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1 Continuité sous le signe
∫

1.1 Théorème

Soient A et I deux intervalles de R.

Soit f
{
A× I → K
(x, t) 7→ f(x, t)

.

On suppose :

• f est continue par rapport à x ie pour tout t dans I la fonction f(., t)
{
A→ K
x 7→ f(x, t)

est

continue sur A.

• f est continue par morceaux par rapport à t ie pour tout x dansA la fonction f(x, .)
{
I → K
t 7→ f(x, t)

est continue par morceaux sur I.

• Hypothèse de domination
Il existe ϕ : I → R continue par morceaux, positive, intégrable sur I telle que :
∀(x, t) ∈ A× I |f(x, t)| ≤ ϕ(t)

Alors la fonction g

A→ K

x 7→
∫
I
f(x, t) dt

est (définie et) continue sur A.

1.2 Démonstration du théorème

La démonstration du théorème précédent n’est pas exigible mais constitue une utilisation
intéressante de la caractérisation séquentielle des limites.

Pour tout x ∈ A, la fonction f(x, .) est continue par morceaux et intégrable sur I : cela dé-
coule de l’hypothèse de domination.
La fonction g est donc bien définie sur A.
Soit X ∈ A.
On va montrer que g est continue en X.
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On utilise la caractérisation séquentielle de la continuité.
Soit (xn)n∈N une suite à valeurs dans A qui converge vers X.

Pour tout n ∈ N, soit fn = f(xn, .)
{
I → K
t 7→ f(xn, t)

.

Pour tout n ∈ N, fn est continue par morceaux sur I.
f étant continue par rapport à x, on a :
∀t ∈ I fn(t) = f(xn, t) −−−−−→

n→+∞
f(X, t)

ie (fn)n∈N converge simplement sur I vers f(X, .) qui est continue par morceaux.
∀n ∈ N ∀t ∈ I |fn(t)| = |f(xn, t)| ≤ ϕ(t)
avec ϕ continue par morceaux, positive et intégrable sur I.
D’après le théorème de convergence dominée :

g(xn) =
∫
I
f(xn, t) dt =

∫
I
fn(t) dt −−−−−→

n→+∞

∫
I
f(X, t) dt = g(X)

1.3 Caractère local de la continuité

Montrer qu’une fonction est continue sur un intervalle A, c’est montrer qu’elle est continue
en tout point de cet intervalle. Il suffit donc d’établir l’hypothèse de domination au voisinage
de tout point de A, par exemple sur tout segment inclus dans A, ou sur tout intervalle [a; +∞[
avec a > 0 si A = R∗+.

1.4 Limite aux bornes

Soient A et I deux intervalles de R.
Soit a une borne de A.

Soit f
{
A× I → K
(x, t) 7→ f(x, t)

.

On suppose :
• Pour tout t dans I, f(x, t) −−−→

x→a
l(t)

• Pour tout x dans A la fonction f(x, .)
{
I → K
t 7→ f(x, t)

est continue par morceaux sur I.

• La fonction l est continue par morceaux sur I.

• Hypothèse de domination
Il existe ϕ : I → R continue par morceaux, positive, intégrable sur I telle que :
∀(x, t) ∈ A× I |f(x, t)| ≤ ϕ(t)

Alors la fonction l est intégrable sur I et
∫
I
f(x, t) dt −−−→

x→a

∫
I
l(t) dt.

Démonstration
On utilise de nouveau la caractérisation séquentielle des limites.
Soit (xn)n∈N une suite d’éléments de A qui converge vers a.

Pour tout n ∈ N, soit fn = f(xn, .)
{
I → K
t 7→ f(xn, t)

.

Pour tout n ∈ N, fn est continue par morceaux sur I.
Par hypothèse, on a :
∀t ∈ I fn(t) = f(xn, t) −−−−−→

n→+∞
l(t)
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ie (fn)n∈N converge simplement sur I vers l qui est continue par morceaux.
∀n ∈ N ∀t ∈ I |fn(t)| = |f(xn, t)| ≤ ϕ(t)
avec ϕ continue par morceaux, positive et intégrable sur I.
D’après le théorème de convergence dominée :∫
I
f(xn, t) dt =

∫
I
fn(t) dt −−−−−→

n→+∞

∫
I
l(t) dt

2 Dérivation sous le signe
∫

2.1 Théorème

Soient A et I deux intervalles de R.

