2 + 3n+ 1− 1− 3n2

2 − 3n
2 − n

)

= 1
3

(
n3 + 3n2

2 + n

2

)
= n

6 (2n2 + 3n+ 1)

= n(n+ 1)(2n+ 1)
6

et on aboutit à E(Z2
1 ) = (n+ 1)(2n+ 1)

6
On peut également retrouver cette formule par des arguments probabilistes, en utilisant la série
génératrice de Z1 :

Soit G(t) = E(tZ1) =
n∑
k=1

P (Z1 = k)tk

Si on dérive une fois :
G′(t) =

n∑
k=1

P (Z1 = k)ktk−1

Evalué en 1, cela donne G′(1) = E(Z1).
On dérive une seconde fois :
G′′(t) =

n∑
k=2

k(k − 1)P (Z1 = k)tk−2

Evalué en 1 cela donne G′′(1) = E(Z1(Z1 − 1))

De plus pour t 6= 1, G(t) =
n∑
k=1

1
n
tk = t

n

tn − 1
t− 1 .

Or :

G(1 + h) = 1 + h

n

(1 + h)n − 1
h

= 1 + h

nh

(
1 + nh+ n(n− 1)

2 h2 + n(n− 1)(n− 2)
6 h3 + o(h3)− 1

)
= 1

n
(1 + h)

(
n+ n(n− 1)

2 h+ n(n− 1)(n− 2)
6 h2 + o(h2)

)
= (1 + h)

(
1 + n− 1

2 h+ (n− 1)(n− 2)
6 h2 + o(h2)

)
= 1 + n+ 1

2 h+
(
n− 1

2 + (n− 1)(n− 2)
6

)
+ o(h2)

La fonction G est de classe C∞ car polynomiale et on peut lui appliquer la formule de Taylor-
Young.
Par unicité du DL :
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E(Z1) = G′(1) = n+ 1
2

E(Z1(Z1 − 1)) = G′′(1) = n− 1 + (n− 1)(n− 2)
3

= n− 1
3 (3 + n− 2) = (n+ 1)(n− 1)

3

E(Z2
1 ) = E(Z1(Z1 − 1)) + E(Z1) = (n− 1)(n+ 1)

3 + n+ 1
2

= n+ 1
6 (2n− 2 + 3) = (n+ 1)(2n+ 1)

6

Exercice 3 (Mines 2017)

Soit X une variable aléatoire suivant une loi géométrique de paramètre p ∈]0; 1[.
Trouver E

( 1
X

)
.

Correction

E

( 1
X

)
=

+∞∑
n=1

1
n
P (X = n) par le théorème du transfert

=
+∞∑
n=1

p(1− p)n−1

n
= p

1− p

+∞∑
n=1

(1− p)n

n

= −p
1− p ln (1− (1− p))

= −p ln p
1− p

Exercice 4 (Mines 2017)

Soient X et Y deux variables aléatoires réelles discrètes indépendantes qui suivent la loi uniforme
sur [[0;n]].
On pose Z = X + Y .
Déterminer l’espérance et la variance de Z.

Correction
Par la linéarité de l’espérance : E(Z) = E(X) + E(Y ) = 2E(X).
Par l’indépendance : V (Z) = V (X) + V (Y ) = 2V (X).
Les seuls calculs à faire sont donc ceux de l’espérance et de la variance de X.
Le calcul de l’espérance de X ne pose pas de problème :

E(X) = 1
n+ 1

n∑
k=0

k = n

2 et E(Z) = n.

Le calcul de la variance de X est plus délicat :
V (X) = E(X2)− E(X)2

On connaît déjà l’espérance de X et on a besoin de l’espérance de X2.
Le théorème de transfert donne :

8
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E(X2) = 1
n+ 1

n∑
k=0

k2

et on a besoin de
n∑
k=1

k2.

Le calcul de cette somme est analysé en détail dans l’exercice 2.
On trouve E(X2) = n(2n+ 1)

6 .

On en déduit V (X) = n(n+ 2)
12 puis V (Z) = n(n+ 2)

6 .

Remarque
On peut déterminer la loi de Z.
Z(Ω) = [[0; 2n]].
Soit k un entier compris entre 0 et 2n.
La formule des probabilités totales appliquées avec le système complet d’évènements ((X = l))0≤k≤n
donne :

P (Z = k) =
n∑
l=0

P (Z = k,X = l) =
n∑
l=0

P (X = l, Y = k − l)

=
n∑
l=0

P (X = l)P (Y = k − l) = 1
n+ 1

n∑
l=0

P (Y = k − l)

= 1
n+ 1

n∑
l=0

10≤k−l≤n
n+ 1 = 1

(n+ 1)2

n∑
l=0

1k−n≤l≤k

= 1
(n+ 1)2 Card ({l ∈ [[0;n]] tq k − n ≤ l ≤ n})

= 1
(n+ 1)2 Card ([[0;n]] ∩ [[k − n; k]])

= 1
(n+ 1)2 Card ([[max (0, k − n); min (k, n)]])

= 1
(n+ 1)2 (min (k, n)−max (0, k − n) + 1)

= 1
(n+ 1)2

(
n+ k − |n− k|

2 − k − n+ |k − n|
2 + 1

)
= n− |n− k|+ 1

(n+ 1)2

9
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On peut ensuite calculer l’espérance de Z :

E(Z) =
2n∑
k=0

kP (Z = k) = 1
(n+ 1)2

2n∑
k=0

k(n− |n− k|+ 1)

= 1
(n+ 1)2

n∑
l=−n

(l + n)(n− |l|+ 1)

= 1
(n+ 1)2

 n∑
l=−n

l(n− |l|+ 1) + n
n∑

l=−n
(n− |l|+ 1)


= 1

(n+ 1)2

(
n(n+ 1) + 2n

n∑
l=1

(n+ 1− l)
)

par parité

= 1
(n+ 1)2

(
n(n+ 1) + 2n

n∑
i=1

i

)

= 1
(n+ 1)2

(
n(n+ 1) + 2nn(n+ 1)

2

)
= 1

(n+ 1)2n(n+ 1)2

= n

Pour calculer V (Z), il faut calculer :

E(Z2) =
2n∑
k=0

k2P (Z = k) = 1
(n+ 1)2

2n∑
k=0

k2(n− |n− k|+ 1)

= 1
(n+ 1)2

n∑
l=−n

(l + n)2(n− |l|+ 1)

= 1
(n+ 1)2

n∑
l=−n

(l2 + 2ln+ n2)(n− |l|+ 1)

= 1
(n+ 1)2

n∑
l=−n

(l2 + n2)(n− |l|+ 1) par parité

= 1
(n+ 1)2

(
n3 + n2 − 2

n∑
l=1

(l3 − (n+ 1)l2 + n2l − n3 − n2)
)

= 1
(n+ 1)2

(
n3 + n2 − n2(n+ 1)2

2 + n(n+ 1)2(2n+ 1)
3 − n3(n+ 1) + 2n3(n+ 1)

