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1 Inégalité de Bienaymé-Tchebychev
Exercice 1 (Mines 2018)

On effectue des tirages successifs et avec remise dans une urne contenant deux boules rouges et
3 boules noires.
Pour tout i ∈ N∗, Yi = 1 si on tire une boule rouge au iième tirage, 0 sinon.

Pour tout n ∈ N∗, soit Sn =
n∑
i=1

Yi.

1. Montrer que P
(∣∣∣∣Snn − E(Y1)

∣∣∣∣ ≥ a) ≤ V (Y1)
a2n

avec l’inégalité de Bienaymé-Tchebychev.

2. Donner n pour que la probabilité que la proportion de boules rouges tirées soit comprise
entre 0, 35 et 0, 45 soit supérieure à 0, 95.

Correction

1. On applique l’inégalité de Bienaymé-Tchebychev à Sn
n
.

E

(
Sn
n

)
= E(Y1) (linéarité de l’espérance)

V

(
Sn
n

)
= V (Sn)

n2 = V (Y1)
n

: indépendance des lancers dans le tirage avec remise.
Inégalité de Bienaymé-Tchebychev
Soit (Ω,A, P ) un espace probabilisé.
Soit X une variable aléatoire réelle discrète telle que X2 soit d’espérance finie.
On a alors, en notant m l’espérance de X et σ2 sa variance :

∀a > 0 P (|X −m| ≥ a) ≤ σ2

a2

2. a vaut ici 0, 05.
V (Y1) = 0, 4 ∗ 0, 6 = 0, 24.

On cherche n tel que 0, 24
a2n

≤ 0, 05 ou encore n ≥ 0, 24
0, 053 = 104 × 24

125 = 24×5×24 = 1920.

Exercice 2 (CCP 2017)
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Soit (Xn)n∈N∗ une suite de variables aléatoires indépendantes qui suivent toutes B(p) (p ∈]0; 1[).

Pour tout n ∈ N∗, soit Yn = Xn +Xn+1 et Sn =

n∑
i=1

Yi

n
.

1. Quelle est la loi de Yn ?, son espérance ?, sa variance ?
2. Déterminer l’espérance et la variance de Sn.
3. Montrer :
∀ε > 0 lim

n→+∞
P (|Sn − 2p| ≥ ε) = 0

Correction
1. Yn ↪→ B(2, p) (somme de deux Bernoulli indépendantes de même paramètre), E(Yn) = 2p,
V (Yn) = 2p(1− p)

2. E(Sn) = 1
n

n∑
i=1

E(Yi) = 1
n
n2p = 2p

Attention : les Yn ne sont pas indépendantes.
Si j ≥ i + 2, Yi = Xi + Xi+1 et Yj = Xj + Xj+1 sont indépendantes par le lemme des
coalitions.
Par contre :

Cov(Yi, Yi+1) = E(YiYi+1)− E(Yi)E(Yi+1)
= E(XiXi+1 +XiXi+2 +X2

i+1 +Xi+1Xi+2)− 4p2

= E(XiXi+1) + E(XiXi+2) + E(Xi+1) + E(Xi+1Xi+2)− 4p2

= 3p2 + p− 4p2 = p(1− p)

On en déduit :

V (Sn) = 1
n2V (Y1 + · · ·+ Yn)

= 1
n2

 n∑
i=1

V (Yi) + 2
∑
i<j

Cov(Yi, Yj)


= 1

n2

(
2np(1− p) + 2

n−1∑
i=1

p(1− p)
)

= 1
n2 (2np(1− p) + 2(n− 1)p(1− p)) = p(1− p)

n2 (2n+ 2(n− 1))

= 2p(1− p)(2n− 1)
n2

On peut aussi procéder ainsi :

Sn = 1
n

(
X1 + 2

n∑
i=2

Xi +Xn+1

)
et là il y a indépendance des termes de la somme.
On en déduit :

V (Sn) = 1
n2

(
V (X1) + 4

n∑
i=2

V (Xi) + V (Xn+1)
)