Soit f
{
A× I → K
(x, t) 7→ f(x, t)

.

On suppose :

• f est de classe C1 par rapport à x ie pour tout t dans I la fonction f(., t)
{
A→ K
x 7→ f(x, t)

est de classe C1 sur A.

• Pour tout x ∈ A, la fonction f(x, .)
{
I → K
t 7→ f(x, t)

est continue par morceaux et inté-

grable sur I.

• Pour tout x ∈ A, la fonction ∂f

∂x
(x, .)

I → K

t 7→ ∂f

∂x
(x, t)

est continue par morceaux sur I.

• Hypothèse de domination
Il existe ϕ : I → R continue par morceaux, positive, intégrable sur I telle que :
∀(x, t) ∈ A× I

∣∣∣∣∂f∂x (x, t)
∣∣∣∣ ≤ ϕ(t)

Alors la fonction g

A→ K

x 7→
∫
I
f(x, t) dt

est (définie et) de classe C1 sur A et

∀x ∈ A g′(x) =
∫
I

∂f

∂x
(x, t) dt

2.2 Remarques

• L’hypothèse de domination entraîne l’intégrabilité des fonctions ∂f
∂x

(x, .) mais pas celle
des fonctions f(x, .).
• On peut, comme en 1.3, tirer profit du caractère local de la classe C1 pour remplacer

l’hypothèse de domination sur A par l’hypothèse de domination sur tout segment de A
ou sur d’autres intervalles adaptés à la situation.

2.3 Démonstration du théorème

La démonstration du théorème précédent n’est pas exigible.

Pour tout x ∈ A, la fonction f(x, .) est continue par morceaux et intégrable sur I.
La fonction g est donc bien définie sur A.
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Soit X ∈ A et montrons que g est dérivable en X.
Soit (xn)n∈N une suite à valeurs dans A \ {X} qui converge vers X.

∀n ∈ N
g(xn)− g(X)
xn −X

=
∫
I

f(xn, t)− f(X, t)
xn −X

dt

Pour tout n ∈ N , soit fn


I → K

t 7→ f(xn, t)− f(X, t)
xn −X

.

• Pour tout n ∈ N, fn est continue par morceaux sur I (comme combinaison linéaire de
telles fonctions).
• f étant de classe C1 par rapport à x, on a :
∀t ∈ I fn(t) −−−−−→

n→+∞

∂f

∂x
(X, t)

ie la suite de fonctions (fn)n∈N converge simplement sur I vers ∂f
∂x

(X, .) qui est continue
par morceaux sur I.
• En appliquant les accroissements finis à f(., t) à t fixé on a :
∀t ∈ I ∀n ∈ N |fn(t)| ≤ ϕ(t)
D’après le théorème de convergence dominée :

g(xn)− g(X)
xn −X

=
∫
I
fn(t) dt −−−−−→

n→+∞

∫
I

∂f

∂x
(X, t) dt

Donc g est dérivable en X et g′(X) =
∫
I

∂f

∂x
(X, t) dt

Donc g est dérivable sur A et

∀x ∈ A g′(x) =
∫
I

∂f

∂x
(x, t)dt

D’après le théorème de continuité sous le signe
∫
, dont les hypothèses sont bien vérifiées,

g est de classe C1 sur A.

2.4 Cas des fonctions de classe Ck, k ∈ N∗

Soient A et I deux intervalles de R.

Soit f
{
A× I → K
(x, t) 7→ f(x, t)

.

On suppose :

• f est de classe Ck par rapport à x ie pour tout t dans I la fonction f(., t)
{
A→ K
x 7→ f(x, t)

est de classe Ck.

• Pour tout x ∈ A, la fonction f(x, .)
{
I → K
t 7→ f(x, t)

est continue par morceaux et inté-

grable sur I.