)

= 1
n+ 1

(
n2 − n2(n+ 1)

2 + n(n+ 1)(2n+ 1)
3 + n3

)

= n2 − n2

2 + n(2n+ 1)
3

= E(Z)2 + n

6 (2(2n+ 1)− 3n)

= E(Z)2 + n(n+ 2)
6

Et on retrouve V (Z) = n(n+ 2)
6 .
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Utilisation des séries génératrices
On a :
∀t ∈ R GX(t) = GY (t) = 1

n+ 1

n∑
k=0

tk

et :
∀t ∈ R \ {1} GX(t) = GY (t) = 1

n+ 1
1− tn+1

1− t
Par indépendance :

∀t ∈R GZ(t) = GX(t)×GY (t)

∀t ∈R \{1} GZ(t) = GX(t)×GY (t) = 1
(n+ 1)2

(1− tn+1)2

(1− t)2

Mais :

∀t ∈]− 1; 1[
+∞∑
k=0

tk = 1
1− t

Donc :

∀t ∈]− 1; 1[ 1
(1− t)2 =

+∞∑
k=1

ktk−1 =
+∞∑
k=0

(k + 1)tk

∀t ∈]− 1; 1[ GZ(t) = 1
n+ 1(t2n+2 − 2tn+1 + 1)

+∞∑
k=0

(k + 1)tk

= 1
(n+ 1)2

(+∞∑
k=0

(k + 1)t2n+2+k − 2
+∞∑
k=0

(k + 1)tn+1+k +
+∞∑
k=0

(k + 1)tk
)

= 1
(n+ 1)2

 +∞∑
l=2n+2

(l − 2n− 1)tl − 2
+∞∑
l=n+1

(l − n)tl +
+∞∑
k=0

(k + 1)tk


On en déduit :

∀k ≥ 2n+ 2 P (Z = k) = 1
(n+ 1)2 (k − 2n− 1− 2k + 2n+ k − 1)

= 0 comme attendu

∀k ∈ [[n+ 1; 2n+ 1]] P (Z = k) = 1
(n+ 1)2 (−2k + 2n+ k + 1) = 2n− k + 1

(n+ 1)2

En particulier, P (Z = 2n+ 1) = 0.

∀k ∈ [[0;n]] P (Z = k) = k + 1
(n+ 1)2

E(Z) = G′Z(1) mais comment calculer G′Z(1) ?
On fait un développement limité à l’ordre 1.

11
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On va faire un développement limité à l’ordre 2 en prévision du calcul de la variance.

G(1 + h) = 1
(n+ 1)2

(
1− (1 + h)n+1

1− (1 + h)

)2

= 1
(n+ 1)2

(
1 + (n+ 1)h+ n(n+ 1)/2h2 + (n+ 1)n(n− 1)/6h3 + o(h)− 1

h

)2

=
(

1 + n

2h+ n(n− 1)
6 h2 + o(h2)

)2

= 1 + nh+
(
n2

4 + n(n− 1)
3

)
h2 + o(h2)

= 1 + nh+ 7n2 − 4n
12 h2 + o(h2)

On en déduit G′Z(1) = n et G′′Z(1) = 7n2 − 4n
6 .

On a bien E(Z) = G′Z(1) = n+ 1 et :

V (Z) = G′′Z(1)−G′Z(1)2 +G′Z(1)

= 7n2 − 4n
6 − n2 + n

= 1
6
(
7n2 − 4n− 6n2 + 6n

)
= 1

6
(
n2 + 2n

)
= n(n+ 2)

6

Exercice 5 (Mines 2021)

Soient X et Y deux variables aléatoires discrètes indépendantes à valeurs strictement positives
et de même loi.

1. Montrer que X
Y

et Y
X

ont la même loi.

2. Montrer que E
(
X

Y

)
≥ 1.

Correction
1. On notera A l’ensemble X(Ω). C’est une partie dénombrable de R∗+.

Les couples (X,Y ) et (Y,X) ont la même loi : (X,Y )(Ω) = (Y,X)(Ω) = A2 et :
∀(a, b) ∈ A2 P ((X,Y ) = (a, b)) = P ((X = a) ∩ (Y = b)) = P (X = a)P (Y = b) par
indépendance
Mais X et Y ont la même loi donc :
∀(a, b) ∈ A2 P ((X,Y ) = (a, b)) = P (X = a)P (X = b)
∀(a, b) ∈ A2 P ((Y,X) = (a, b)) = P ((Y = a) ∩ (X = b)) = P (Y = a)P (X = b) par
indépendance
Mais X et Y ont la même loi donc :

12
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∀(a, b) ∈ A2 P ((Y,X) = (a, b)) = P (X = a)P (X = b)
Si Z1 et Z2 ont la même loi et si f est une fonction définie sur Z1(Ω) = Z2(Ω) alors f(Z1)
et f(Z2) ont la même loi.

En prenant ici f

R∗+ × R∗+ → R
(x, y) 7→ x

y

, on montre que X
Y

et Y
X

ont la même loi.

2. ∀t ∈ R∗+ t+ 1
t
≥ 2

Cela se démontre en étudiant la fonction t 7→ t+ 1
t
ou en remarquant :

∀t ∈ R∗+ t+ 1
t
− 2 =

(√
t− 1√

t

)2

On en déduit X
Y

+ Y

X
≥ 2

Par linéarité et croissance de l’espérance :
E

(
X

Y

)
+ E

(
Y

X

)
≥ 2

Mais X
Y

et Y
X

ont la même loi donc E
(
X

Y

)
= E

(
Y

X

)
.

On en déduit 2E
(
X

Y

)
≥ 2 et on conclut facilement.

Exercice 6 (Mines 2022)

On dispose de 5 dés équilibrés. On les lance et on écarte ceux qui ont donné 1.
On recommence le processus avec les dés restants et on continue tant qu’on n’a pas écarté tous
les dés.
On note T la variable aléatoire égale au nombre de fois qu’on a lancé les dés.

1. Pour n ∈ N∗, calculer P (T ≤ n).
2. Montrer que T est d’espérance finie et calculer son espérance.

Correction
1. On note p = 1

6 et q = 1− p = 5
6.

La probabilité qu’un dé n’ait pas donné 1 au cours de n lancers est qn.
La probabilité qu’un dé ait donné au moins une fois 1 au cours de n lancers est 1− qn.
On a donc P (T ≤ n) = (1− qn)5.