= 1
n2 (2 + 4(n− 1))V (X1) = 2p(1− p)(2n− 1)

n2
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3. Attention : la loi faible des grands nombres ne s’applique pas directement (car
les Yn ne sont pas indépendantes).
On utilise BT :

∀ε > 0 P (|Sn − 2p| ≥ ε) = P (|Sn − E(Sn)| ≥ ε)

≤ V (Sn)
ε2

= 2p(1− p)(2n− 1)
n2ε2

−−−−−→
n→+∞

0

Exercice 3 (Ens 2016)

Soit (Xn)n≥1 une suite de variables aléatoires indépendantes.
On suppose :

• ∀n ∈ N∗ E(Xn) = 0
• ∃M > 0 tq ∀n ∈ N∗ E(X2

n) ≤M
Soit ε > 0.
A-t-on toujours P (|X1 + · · ·+Xn| ≥ nε) −−−−−→

n→+∞
0 ?

Correction
C’est un raffinement de la loi faible des grands nombres. On peut considérer cet exercice comme
une question de cours.

On note Sn =
n∑
i=1

Xi.

Par linéarité de l’espérance, E(Sn) = 0.

Par indépendance 1, V (Sn) =
n∑
i=1

V (Xi).

V (Xi) = E(X2
i )− E(Xi)2 = E(X2

i ) ≤M donc V (Sn) ≤ nM
On applique alors l’inégalité de Bienaymé-Tchebitcheff :

P (|X1 + · · ·+Xn| ≥ nε) = P (|Sn| ≥ nε) ≤
V (Sn)
n2ε2

≤ M

nε2

On conclut facilement.

Exercice 4 (Ens 2023)

On considère n points deux à deux distincts du plan (n ≥ 3).
Soit E l’ensemble des parties [[1;n]] de cardinal 2.
On considère une famille (Xe)e∈E de variables aléatoires mutuellement indépendantes et suivant
toutes la loi de Bernoulli de paramètre p ∈]0; 1[.
Si Xe = 1 alors on trace le segment joignant les points d’indice i et j où e = {i; j}.

Soient Tn le nombre de triangles et an = p3
(
n

3

)
.

Montrer que :
∀ε > 0 P

(∣∣∣∣Tnan − 1
∣∣∣∣ > ε

)
−−−−−→
n→+∞

0.

Correction
Luisa a commencé par chercher la loi de Tn. L’examinateur l’a arrêté et lui à demander de

1. L’indépendance deux à deux suffit
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chercher autre chose : l’espérance.
Il s’agit typiquement d’écrire Tn comme une somme d’indicatrices et d’utiliser la linéarité de
l’espérance.
Soit F l’ensemble des parties [[1;n]] de cardinal 3.

Tn =
∑

{i,j,k}∈F
1X{i,j}=1 et X{j,k}=1 et X{k,i}=1

=
∑

{i,j,k}∈F
1X{i,j}=1 × 1X{j,k}=1 × 1X{k,i}=1

=
∑

{i,j,k}∈F
X{i,j}X{j,k}X{k,i}

On en déduit :
E(Tn) =

∑
{i,j,k}∈F

E
(
X{i,j}X{j,k}X{k,i}

)
par linéarité

=
∑

{i,j,k}∈F
E
(
X{i,j}

)
× E

(
X{j,k}

)
× E

(
X{k,i}

)
par indépendance

=
∑

{i,j,k}∈F
p× p× p = p3Card(F )

= p3
(
n

3

)
D’après l’inégalité de Bienaymé-Tchebyschev :

∀ε > 0 P
(∣∣∣∣Tnan − 1

∣∣∣∣ > ε

)
= P (|Tn − an| > anε)

= P (|Tn − E(Tn)| > anε)

≤ V (Tn)
a2
nε

2

an = p3n(n− 1)(n− 2)
6 ∼ p3n3

6 .
Il s’agit donc de montrer que V (Tn) = o

(
n6).