• Pour tout l ∈ {1; . . . ; k − 1} et tout x ∈ A, la fonction ∂lf

∂xl
(x, .)


I → K

t 7→ ∂lf

∂xl
(x, t)

est

continue par morceaux et intégrable sur I.
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• Pour tout x ∈ A, la fonction ∂kf

∂xk
(x, .)


I → K

t 7→ ∂kf

∂xk
(x, t)

est continue par morceaux sur

I.
• Hypothèse de domination
Il existe ϕ : I → R continue par morceaux, positive, intégrable sur I telle que :

∀(x, t) ∈ A× I
∣∣∣∣∣∂kf∂xk

(x, t)
∣∣∣∣∣ ≤ ϕ(t)

Alors la fonction g

A→ K

x 7→
∫
I
f(x, t) dt

est (définie et) de classe Ck sur A et

∀l ∈ {1; . . . ; k} ∀x ∈ A g(l)(x) =
∫
I

∂lf

∂xl
(x, t) dt

Démonstration
On démontre ce théorème en raisonnant par récurrence sur k.
Le théorème est vrai pour k = 1.
On suppose qu’il est vrai pour k − 1 (k ≥ 2).
Soit f vérifiant les hypothèses du théorème.
Soit x0 ∈ A.

∀(x, t) ∈ A× I
∣∣∣∣∣∂k−1f

∂xk−1 (x, t)
∣∣∣∣∣ ≤

∣∣∣∣∣∂k−1f

∂xk−1 (x, t)− ∂k−1f

∂xk−1 (x0, t)
∣∣∣∣∣+

∣∣∣∣∣∂k−1f

∂xk−1 (x0, t)
∣∣∣∣∣

≤ |x− x0| ϕ(t) +
∣∣∣∣∣∂k−1f

∂xk−1 (x0, t)
∣∣∣∣∣

On en déduit que l’hypothèse de domination relative à ∂k−1f

∂xk−1 est vérifiée sur tout segment de
A (et même sur A en entier si A est borné).
D’après l’hypothèse de récurrence, g est de classe Ck−1 sur A et :

∀l ∈ {1; . . . ; k − 1} ∀x ∈ A g(l)(x) =
∫
I

∂lf

∂xl
(x, t) dt

Si on applique le théorème de dérivation sous le signe
∫

à ∂
k−1f

∂xk−1 et g(k−1), on a g(k−1) de classe

C1 ie g de classe Ck et :

∀x ∈ A
(
g(k−1)

)′
(x) ie g(k)(x) =

∫
I

∂

∂x

(
∂k−1f

∂xk−1 (x, t)
)

dt

=
∫
I

∂kf

∂xk
(x, t) dt

2.5 Cas des fonctions de classe C∞

Si on doit montrer qu’une fonction de la forme x 7→
∫
I
f(x, t) dt est de classe C∞, on montre

par récurrence qu’elle est de classe Ck pour tout k ∈ N.
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2.6 Exemples

• X :
Soit : ϕ(x) =

∫ +∞

0

e−tx

1 + t2
dt

1. Vérifier que ϕ est continue sur R+ et C∞ sur R∗+. Calculer ϕ(x) + ϕ′′(x) pour x > 0
et lim

x→+∞
ϕ(x).

2. Montrer :
∀x > 0 ϕ(x) =

∫ +∞

x

sin (t− x)
t

dt

En déduire que :
∫ +∞

0

sin t
t

dt = π

2 .

Correction
1. On commence par montrer que ϕ est continue sur R+.

Soit f


R+ × R+ → R

(x, t) 7→ e−tx

1 + t2
.

— f est continue par rapport à x.
— f est continue (par morceaux) par rapport à t.

— ∀(x, t) ∈ R+ × R+ |f(x, t)| = e−tx

1 + t2
≤ 1

1 + t2
= ψ(t)

avec ψ continue, positive et intégrable sur R+.
Donc ϕ est (définie et ) continue sur R+.