2. ∀n ∈ N∗ P (T > n) = 1−P (T ≤ n) = 1− (1− qn)5, formule qui reste valable pour n = 0.
1− (1− qn)5 = 1− (1− 5qn + o(qn)) = 5qn + o(qn) donc P (T > n) ∼ 5qn
On en déduit que la série de terme général P (T > n) converge.
On en déduit que la variable aléatoire T a une espérance. De plus :

E(T ) =
+∞∑
n=0

P (T > n) =
+∞∑
n=0

(
1− (1− qn)5

)

=
+∞∑
n=0

(
5qn − 10q2n + 10q3n − 5q4n + q5n

)
= 5

p
− 10

1− q2 + 10
1− q3 −

5
1− q4) + 1

1− q5

= = 3698650986
283994711 ' 13

13
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Exercice 7

On considère un sac contenant n pommes rouges et n pommes vertes.
On mange les pommes une à une au hasard et on s’arrête lorsque toutes les pommes restant
dans le sac sont de la même couleur.
Quel est l’ordre de grandeur du nombre de pommes restant dans le sac : O(

√
n) ? O(ln (n)) ?

O(1) ?

Correction
Les pommes rouges sont notées R1, . . . , Rn, les vertes V1, . . . , Vn.
On prend Ω l’ensemble des permutation de {R1, . . . , Rn, V1, . . . , Vn} ie on poursuit le processus
fictivement même si il ne reste que des pommes de la même couleur. Le cardinal de Ω est (2n)!
et il y a équiprobabilité.
Soit X le nombre de pommes restant dans le sac.
X étant majorée, X possède une espérance.
X étant à valeurs entières positives, et plus précisément à valeurs dans [[1;n]] :

E(X) =
n∑
k=1

P (X ≥ k).

E(X) = 1
(2n)!

n∑
k=1

(
2
(

2n− k
n

)
n!n!

)

= 2
n∑
k=1

n!
(n− k)!

(2n− k)!
(2n)!

= 2
n∑
k=1

n(n− 1) . . . (n− k + 1)
2n(2n− 1) . . . (2n− k + 1)

∀k ∈ [[1;n]] 2n− k + 1− 2(n− k + 1) = k − 1 ≥ 0
Donc :
∀k ∈ [[1;n]] n− k + 1

2n− k + 1 ≤
1
2

On en déduit :

E(X) ≤ 2
n∑
k=1

1
2k ≤ 2

+∞∑
k=1

1
2k = 2

On peut aller plus loin :

Pour tout n ∈ N∗, soit fn


R+ → R

x 7→ n(n− 1) . . . (n− k + 1)
2n(2n− 1) . . . (2n− k + 1) si k − 1 ≤ x < k k ∈ [[1;n]]

x 7→ 0 si x ≥ n
• Pour tout n ∈ N∗, fn est continue par morceaux sur R+.

• La suite de fonctions (fn) converge simplement sur R+ vers f

R+ → R

x 7→ 1
2k si k − 1 ≤ x < k k ∈ N∗

• f est continue par morceaux sur R+
• L’hypothèse de domination est vérifiée :
∀l ∈ [[0;n− 1]] (2n− l)− 2(n− l) = l ≥ 0
On en déduit (en détaillant) :
∀n ∈ N∗ ∀x ∈ R+ |fn(x)| = fn(x) ≤ f(x)
avec f continue par morceaux, positive et intégrable sur R+ : 0 ≤ f(x) ≤ 1

2x = e−x ln (2)

14
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D’après le théorème de convergence dominée :

E(X) = 2
∫ +∞

0
fn(x) dx −−−−−→

n→+∞

∫ +∞

0
f(x) dx = 2

+∞∑
k=1

1
2k = 2

Exercice 8

Soient X1, . . . , Xn n variables aléatoires mutuellement indépendantes qui suivent toutes la loi
uniforme sur [[1;n]].

Pour tout k ∈ [[1;n]], soit Yk =
n∑
l=1

1Xl=k.

Soit Z = max
1≤k≤n

(Yk).

1. Montrer que pour tout λ ∈ R+, eλE(Z) ≤ nE
(

eλY1
)
.

2. Montrer que E(Z) ≤ 2 ln (n)
ln (1 + ln (n)) .

Correction
1. Z(Ω) = [[1;n]] donc il n’y a pas de problème d’existence.

eλE(Z) = exp
(
λ

n∑
k=1

kP (Z = k)
)

= exp
(

n∑
k=1

λkP (Z = k)
)

≤
n∑
k=1

eλkP (Z = k) par convexité de l’exponentielle

L’évènement (Z = k) est inclus dans l’évènement
n⋃
l=1

(Yl = k) donc par sous-additivité :

P (Z = k) ≤
n∑
l=1

P (Yl = k) = nP (Y1 = k) les Yi ayant toutes la même loi (par un

argument de symétrie, notons au passage qu’elles ne sont pas indépendantes)
Donc :
eλE(Z) ≤ n

n∑
k=1

eλkP (Y1 = k) = nE
(

eλY1
)
.

2. Y1 suit la loi binomiale de paramètres n et 1
n

donc :

E
(

eλY1
)

=
n∑
k=0

eλk
(
n

k

)( 1
n

)k (
1− 1

n

)n−k

=
(

1− 1
n

+ eλ

n

)n
On a donc pour tout λ ∈ R+ :

λE(Z) ≤ ln (n) + n ln
(

1− 1
n

+ eλ

n

)
≤ ln (n) + eλ − 1

n
par concavité de la fonction ln.

Il suffit de prendre λ = ln (1 + ln (n)) pour conclure.

Exercice 9 (X 2017)
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Soit A une partie aléatoire de [[1;n]]. En d’autres termes A est une variable aléatoire à valeurs
dans P([[1;n]]). On suppose que A suit une loi uniforme.
Soit B une autre variable aléatoire à valeurs dans P([[1;n]]) qui suit une loi uniforme.
On suppose A et B indépendantes.
Quelle est l’espérance du cardinal de A ∩B ?

Correction
Avant de répondre spécifiquement aux questions posées, on peut envisager le calcul de l’espérance
du cardinal de A.

• Première méthode : on explicite la loi du cardinal de A
Le cardinal de A est compris entre 0 et n.
Soit k ∈ [[0;n]].

P (Card(A) = k) = Nbre de parties à k éléments de [[1;n]]
Nbre de parties de [[1;n]]

Plus généralement si une variable aléatoire X suit une loi uniforme sur un ensemble E
(nécessairement fini) alors :

P (f(X) = y) = P

 ⋃
x∈E tq f(x)=y

(X = x)


=

∑
x∈E tq f(x)=y

P (X = x)

=
∑

x∈E tq f(x)=y

1
Card(E)

= Card ({x ∈ E tq f(x) = y})
Card(E)

On a donc :

∀k ∈ [[0;n]] P (Card(A) = k) =

(
n

k

)
2n =

(
n

k

)(1
2

)k (
1− 1

2

)n−k
Et le cardinal de A suit la loi binomiale de paramètres n et 1

2.

On en déduit que l’espérance du cardinal de A est n2 .
• Deuxième méthode : on utilise des fonctions indicatrices
Pour tout i compris entre 1 et n, on note Xi la variable aléatoire qui vaut 1 si i appartient
à A et 0 sinon.
C’est bien une variable aléatoire : le montrer revient à montrer que (Xi = 1) = (i ∈ A)
est bien un évènement.
C’est bien le cas : c’est la réunion des évènements A = E où E décrit l’ensemble des
parties de [[1;n]] qui contiennent i.