Or :
V (Tn) =

∑
{i,j,k}∈F

V
(
X{i,j}X{j,k}X{k,i}

)
+

∑
{i1,j1,k1}×{i2,j2,k2}∈F 2

Cov
(
X{i1,j1}X{j1,k1}X{k1,i1}, X{i2,j2}X{j2,k2}X{k2,i2}

)
Cela donne une somme de N +N(N − 1) termes où N =

(
n

3

)
est le cardinal de F .

Cela fait N2 ∼ n6

36 termes : c’est trop. En fait si {i1; j1; k1} et {i2, j2, k2} sont disjoints ou ont un
seul point en commun alors les variables aléatoiresX{i1,j1}X{j1,k1}X{k1,i1} etX{i2,j2}X{j2,k2}X{k2,i2}
sont indépendantes et leur covariance est nulle.
Il reste donc dans la somme de droite les termes pour lesquels {i1; j1; k1} ∩ {i2, j2, k2} est de
cardinal 2.
Cela donne N2 =

(
n

3

)
× 3

(
n− 3

1

)
∼ n4

2 termes.

La variance de Tn qui est égale à

NV
(
X{1,2}X{2,3}X{3,1}

)
+N2Cov

(
X{1,2}X{2,3}X{3,1}, X{1,2}X{2,4}X{4,1}

)
est donc en O

(
n4).
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2 Divers
Exercice 5 (X 2023)

1. Montrer :
∀x ∈ R cosh (x) ≤ ex2/2

2. Soit (Xk)k∈N∗ une suite de variables aléatoires mutuellement indépendantes et suivant la
loi uniforme sur {−1; 1}.

Pour tout n ∈ N∗, soit Sn =
n∑
k=1

Xk.

Montrer que pour tout λ ∈ R+, P (|Sn| ≥ λ) ≤ 2 e−λ2/(2n)

Correction

1. ∀x ∈ R cosh (x) = ex + e−x

2 =
+∞∑
n=0

x2n

(2n)!

avec pour n ≥ 1, (2n)! =
2n∏
i=1

i ≥
n∏
i=1

2i = 2nn!.

C’est vrai également pour n = 0 donc :

∀x ∈ R cosh (x) ≤
+∞∑
n=0

x2n

2nn! = ex2/2

2. L’inégalité est triviale pour λ = 0 car à gauche on a une probabilité et à droite 2.
Soit λ > 0.
Soit t > 0, à choisir plus tard en fonction de λ.

P (Sn ≥ λ) = P (tSn ≥ tλ) = P
(

etSn ≥ etλ
)

≤
E
(

etSn

)
etλ = e−tλE

 e

n∑
k=1

tXk

 = e−tλE
(

n∏
k=1

etXk

)

≤ e−tλ
n∏
k=1

E
(

etXk

)
par indépendance

≤ e−tλ
n∏
k=1

(1
2 et + 1

2 e−t
)

par le théorème de transfert

≤ e−tλ (cosh (t))n

≤ e−tλ+nt2/2

Soit f
{
R+ → R
t 7→ −tλ+ nt2/2

.

f est de classe C1 et :
∀t ∈ R+ f ′(t) = −λ+ nt.
On en déduit que f est minimale en t = λ

n
.

f

(
λ

n

)
= −λ

2

n
+ λ2

2n = −λ
2

2n
Donc P (Sn ≥ λ) ≤ e−λ2/(2n)

−Sn = −
n∑
k=1

Xk =
n∑
k=1

(−Xk)
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(−Xk)k∈N∗ est une suite de variables aléatoires mutuellement indépendantes et suivant
la loi uniforme sur {−1; 1}.
Donc −Sn a la même loi que Sn.
Donc :
P (Sn ≤ −λ) = P (−Sn ≥ λ) ≤ e−λ2/(2n)

On conclut avec (|Sn| ≥ λ) = (Sn ≥ λ) ∩ (Sn ≤ −λ) (union disjointe si λ > 0).

Exercice 6 (CCP 2016)

On dit que la suite réelle (un)n∈N∗ vérifie la propriété (?) lorsque pour tous entiers n,m ∈ N∗,
un+m ≤ un + um.