On montre ensuite que ϕ est C∞ sur R∗+.
Pour tout k ∈ N, soit P(k) : ϕ est de classe Ck sur R∗+ et :

∀x ∈ R∗+ ϕ(k)(x) =
∫ +∞

0

(−1)ktk

1 + t2
e−xt dt

D’après ce qui précède, P(0) est vraie.
On suppose P(k) vraie.

Soit g


R∗+ × R+ → R

(x, t) 7→ (−1)ktk

1 + t2
e−xt

— g est de classe C1 par rapport à x et :

∀x ∈ R∗+
∂g

∂x
(x, t) = (−1)k+1tk+1

1 + t2
e−xt

— Pour tout x ∈ R∗+, g(x, .) est continue et intégrable sur R+ (implicite dans l’hypo-
thèse de récurrence)

— Pour tout x ∈ R∗+,
∂g

∂x
(x, .) est continue (par morceaux) sur R+.

— L’hypothèse de domination est vérifiée sur tout segment de R∗+ :
Soit [a; b] (0 < a < b) un segment de R∗+.

∀(x, t) ∈ [a; b]× R+

∣∣∣∣∂g∂x(x, t)
∣∣∣∣ = tk+1

1 + t2
e−xt ≤ ψ(t) = tk+1

1 + t2
e−at

avec ψ continue, positive et intégrable sur R+ (a > 0 donc t2ψ(t) −−−−→
t→+∞

0)

Donc ϕ(k) est de classe C1 sur R∗+ ie ϕ est de classe Ck+1 et :

∀x ∈ R∗+ ϕ(k+1)(x) =
(
ϕ(k)

)′
(x) =

∫ +∞

0

(−1)k+1tk+1

1 + t2
e−xt dt
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et P(k + 1) est vraie.

On en déduit que ϕ est de classe C∞ sur R∗+ avec :

∀k ∈ N ∀x ∈ R∗+ ϕ(k)(x) =
∫ +∞

0

(−1)ktk

1 + t2
e−xt dt

En particulier :

∀x > 0 ϕ′′(x) =
∫ +∞

0

t2 e−tx

1 + t2
dt D’où :

∀x > 0 ϕ′′(x) + ϕ(x) =
∫ +∞

0

t2 e−tx

1 + t2
dt+

∫ +∞

0

e−tx

1 + t2
dt

=
∫ +∞

0
e−xt dt =

[
− e−xt

x

]+∞

0

= 1
x

ϕ et ϕ′′ étant positives :
∀x > 0 0 ≤ ϕ(x) ≤ ϕ′′(x) + ϕ(x) = 1

x
Donc ϕ(x) −−−−→

x→+∞
0

Il y a d’autres méthodes possibles, par exemple l’utilisation du théorème sur les limites
aux bornes :

f


R+ × R+ → R

(x, t) 7→ e−tx

1 + t2
.

— ∀t ∈ R+ f(x, t) −−−−→
x→+∞

l(t) =
{

0 si t > 0
1 si t = 0

— Pour tout x ∈ R+, la fonction f(x, .) est continue.
— La fonction l est continue par morceaux sur R+
— Hypothèse de domination

∀(x, t) ∈ R+ × R+ |f(x, t)| = e−tx

1 + t2
≤ 1

1 + t2
= ψ(t)

avec ψ continue, positive et intégrable sur R+.

Donc ϕ(t) −−−−→
x→+∞

∫ +∞

0
l(t) dt = 0

2. Soit x > 0.
∀t ∈ [x; +∞[ sin (t− x)

t
= cos (x) sin (t)

t
− sin (x) cos (t)

t

Classiquement,
∫ +∞

x

sin (t)
t

dt et
∫ +∞

x

cos (t)
t

convergent donc par linéarité
∫ +∞

x

sin (t− x)
t

dt
converge et :
∀x > 0

∫ +∞

x

sin (t− x)
t

dt = cos (x)
∫ +∞

x

sin (t)
t

dt− sin (x)
∫ +∞

x

cos (t)
t

dt

∀x > 0
∫ +∞

x

sin (t)
t

dt =
∫ 1

x

sin (t)
t

dt+
∫ +∞

1

sin (t)
t

dt = −
∫ x

1

sin (t)
t

dt+
∫ +∞

1

sin (t)
t

dt
ce qui permet d’appliquer le théorème fondamental du calcul différentiel intégral.
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Sous cette forme, la fonction ψ