Card(A) =
n∑
i=1

Xi.

Par linéarité de l’espérance :

E (Card(A)) =
n∑
i=1

E(Xi) = nE(X1) = nP (X1 = 1) = nP (1 ∈ A).

Mais comme dans le premier cas :
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P (1 ∈ A) = Nbre de parties de [[1;n]] contenant 1
Nbre de parties de [[1;n]] = 2n−1

2n = 1
2

On retrouve E (Card(A)) = n

2
Peut-on retrouver la loi du Cardinal de A ?
On commence par montrer que les variables aléatoires X1, . . . , Xn sont mutuellement
indépendantes.
Soit (ε1, . . . , εn) ∈ [[0; 1]]n.

P

(
n⋂
i=1

(Xi = εi)
)

= P (A = {i ∈ [[1;n]] tq εi = 1}) = 1
2n

=
n∏
i=1

1
2 =

n∏
i=1

P (Xi = εi)

Le cardinal de A apparaît alors comme la somme de n variables aléatoires mutuellement
indépendantes suivant toutes la loi de Bernoulli de paramètre 1

2.

Le cardinal de A suit donc la loi binomiale de paramètres n et 1
2.

Passons à l’exercice tel qu’il a été posé.
Plusieurs méthodes sont possibles.

• Première méthode : on explicite la loi du cardinal de A ∩ B en faisant du
dénombrement
Le cardinal de A ∩B est compris entre 0 et n.
Soit k ∈ [[0;n]].
On montre facilement que (A,B) suit la loi uniforme sur P ([|1;n]])× P ([|1;n]]).
P (Card(A ∩B) = k) est donc le quotient du nombre de couples de parties de [[1;n]] dont
l’intersection a k éléments et du nombre de couples de parties de [[1;n]].
Les couples de parties de [[1;n]] dont l’intersection a k éléments sont de la forme
(I ∪EA, I ∪EB) où I est une partie à k éléments de [[1;n]], EA une partie de [[1;n]] \ I et
EB une partie de [[1;n]] \ (I ∩ EA). On en déduit :

P (Card(A ∩B) = 1
2n × 2n

(
n

k

)
n−k∑
l=0

(
n− k
l

)
2n−k−l

= 1
4n

(
n

k

)
(1 + 2)n−k

=
(
n

k

)(1
4

)k (
1− 1

4

)n−k

On en déduit que Card(A ∩B) ↪→ B
(
n,

1
4

)
puis E (Card(A ∩B)) = n

4 .
• Deuxième méthode : on utilise l’indicatrice de A ∩B

On note Xi =
{

1 si i ∈ A ∩B
0 sinon

.

Card(A ∩B) =
n∑
i=1

Xi.

17
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Par linéarité de l’espérance : E(X) =
n∑
i=1

E(Xi) = nE(X1) = nP (1 ∈ A ∩B)

Par indépendance :
P (1 ∈ A ∩B) = P ((1 ∈ A) ∩ (1 ∈ B)) = P (1 ∈ A)× P (1 ∈ B) = P (1 ∈ A)2 = 1

4.
On en déduit :
E(X) = n

4 .
On peut être plus formel et faire un lien précis avec le cours, en particulier le paragraphe
3 du chapitre 2.
A(Ω) = B(Ω) = P([[1;n]]).
Soit E = {E ∈ P([[1;n]]) tq 1 ∈ E}.
L’évènement ”1 ∈ A ∩B” peut aussi s’écrire (A ∈ E) ∩ (B ∈ E).
D’après le paragraphe 3,7 du chapitre 2 :
P (1 ∈ A ∩B) = P (A ∈ E)P (B ∈ E) car A et B sont indépendantes.
Comme A et B ont la même loi :
P (1 ∈ A ∩B) = P (A ∈ E)2

Comme A suit la loi uniforme sur P([[1;n]]) :

P (1 ∈ A ∩B) = Card(E)
Card(P([[1;n]])) = 2n−1

2n = 1
2

On peut aller plus loin et montrer que les Xi sont mutuellement indépendantes pour
en déduire que le cardinal de A ∩B suit une loi binomiale.
On commence par montrer que les variables aléatoires X1, . . . , Xn sont mutuellement in-
dépendantes.
Soit (ε1, . . . , εn) ∈ [[0; 1]]n.

P

(
n⋂
i=1

(Xi = εi)
)

= P (A ∩B = I = {i ∈ [[1;n]] tq εi = 1})

=
∑

E⊂[[1;n]]\I
P (A ∩B = I et A = I ∪ E)

=
∑

E⊂[[1;n]]\I
P (A = I ∪ E et B = I ∪ F avec F ⊂ ([[1;n]] \ I) \ E)

=
∑

E⊂[[1;n]]\I
P (A = I ∪ E)× P (B = I ∪ F avec F ⊂ ([[1;n]] \ I) \ E)

=
∑

E⊂[[1;n]]\I

1
2n ×

2n−k−Card(E)

2n

= 1
4n

n−k∑
l=0

(
n− k
l

)
2n−k−l = 3n−k

4n

=
n∏
i=1

P (Xi = εi)

car P (Xi = εi) = 1
4 si εi = 1 et P (Xi = εi) = 3

4 si εi = 0.

• Troisième méthode : on utilise les indicatrices de A et de B

On note Yi =
{

1 si i ∈ A
0 sinon

et Zi =
{

1 si i ∈ B
0 sinon

.

18



TD Probabilités 2025-2026 Chapitre 3, Correction

On a donc Card(A ∩B) =
n∑
i=1

YiZi.

Les variables aléatoires Yi et Zi sont indépendantes (car A et B le sont).
Plus formellement :

soit φi


P([[1;n]])→ R
E 7→ 1 si i ∈ E
E 7→ 0 si i 6∈ E

.

D’après le paragraphe 3.8 du chapitre 2, A et B sont indépendantes donc Yi = φi(A) et
Zi = φi(B) sont indépendantes.
On montre comme précédemment qu’elles suivent la loi de Bernoulli de paramètre 1

2.

Donc YiZi suit la loi de Bernoulli de paramètre 1
4 et on retrouve la valeur de E(Card(A∩

B)).
A ce stade, il est naturel de se demander si Card(A ∩ B) suit la loi binomiale de para-
mètres n et 1

4.
On se demande donc si les Yi et les Zj sont mutuellement indépendantes.
On se donne donc (e1, . . . , en, ε1, . . . , εn) ∈ {0; 1}n.
Soit E = {i ∈ [[1;n]] tq ei = 1} et F = {i ∈ [[1;n]] tq εi = 1}.
(Y1 = e1) ∩ · · · ∩ (Zn = εn) = (A = E) ∩ (B = F ) avec A et B indépendantes donc
sa probabilité est P (A = E)P (B = F ) = 1

2n ×
1
2n = 1

4n . C’est la valeur du produit
P (Y1 = e1)× · · · × P (Zn = εn).
Donc les Yi et les Zj sont mutuellement indépendantes.
Donc les YiZi sont mutuellement indépendantes et X suit bien la loi binomiale de para-
mètres n et 1

4.

