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Exercice 1 (X 2025)
Démontrer qu’il existe un développement en série entiere de

1

F =V — = n
() 1—2z—22 nz::oanx

Calculer les coefficients a,,. Quel est le rayon de convergence de la série entiere ?

Correction
e Premiere méthode : décomposition en éléments simples.
X242X —1=(X+12-2=(X4+1-V2)(X +1+2)
Donc F' est définie sur R privé de V2—Tletde —1—+2
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Donc pour tout = €]1 — v/2;1/2 — 1] :
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On en déduit :
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Le rayon de convergence est /2 — 1 : rayon de convergence de la somme de deux séries
entieres de rayons de convergence différents.



e Deuxiéme méthode : c’est la méthode évoquée par les examinateurs, modifiée pour
raisonner par équivalence et ne pas faire deux fois les mémes calculs.
+00
Soit E anx” une série entiere de rayon de convergence R strictement positif et S sa

n=0
somine.

Pour tout = €] — R; R| :
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= Z anpx” — 2 Z ap_1x" — Z Y A
n=0 n=1 n=2
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= ao+ (a1 —2a0)x + Y _ (an — 2an4+1 — ap_2) z"
n=2
Donc :
ag=1

(Vo €] = Ry R[ (1 - 22— 2%)S(2) = 1) «= { a1 = 2a9 = 2
Yn>2a, —2a,41 —1=0

L’équation caractéristique de la récurrence est 2 —2r — 1 =0
Mais 72 —2r —1=(r—1)2—-2=(r -1 —-2)(r — 1 ++2)
Donc la solution générale est r = A(1 — /2)" + B(1 + v/2)™.
Les conditions initiales donnent
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On retrouve 'expression de a,, de la premiere méthode mais il faut calculer le rayon de
convergence et vérifier qu’il est strictement positif.
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