R∗+ → R

x 7→
∫ +∞

x

sin (t)
t

dt
est C∞ et :

∀x > 0 ψ′(x) = − sin (x)
∫ +∞

x

sin (t)
t

dt− cos (x) sin (x)
x

− cos (x)
∫ +∞

x

cos (t)
t

dt+ cos (x) sin (x)
x

= − sin (x)
∫ +∞

x

sin (t)
t

dt− cos (x)
∫ +∞

x

cos (t)
t

dt

ψ′′(x) = − cos (x)
∫ +∞

x

sin (t)
t

dt+ sin2 (x)
x

+ sin (x)
∫ +∞

x

cos (t)
t

dt+ cos2 (x)
x

= −ψ(x) + 1
x

ϕ et ψ sont solutions de l’équation différentielle y′′ + y = 1
x

donc ϕ − ψ est solution
de y′′ + y = 0 et :
∃(a, b) ∈ R2 tq ∀x > 0 ϕ(x)− ψ(x) = a cos (x) + b sin (x)
ϕ(x) −−−−→

x→+∞
0

ψ(x) = cos (x)
∫ +∞

x

sin (t)
t

dt− sin (x)
∫ +∞

x

cos (t)
t

dt −−−−→
x→+∞

0

En effet
∫ +∞

1

sin (t)
t

dt converge donc :∫ +∞

x

sin (t)
t

dt =
∫ +∞

1

sin (t)
t

dt−
∫ x

1

sin (t)
t

dt −−−−→
x→+∞

∫ +∞

1

sin (t)
t

dt−
∫ +∞

1

sin (t)
t

dt =
0
La fonction cos étant bornée :
cos (x)

∫ +∞

x

sin (t)
t

dt −−−−→
x→+∞

0

De même sin (x)
∫ +∞

x

cos (t)
t

dt −−−−→
x→+∞

0
Donc a cos (x) + b sin (x) −−−−→

x→+∞
0 et a = b = 0

Donc :
∀x > 0 ϕ(x) = ψ(x) =

∫ +∞

x

sin (t− x)
t

dt

∀x > 0 ϕ(x) = cos (x)
∫ +∞

x

sin (t)
t

dt− sin (x)
∫ +∞

x

cos (t)
t

dt

cos (x)
∫ +∞

x

sin (t)
t

dt −−−→
x→0
x>0

∫ +∞

0

sin (t)
t

dt

Il reste à prouver : sin (x)
∫ +∞

x

cos (t)
t

dt −−−→
x→0
x>0

0

sin (x)
∫ +∞

x

cos (t)
t

dt = sin (x)
∫ 1

x

cos (t)
t

dt+ sin (x)
∫ +∞

1

cos (t)
t

dt

et sin (x)
∫ +∞

1

cos (t)
t

dt −−−→
x→0
x>0

0
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Il reste à prouver : sin (x)
∫ 1

x

cos (t)
t

dt −−−→
x→0
x>0

0

∀x ∈]0; 1[
∣∣∣∣sin (x)

∫ 1

x

cos (t)
t

dt
∣∣∣∣ = sin (x)

∫ 1

x

cos (t)
t

dt

≤ sin (x)
∫ 1

x

dt
t

= − sin (x) ln (x) ∼ x ln (x) −−−→
x→0
x>0

0

• X 2020
Pour tout x ≥ 0, on pose f(x) =

∫ +∞

0

e−xt

1 + t2
dt.

1. Montrer que f est bien définie puis montrer que f est continue sur R+.
Montrer que f est C2 sur R∗+ puis trouver une équation différentielle vérifiée par f .

2. Pour tout x ≥ 0, on pose g(x) =
∫ +∞

0

sin (t)
x+ t

dt.
Mêmes question qu’en 1).