Exercice 10 (X 2017)

Soit X le nombre de tirages nécessaires à l’obtention de deux faces consécutifs dans un jeu de
pile ou face avec une pièce équilibrée.
Loi et espérance de X ?

Correction
Plus généralement, on s’intéresse au temps d’attente d’un motif donné.
Le cadre sera celui d’une suite (Yi)i∈N∗ de variables aléatoires mutuellement indépendantes sui-
vant toutes la loi de Bernoulli de paramètre 1

2 (on code ”face” par 1 et ”pile” par 0).
On peut commencer par une simulation informatique :
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import numpy.random as rd

def T(motif):
l=len(motif)
terminaison=[]#contient les l derniers tirages
#on initialise terminaison avec les l premiers tirages
for i in range(l):

terminaison.append(rd.randint(2))
dernier=l #indice du dernier tirage effectué
while terminaison != motif:

dernier+=1
X=rd.randint(2)
terminaison=terminaison[1:]+[X]

return dernier

def estimation_esperance(motif,N):
s=0
for i in range(N):

s+=T(motif)
return s/N

Dans le cas d’un motif de longueur 1, le temps d’attente suit une loi géométrique. La pièce étant
ici équilibrée, le temps d’attente du premier pile comme le temps d’attente du premier face suit
une loi géométrique de paramètre 1

2.
Le temps d’attente moyen est donc de 2 :

print([estimation_esperance([0],10**5),estimation_esperance([1],10**5)])
[1.99913, 2.00542]

Passons aux motifs de longueur 2. Il y a 4 motifs de longueur 2 mais seulement 2 cas à examiner
les deux autres s’en déduisant.
Commençons par le motif de l’énoncé :

print(estimation_esperance([1,1],10**5))
5.99612

• Première méthode
On s’intéresse à l’évènement En = (X > n) =

n⋂
i=2

((Yi−1, Yi) 6= (1, 1)). C’est le même que

”il n’y a pas eu deux faces consécutifs au cours des n premiers lancers”.
P (E0) = P (E1) = 1.
P (E2) = 1− P (Y1 = 1, Y2 = 1) = 3

4
P (E3) = P ((Y1, Y2Y3) 6= (1, 1, 0), (1, 1, 1), (0, 1, 1)) = 1− 3

8 = 5
8
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Par la formule des probabilités totales, pour n ≥ 4 :

P (En) = P (En ∩ (Yn = 0)) + P (En ∩ (Yn = 1))

= P

(
(Yn = 0) ∩

(
n⋂
i=2

((Yi−1, Yi) 6= (1, 1))
))

+ P

(
(Yn = 1) ∩

n⋂
i=2

((Yi−1, Yi) 6= (1, 1))
)

= P

(
(Yn = 0) ∩ ((Yn−1, Yn) 6= (1, 1)) ∩

(
n−1⋂
i=2

((Yi−1, Yi) 6= (1, 1))
))

+P
(

(Yn = 1) ∩ ((Yn−1, Yn) 6= (1, 1)) ∩
(
n−1⋂
i=2

((Yi−1, Yi) 6= (1, 1))
))

= P

(
(Yn = 0) ∩

(
n−1⋂
i=2

((Yi−1, Yi) 6= (1, 1))
))

+P
(

(Yn = 1) ∩ (Yn−1 = 0) ∩
(
n−1⋂
i=2

((Yi−1, Yi) 6= (1, 1))
))

= P (Yn = 0)P
(
n−1⋂
i=2

((Yi−1, Yi) 6= (1, 1))
)

+P
(

(Yn = 1) ∩ (Yn−1 = 0) ∩
(
n−2⋂
i=2

((Yi−1, Yi) 6= (1, 1))
))

= 1
2P (En−1) + 1

4P (En−2)

Et on vérifie que la relation est vérifiée dans les cas où n = 2 ou 3.
Cela suffit pour déterminer l’espérance de X :

E(X) =
+∞∑
n=0

P (X > n) =
+∞∑
n=0

P (En)

Avec la relation de récurrence :
+∞∑
n=2

P (En) = 1
2

+∞∑
n=1

P (En) + 1
4

+∞∑
n=0

P (En)

1
4

+∞∑
n=2

P (En) = 1
2P (E1) + 1

4P (E1) + 1
4P (E0) = 1

Donc
+∞∑
n=2

P (En) = 4 et E(X) = 6

Pour déterminer la loi de X, on commence par déterminer P (En) avec la relation de
récurrence.
Equation caractéristique : r2 = 1

2r + 1
4

Racines : 1 +
√

5
4 et 1−

√
5

4

∃(A,B) ∈ R2 tq ∀n ∈ N P (En) = A

(
1 +
√

5
4

)n
+B

(
1−
√

5
4

)n
On détermine A et B avec les conditions initiales : P (E0) = P (E1) = 1.

∀n ≥ 0 P (X > n) = 5 + 3
√

5
10

(
1 +
√

5
4

)n
+ 5− 3

√
5

10

(
1−
√

5
4

)n
On peut retrouver l’espérance :
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E(X) =
+∞∑
n=0

P (X > n) = 5 + 3
√

5
10

+∞∑
n=0

(
1 +
√

5
4

)n
+ 5− 3

√
5

10

+∞∑
n=0

(
1−
√

5
4

)n
et on utilise la formule donnant la somme d’une série géométrique.
La loi de X est facile à obtenir :
P (X = 0) = P (X = 1) = 0

∀n ≥ 2 P (X = n) = P (X > n− 1)− P (X > n) = P (En−1)− P (En)

= 5−
√

5
10

(
1 +
√

5
4

)n
+ 5 +

√
5

10

(
1−
√

5
4

)n
et on peut retrouver l’espérance :

E(X) =
+∞∑
n=0

nP (X = n)

et on utilise la formule :

∀x ∈]− 1; 1[
+∞∑
n=0

nxn = x

(1− x)2

• Deuxième méthode
(Y1 = 0), (Y1 = 1, Y2 = 0), (Y1 = 1, Y2 = 1)) forment un système complet d’évènements.

∀n ≥ 2 P (X = n) = P (X = n|Y1 = 0)P (Y1 = 0) + P (X = n|Y1 = 1, Y2 = 0)P (Y1 = 1, Y2 = 0)
+P (X = n|Y1 = 1Y2 = 1)P (Y1 = 1, Y2 = 1)

P (X = n|Y1 = 1Y2 = 1) = δn,2
P (X = 1) = 0
P (X = 2) = 1

4
∀n > 2 P (X = n) = 1

2P (X = n− 1) + 1
4P (X = n− 2)

Par la méthode habituelle :

∀n ≥ 1 P (X = n) = 5−
√

5
10

(
1 +
√

5
4

)n
+ 5 +

√
5

10

(
1−
√

5
4

)n
On vérifie

+∞∑
n=0

P (X = n) = 1

On a E(X) =
+∞∑
n=0

nP (X = n) = 6.