1. Soient α ∈ R∗+ et m ∈ N∗.
Déterminer les variations de la fonction gα,m : x 7→ (x+m)α − xα −mα sur R+.

2. Soit α ∈ R∗+. Pour n ∈ N∗, on pose vn = nα.
Montrer que (vn)n∈N∗ vérifie (?) si et seulement si α ≤ 1.
Dans ce cas, déterminer lim

n→+∞

vn
n
.

3. Dans cette question seulement, on considère une suite (un)n∈N∗ telle que
pour tous m,n ∈ N∗, un+m = un + um.
Montrer que (un)n∈N∗ est une suite arithmétique et déterminer lim

n→+∞

un
n
.

4. Soit une suite (un)n∈N∗ vérifiant (?) et à valeurs dans R+. Soit ε > 0.
(a) Montrer que pour tous p, q ∈ N∗, upq ≤ puq.

(b) Montrer l’existence de m = inf
{
uk
k

; k ∈ N∗
}
, puis de q ∈ N∗ tel que uq

q
≤ m+ ε

2.

(c) Soit r ∈ [[0; q − 1]].
Montrer que pour tout p ∈ N∗, m ≤ upq+r

pq + r
≤ m+ ε

2 + ur
pq + r

(d) Montrer que un
n
−−−−−→
n→+∞

m.

5. Soit (Xn) une suite de variables aléatoires réelles discrètes indépendantes et identiquement
distribuées.
Pour n ∈ N∗, on pose Xn = X1 + · · ·+Xn

n
.

Soit x ∈ R∗+.
Montrer que P (Xn+m ≥ x) ≥ P (Xn ≥ x)P (Xm ≥ x) pour tous n,m ∈ N∗.
En déduire que la suite

(
(P (Xn ≥ x))1/n

)
converge.

Correction
1. gα,m est continue sur R+ (α > 0) et C∞ sur R∗+ et :
∀x > 0 g′α,m(x) = α(x+m)α−1 − αxα−1 = α

(
(x+m)α−1 − xα−1)

• Si α < 1 alors gα,m décroît strictement. Comme gα,m(0) = 0, gα,m est strictement
négative sur R∗+.
• Si α = 1, en revenant à la définition on voit que g1,m est la fonction nulle.
• Si α > 1 alors gα,m croît strictement. Comme gα,m(0) = 0, gα,m est strictement
positive sur R∗+.

2. Si α > 1 alors :
∀(n,m) ∈ N∗ × N∗ (n+m)α − nα −mα = gα,m(n) > 0
∀(n,m) ∈ N∗ × N∗ (n+m)α > nα +mα

6
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La suite (vn)n∈N∗ ne vérifie pas (?) (un seul couple (n,m) suffirait).
Si α = 1 alors :
∀(n,m) ∈ N∗ × N∗ (n+m)α = n+m ≤ n+m = nα +mα

La suite (vn)n∈N∗ vérifie (?).
Si α < 1 alors :
∀(n,m) ∈ N∗ × N∗ (n+m)α − nα −mα = gα,m(n) < 0
∀(n,m) ∈ N∗ × N∗ (n+m)α < nα +mα

La suite (vn)n∈N∗ vérifie (?).
D’où la première partie de la question.

lim
n→+∞

vn
n

=
{

0 si α < 1
1 si α = 1

3. ∀n ∈ N∗ un+1 = un + u1
∀n ∈ N∗ un = nu1
un
n
−−−−−→
n→+∞

u1

4. (a) On fixe q ∈ N∗.
Pour tout p ∈ N∗, soit P(p) : upq ≤ puq.
P(1) est triviale.
On suppose P(p) vraie :
u(p+1)q = upq+q ≤ upq + uq ≤ puq + uq = (p+ 1)uq
Donc P(p+ 1) est vraie.
On a donc :
∀p ∈ N∗ upq ≤ puq
où q est quelconque.

(b) Toute partie non vide et minorée (ici par 0) de R possède une borne inférieure, d’où
l’existence de m.
La borne inférieure d’une partie de R est le plus grand des minorants donc m + ε

2
n’est pas un minorant et :
∃q ∈ N∗ tq uq

q
< m+ ε

2
(c) L’inégalité de gauche découle directement de la définition de m.