Justification de P (X = n|Y1 = 0) = P (X = n− 1)
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On va plutôt justifier P (X = n et Y1 = 0) = P (X = n− 1)P (Y1 = 0)

P (X = n et Y1 = 0)

= P

(
(Y1 = 0) ∩

(
n−1⋂
i=2

((Yi−1, Yi) 6= (1, 1))
)
∩ ((Yn−1, Yn) = (1, 1))

)

= P

(
(Y1 = 0) ∩ ((Y1, Y2) 6= (1, 1)) ∩

(
n−1⋂
i=3

((Yi−1, Yi) 6= (1, 1))
)
∩ ((Yn−1, Yn) = (1, 1))

)

= P

(
(Y1 = 0) ∩

(
n−1⋂
i=3

((Yi−1, Yi) 6= (1, 1))
)
∩ ((Yn−1, Yn) = (1, 1))

)

= P (Y1 = 0)P
((

n−1⋂
i=3

((Yi−1, Yi) 6= (1, 1))
)
∩ ((Yn−1, Yn) = (1, 1))

)

= P (Y1 = 0)P
((

n−1⋂
i=3

((Zi−2, Zi−1) 6= (1, 1))
)
∩ ((Zn−2, Zn−1) = (1, 1))

)

en posant Zi = Yi+1 pour tout i ∈ N∗.
On en déduit que :

P (X = n, Y1 = 1) = 1
2P

((
n−2⋂
i=2

((Zi−1, Zi) 6= (1, 1))
)
∩ ((Zn−2, Zn−1) = (1, 1))

)
Mais la suite de va (Zn)n∈N∗ = (Yn)n≥2 a les mêmes propriétés que la suite (Yn)n∈N∗

donc :
P (X = n, Y1 = 0) = 1

2P (X = n− 1)
De même :

P (X = n et Y1 = 1 et Y2 = 0)

= P

(
((Y1, Y2) = (1, 0)) ∩

(
n−1⋂
i=2

((Yi−1, Yi) 6= (1, 1))
)
∩ ((Yn−1, Yn) = (1, 1))

)

= P

(
((Y1, Y2) = (1, 0)) ∩ ((Y1, Y2) 6= (1, 1)) ∩

(
n−1⋂
i=3

((Yi−1, Yi) 6= (1, 1))
)
∩ ((Yn−1, Yn) = (1, 1))

)

= P

(
((Y1, Y2) = (1, 0)) ∩ ((Y2, Y3) 6= (1, 1) ∩

(
n−1⋂
i=4

((Yi−1, Yi) 6= (1, 1))
)
∩ ((Yn−1, Yn) = (1, 1))

)

= P

(
((Y1, Y2) = (1, 0)) ∩

(
n−1⋂
i=4

((Yi−1, Yi) 6= (1, 1))
)
∩ ((Yn−1, Yn) = (1, 1))

)

= P (Y1 = 1, Y2 = 0)P
((

n−1⋂
i=4

((Yi−1, Yi) 6= (1, 1))
)
∩ ((Yn−1, Yn) = (1, 1))

)

= 1
4P

((
n−1⋂
i=4

((Zi−3, Zi−2) 6= (1, 1))
)
∩ ((Zn−3, Zn−2) = (1, 1))

)

en posant Zi = Yi+2 pour tout i ∈ N∗.
On en déduit que :

P (X = n, Y1 = 1, Y2 = 0) = 1
4P

((
n−3⋂
i=2

((Zi−1, Zi) 6= (1, 1))
)
∩ ((Zn−3, Zn−2) = (1, 1))

)
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Mais la suite de va (Zn)n∈N∗ = (Yn)n≥3 a les mêmes propriétés que la suite (Yn)n∈N∗

donc :
P (X = n, Y1 = 0, Y2 = 0) = 1

4P (X = n− 2)
Passons maintenant au motif Pile, Face :

print(estimation_esperance([0,1],10**5))
4.0022

• Première méthode
On s’intéresse à l’évènement En = (X > n) =

n⋂
i=2

((Yi−1, Yi) 6= (0, 1)).

P (E0) = P (E1) = 1.
P (E2) = 1− P (Y1 = 0, Y2 = 1) = 3

4
P (E3) = P ((Y1, Y2Y3) 6= (0, 1, 0), (0, 1, 1), (0, 0, 1), (1, 0, 1)) = 1− 4

8 = 1
2

Par la formule des probabilités totales, pour n ≥ 4 :

P (En) = P (En ∩ (Yn = 0)) + P (En ∩ (Yn = 1))

= P

(
(Yn = 0) ∩

(
n⋂
i=2

((Yi−1, Yi) 6= (0, 1))
))

+ P

(
(Yn = 1) ∩

n⋂
i=2

((Yi−1, Yi) 6= (0, 1))
)

= P

(
(Yn = 0) ∩ ((Yn−1, Yn) 6= (0, 1)) ∩

(
n−1⋂
i=2

((Yi−1, Yi) 6= (0, 1))
))

+P
(

(Yn = 1) ∩ ((Yn−1, Yn) 6= (0, 1)) ∩
(
n−1⋂
i=2

((Yi−1, Yi) 6= (0, 1))
))

= P

(
(Yn = 0) ∩

(
n−1⋂
i=2

((Yi−1, Yi) 6= (0, 1))
))

+P
(

(Yn = 1) ∩ (Yn−1 = 1) ∩
(
n−1⋂
i=2

((Yi−1, Yi) 6= (0, 1))
))

= P (Yn = 0)P
(
n−1⋂
i=2

((Yi−1, Yi) 6= (0, 1))
)

+P
(

(Yn = 1) ∩ (Yn−1 = 1) ∩
(
n−1⋂
i=2

((Yi−1, Yi) 6= (0, 1))
))

= 1
2P (En−1)

+P
(

(Yn = 1) ∩ (Yn−1 = 1) ∩ (Yn−2 = 1) ∩
(
n−2⋂
i=2

((Yi−1, Yi) 6= (0, 1))
))

= 1
2P (En−1) + P

(
n⋂
i=1

(Yi = 1)
)

= 1
2P (En−1) + 1

2n

Et on vérifie que la relation est vérifiée dans les cas où n = 1, 2 ou 3.
Cela suffit pour déterminer l’espérance de X :
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E(X) =
+∞∑
n=0

P (X > n) =
+∞∑
n=0

P (En)

Avec la relation de récurrence :
+∞∑
n=1

P (En) = 1
2

+∞∑
n=0

P (En) +
+∞∑
n=1

1
2n

1
2

+∞∑
n=1

P (En) = 1
2P (E0) + 1 = 3

2

Donc
+∞∑
n=1

P (En) = 3 et E(X) = 4

Pour déterminer la loi de X, on commence par déterminer P (En) avec la relation de
récurrence.
∀n ∈ N P (En) = n+ 1

2n
La loi de X est facile à obtenir :
P (X = 0) = P (X = 1) = 0

∀n ≥ 2 P (X = n) = P (X > n− 1)− P (X > n) = P (En−1)− P (En)

= n

2n−1 −
n+ 1

2n

= n− 1
2n

et on peut retrouver l’espérance :

E(X) =
+∞∑
n=2

nP (X = n) =
+∞∑
n=2

n− 1
2n = 4

• Deuxième méthode
(Y1 = 1), (Y1 = 0)) forment un système complet d’évènements.

∀n ≥ 2 P (X = n) = P (X = n|Y1 = 1)P (Y1 = 1) + P (X = n|Y1 = 0)P (Y1 = 0)
1
2P (X = n− 1) + 1

2(P (Y1 = 0))n−2P (Y1 = 1)

= 1
2P (Xn−1) + 1

2n

P (X = 1) = 0
On retrouve :
∀n ∈ N∗ P (X = n) = n− 1

2n
Justification de P (X = n|Y1 = 1) = P (X = n− 1)
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On va plutôt justifier P (X = n et Y1 = 1) = P (X = n− 1)P (Y1 = 1)

P (X = n et Y1 = 1)

= P

(
(Y1 = 1) ∩

(
n−1⋂
i=2

((Yi−1, Yi) 6= (0, 1))
)
∩ ((Yn−1, Yn) = (0, 1))

)

= P

(
(Y1 = 1) ∩ ((Y1, Y2) 6= (0, 1)) ∩

(
n−1⋂
i=3

((Yi−1, Yi) 6= (0, 1))
)
∩ ((Yn−1, Yn) = (0, 1))

)

= P

(
(Y1 = 1) ∩

(
n−1⋂
i=3

((Yi−1, Yi) 6= (0, 1))
)
∩ ((Yn−1, Yn) = (0, 1))

)

= P (Y1 = 0)P
((

n−1⋂
i=3

((Yi−1, Yi) 6= (0, 1))
)
∩ ((Yn−1, Yn) = (0, 1))

)

= P (Y1 = 0)P
((

n−1⋂
i=3

((Zi−2, Zi−1) 6= (0, 1))
)
∩ ((Zn−2, Zn−1) = (0, 1))

)

en posant Zi = Yi+1 pour tout i ∈ N∗.
On en déduit que :

P (X = n, Y1 = 1) = 1
2P

((
n−2⋂
i=2

((Zi−1, Zi) 6= (0, 1))
)
∩ ((Zn−2, Zn−1) = (0, 1))

)
Mais la suite de va (Zn)n∈N∗ = (Yn)n≥2 a les mêmes propriétés que la suite (Yn)n∈N∗

donc :
P (X = n, Y1 = 0) = 1

2P (X = n− 1)
De plus :

P (X = n|Y1 = 0)P (Y1 = 0) = P (Y1 = 0, X = n) = P (Y1 = 0, . . . , Yn−1 = 0, Yn = 1)

= 1
2n

Passons aux motifs de longueur 3. Il y a 8 motifs de longueur 3 mais seulement 4 cas à examiner
les deux autres s’en déduisant.
Commençons par le motif Face,Face,Face.

print(estimation_esperance([1,1,1],10**5))
14.04222

• Première méthode
On s’intéresse à l’évènement En = (X > n) =

n⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1)).

P (E0) = P (E1) = P (E2) = 1.
P (E3) = 1− P (Y1 = 1, Y2 = 1, Y3 = 1) = 7

8
P (E4) = P ((Y1, Y2, Y4) 6= (1, 1, 1, 0), (1, 1, 1, 1), (0, 1, 1, 1)) = 1− 3

8 = 5
8
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Par la formule des probabilités totales, pour n ≥ 4 :

P (En) = P (En ∩ (Yn = 0)) + P (En ∩ (Yn = 1))

= P

(
(Yn = 0) ∩

(
n⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1))
))

+P
(

(Yn = 1) ∩
n⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1))
)

= P

(
(Yn = 0) ∩ ((Yn−2, Yn−1, Yn) 6= (1, 1, 1)) ∩

(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1))
))

+P
(

(Yn = 1) ∩ ((Yn−2, Yn−1, Yn) 6= (1, 1, 1)) ∩
(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1))
))

= P

(
(Yn = 0) ∩

(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1))
))

+P
(

((Yn−1, Yn = (0, 1)) ∩ ((Yn−2, Yn−1, Yn) 6= (1, 1, 1)) ∩
(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1))
))

+P
(

((Yn−1, Yn = (1, 1)) ∩ ((Yn−2, Yn−1, Yn) 6= (1, 1, 1)) ∩
(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1))
))

= P (Yn = 0)P
(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1))
)

+P
(

(Yn−1, Yn) = (0, 1)) ∩ ((Yn−3, Yn−2, Yn−1) 6= (1, 1, 1)) ∩
(
n−2⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1))
))

+P
(

((Yn−2, Yn−1, Yn) = (0, 1, 1)) ∩ ((Yn−3, Yn−2, Yn−1) 6= (1, 1, 1)) ∩
(
n−2⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1))
))

= 1
2P (En−1)

+P
(

((Yn−1, Yn) = (0, 1)) ∩
(

n−2⋂
i=2=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1))
))

+P
(

((Yn−2, Yn−1, Yn) = (0, 1, 1)) ∩ ((Yn−4, Yn−3, Yn−2) 6= (1, 1, 1)) ∩
(
n−3⋂
i=3

((Yi−2, Yi−1, Yi) 6= (0, 1))
))

= 1
2P (En−1) + P ((Yn−1, Yn) = (0, 1))P

(
n−2⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1))
)

= 1
2P (En−1) + 1

4P (En−2)

+P
(

((Yn−2, Yn−1, Yn) = (0, 1, 1)) ∩
(
n−3⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 1))
))

= 1
2P (En−1) + 1

4P (En−2) + 1
8P (En−3)

Et on vérifie que la relation est vérifiée dans les cas où n = 2.
Cela suffit pour déterminer l’espérance de X :
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E(X) =
+∞∑
n=0

P (X > n) =
+∞∑
n=0

P (En)

Avec la relation de récurrence :
+∞∑
n=3

P (En) = 1
2

+∞∑
n=2

P (En) + 1
4

+∞∑
n=1

P (En−2) + 1
8

+∞∑
n=0

P (En)

1
8

+∞∑
n=3

P (En) = 1
2P (E2) + 1

4 (P (E2) + P (E1)) + 1
8 (P (E2) + P (E1) + P (E0)) = 11

8

Donc
+∞∑
n=3

P (En) = 11 et E(X) = 14

Passons au motif Face,Face,Pile

print(estimation_esperance([1,1,0],10**5))
7.99488

• Première méthode
On s’intéresse à l’évènement En = (X > n) =

n⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0)).