A droite :
upq+r
pq + r

≤ upq + ur
pq + r

≤ puq + ur
pq + r

≤ p

pq
uq + ur

pq + r
= uq

q
+ ur
pq + r

≤ m+ ε

2 + ur
pq + r

On observera qu’a priori u0 n’est pas défini. Le résultat précédent est valable en pre-
nant u0 = 0.

(d) On note M = max (u1, . . . , uq−1).
Compte tenu des propriétés de la division euclidienne :
∀n ≥ q m ≤ un

n
≤ m+ ε

2 + M

n
.

∃n0 ≥ q tq ∀n ≥ n0
M

n
≤ ε

2
On a donc :
∃n0 ∈ N∗ tq ∀n ≥ n0 m ≤

un
n
≤ m+ ε

5. Si X1 + · · ·+Xn ≥ nx et Xm+1 + · · ·+Xn+m ≥ mx alors X1 + · · ·+Xn+m ≥ (n+m)x.
En d’autres termes, si on note Y = Xn+1 + · · ·+Xn+m

m
alors :

(Xn ≥ x) ∩ (Y ≥ x) ⊂ (Xn+m ≥ x)
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Donc P (Xn+m ≥ x) ≥ P
(
(Xn ≥ x) ∩ (Y ≥ x)

)
.

Par le lemme des coalitions les évènements (Xn ≥ x) et (Y ≥ x) sont indépendants donc :
P (Xn+m ≥ x) ≥ P (Xn ≥ x)P (Y ≥ x)
Mais Y a la même loi que Xm : ce n’est pas mentionné dans le programme mais clair.
En fait (X1, . . . , Xm) et (Xn+1, . . . , Xn+m) ont la même loi :
• (X1, . . . , Xm)(Ω) = (Xn+1, . . . , Xn+m)(Ω) (= X1(Ω)m ici).
• Pour tout (x1, . . . , xm) ∈ (X1, . . . , Xm)(Ω) = (Xn+1, . . . , Xn+m)(Ω),

P (X1 = x1, . . . , Xm = xm) =
m∏
i=1

P (Xi = xi) =
m∏
i=1

P (X1 = xi)

P (Xn+1 = x1, . . . , Xn+m = xm) =
m∏
i=1

P (Xn+i = xi) =
m∏
i=1

P (X1 = xi)

Encore faudrait-il montrer que si Z1 et Z2 ont la même loi, f(Z1) et f(Z2) ont la même
loi.
Cela paraît difficile sans famille sommable.
Le programme ne mentionne pas cette propriété.

En tous cas :
P (Xn+m ≥ x) ≥ P (Xn ≥ x)P (Xm ≥ x)
• Premier cas : P (X1 ≥ x) = 0
Cela se produit en particulier si x > supX1(Ω) mais cela peut se produire pour
d’autres valeurs de x : on peut avoir x ∈ X1(Ω) et P (X1 = x) = 0.
Si des nombres sont tous inférieurs à x alors leur moyenne l’est aussi. En termes
probabilistes :
n⋂
i=1

(Xi < x) ⊂ (Xn < x)

On en déduit par croissance :

P

(
n⋂
i=1

(Xi < x)
)
≤ P (Xn < x)

puis par indépendance :
n∏
i=1

P (Xi < x) ≤ P (Xn < x)

et par équidistribution :
P (X1 < x)n ≤ P (Xn < x)
Mais P (X1 < x) = 1 donc P (Xn < x) = 1 et P (Xn ≥ x) = 0 pour tout n ∈ N.
On conclut facilement.
• Deuxième cas : P (X1 ≥ x) > 0.
On montre comme dans le premier cas :
P (Xn ≥ x) ≥ P (X1 ≥ x)n > 0
On peut donc poser un = − ln

(
P (Xn ≥ x)

)
∀(n,m) ∈ (N∗)2 un+m ≤ un + um
un
n

= − ln
((
P (Xn ≥ x)

)1/n
)
−−−−−→
n→+∞

l ∈ R
On conclut facilement.
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