P (E0) = P (E1) = P (E2) = 1.
P (E3) = 1− P (Y1 = 1, Y2 = 1, Y3 = 0) = 7

8
P (E4) = P ((Y1, Y2, Y3, Y4) 6= (1, 1, 0, 1), (1, 1, 0, 0), (0, 1, 1, 0), (1, 1, 1, 0)) = 1− 4

16 = 3
4
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Par la formule des probabilités totales, pour n ≥ 5 :

P (En) = P (En ∩ (Yn = 0)) + P (En ∩ (Yn = 1))

= P

(
(Yn = 0) ∩

(
n⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
))

+P
(

(Yn = 1) ∩
n⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
)

= P

(
(Yn = 0) ∩ ((Yn−2, Yn−1, Yn) 6= (1, 1, 0)) ∩

(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
))

+P
(

(Yn = 1) ∩ ((Yn−2, Yn−1, Yn) 6= (1, 1, 0)) ∩
(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
))

= P

(
(Yn = 0) ∩ ((Yn−2, Yn−1) 6= (1, 1)) ∩

(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
))

+P
(

(Yn = 1) ∩
(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
))

= P (Yn = 0)P
(

((Yn−2, Yn−1) 6= (1, 1)) ∩
(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
))

+P (Yn = 1)P
(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
)

= 1
2P

(
(Yn−1 = 0) ∩ ((Yn−2, Yn−1) 6= (1, 1)) ∩

(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
))

+1
2P

(
(Yn−1 = 1) ∩ ((Yn−2, Yn−1) 6= (1, 1)) ∩

(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
))

+1
2P (En−1)

= 1
2P

(
(Yn−1 = 0) ∩

(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
))

+1
2P

(
(Yn−1 = 1) ∩ (Yn−2 = 0) ∩ ((Yn−3, Yn−2, Yn−1) 6= (1, 1, 0)) ∩

(
n−2⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
))

+1
2P (En−1)

= 1
2P

(
(Yn−1 = 0) ∩

(
n−1⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
))

+1
2P

(
(Yn−1 = 1) ∩ (Yn−2 = 0) ∩

(
n−2⋂
i=3

((Yi−2, Yi−1, Yi) 6= (1, 1, 0))
))

+1
2P (En−1)

= 1
2P ((Yn−1 = 0) ∩ En−1) + 1

4P ((Yn−2 = 0) ∩ En−2) + 1
2P (En−1)

où on a démontré au passage :
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P ((Yn = 0) ∩ En) = 1
2P ((Yn−1 = 0) ∩ En−1) + 1

4P ((Yn−2 = 0) ∩ En−2)
Et on vérifie que la relation est vérifiée dans les cas où n = 3 ou 4.
En sommant, on obtient :(

1− 1
2 −

1
4

) +∞∑
n=3

P ((Yn = 0) ∩ En) = 1
2P ((Y2 = 0) ∩ E2)+1

4 (P ((Y2 = 0) ∩ E2) + P ((Y1 = 0) ∩ E1))
ou encore :
1
4

+∞∑
n=3

P ((Yn = 0) ∩ En) = 1
4 + 1

2

(1
2 + 1

2

)
= 3

4
Donc :
+∞∑
n=3

P ((Yn = 0) ∩ En) = 3

Toujours en sommant :
+∞∑
n=3

P (En) = 1
2

+∞∑
n=2

P ((Yn = 0) ∩ En) + 1
4

+∞∑
n=1

P ((Yn = 0) ∩ En) + 1
2

+∞∑
n=2

P (En)

On en déduit :
1
2

+∞∑
n=3

P (En) = 3
2 + 1

4 + 3
4 + 1

8 + 1
8 + 1

2 = 5
2

Donc
+∞∑
n=3

P (En) = 5 puis E(X) = 8.

Exercice 11 (X 2018)

On considère n couples formant un ensemble de 2n personnes. On suppose que r ∈ [[1; 2n − 1]]
personnes décèdent. Déterminer le nombre moyen de couples restants.

Correction
Pour k ∈ [[1;n]], on note Xk la variable aléatoire qui vaut 1 si les deux membres de couple numéro
k restent en vie et 0 sinon.
Le nombre de couples restants est N =

n∑
k=1

Xk.

On cherche E(N).

Par linéarité de l’espérance, E(N) =
n∑
k=1

E(Xk) = nE(X1) = nP (X1 = 1) = n

(
2n− 2
r

)
(

2n
r

)
Pour r = 2n− 1, on trouve naturellement 0 et pour r ≤ 2n− 2 :
E(N) = n

(2n− 2)!
r!(2n− 2− r)!

r!(2n− r)!
(2n)! = (2n− r)(2n− r − 1)

2(2n− 1)
Remarque
Pour r = 1, N = n− 1 et E(N) = n− 1. La formule précédente donne bien cette valeur.

Exercice 12 (Mines 2019)

Soit A une variable aléatoire qui suit la loi de Poisson de paramètre λ.
Soit B une variable aléatoire qui suit la loi uniforme sur {1; 2}.
On suppose que A et B sont indépendantes.
Soit C = AB.
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1. Donner la loi de C, son espérance et sa variance.
2. Quelle est la probabilité que C soit paire ?

Correction
1. C(Ω) = N.

∀k ∈ N P (C = 2k + 1) = P ((AB = 2k + 1) ∩ (B = 1)) + P ((AB = 2k + 1) ∩ (B = 2))
formule des probabilités totales avec le système complet d’évènements

((B = 1), (B = 2))
= P ((A = 2k + 1) ∩ (B = 1)) + P (∅)
= P (A = 2k + 1)P (B = 1) par indépendance

= λ2k+1

2(2k + 1)! e−λ

∀k ∈ N P (C = 2k) = P ((AB = 2k) ∩ (B = 1)) + P ((AB = 2k) ∩ (B = 2))
= P ((A = 2k) ∩ (B = 1)) + P ((A = k) ∩ (B = 2))
= P (A = 2k)P (B = 1) + P (A = k)P (B = 2) par indépendance

= 1
2 e−λ

(
λk

k! + λ2k

(2k)!

)

Par indépendance :
E(C) = E(A)E(B) = 3λ

2
De même :

E(C2) = E(A2)E(B2) =
(
V (A) + E(A)2

)
×
(1

2 + 4
2

)
= 5

2λ(λ+ 1)

D’où :

V (C) = E(C2)− E(C)2 = 5
2λ(λ+ 1)− 9

4λ
2

= λ(λ+ 10)
4

2.

P (C pair) =
+∞∑
k=0

P (C = 2k) =
+∞∑
k=0

1
2 e−λ

(
λk

k! + λ2k

(2k)!

)

= 1
2
(
1 + e−λ coshλ

)
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