3. Montrer que f = g et en déduire la valeur de
∫ +∞

0

sin (t)
t

dt.

• Mines 2017
F (x) =

∫ +∞

0
e−xt sin t

t
dt

1. Existence, continuité et caractère C1 de F .
2. Calcul de F
Correction
1. — Domaine de définition

Pour x ∈ R soit fx

R∗+ → R

t 7→ e−xt sin t
t

.

fx est prolongeable en une fonction continue sur R+.
Si x > 0, fx(t) = o+∞

( 1
t2

)
.

Si x = 0, c’est une intégrale classique.
Si x < 0 :∫ 2kπ+5π/6

2kπ+π/6
fx(t) dt ≥ 2π

3 × e−x(2kπ+π/6) × 1
2 ×

1
2kπ + 5π/6 −−−−→k→+∞

+∞

On conclut classiquement.
DF = R+

— Continuité sur R∗+
La continuité sur R+ est délicate et l’examinateur a demandé au candidat de
différer.

Soit g

R∗+ × R∗+ → R

(x, t) 7→ e−xt sin t
t

.

— g est continue par rapport à x.
— g est continue par rapport à t.
— L’hypothèse de domination est vérifiée sur tout segment de R∗+ :

Soit [a; b] un segment de R∗+.

∀(x, t) ∈ [a; b]× R∗+ |g(x, t)| ≤ e−at |sin t|
t

= |g(a, t)|
avec |g(a, .)| continue, positive et intégrable sur R∗+.
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On conclut avec le théorème de continuité sous le signe
∫
.

— Caractère C1 sur R∗+
— g est C1 par rapport à x et :
∀(x, t) ∈ R∗+ × R∗+

∂g

∂x
(x, t) = − sin t e−xt

— g est continue et intégrable par rapport à t.
— ∂g

∂x
est continue par rapport à t.

— L’hypothèse de domination est vérifiée sur tout segment de R∗+ :
Soit [a; b] un segment de R∗+.

∀(x, t) ∈ [a; b]× R∗+
∣∣∣∣∂g∂x(x, t)

∣∣∣∣ ≤ e−at = ϕ(t)
avec ϕ continue, positive et intégrable sur R∗+.
On conclut avec le théorème de dérivation sous le signe

∫
.

2.

∀x > 0 F ′(x) = −
∫ +∞

0
sin t e−xt dt = −=m

(∫ +∞

0
e−(x−i)t dt

)
= =m

( −1
x− i

)
= − 1

1 + x2

On en déduit :
∃C ∈ R tq ∀x > 0 F (x) = C − arctan x

— Pour tout t ∈ R∗+, g(x, t) −−−−→
x→+∞

l(t) = 0.
— Pour tout x ∈ R∗+, la fonction g(x, .) est continue par morceaux sur R∗+.
— La fonction l est continue (par morceaux) sur R∗+.
— Hypothèse de domination
∀t ∈ R |sin (t)| ≤ |t| (accroissements finis)
Donc :
∀(x, t) ∈ [1; +∞[×R∗+ |g(x, t)| ≤ e−t
avec t 7→ e−t continue, positive et intégrable sur R∗+.

On en déduit : F (x) −−−−→
x→+∞

0

D’où :

∀x > 0 F (x) = π

2 − arctan (x) = arctan
(1
x

)

Enfin, il reste à montrer que F est continue sur R+ pour obtenir
∫ +∞

0

sin t
t

dt = π

2 .
Pour cela on écrit :∫

sin t e−xt dt = =m
(∫

e−(x−i)t dt
)

= −=m
(

e−(x−i)t

x− i

)

= −1
x2 + 1=m

(
(x+ i) e−(x−i)t

)
= − e−xt

x2 + 1=m
(
(x+ i) eit

)
= − e−xt

x2 + 1(cos t+ x sin t)

10
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puis ;

∀x ≥ 0 F (x) =
∫ 1

0
e−xt sin t

t
dt+

∫ +∞

1
e−xt sin t

t
dt

=
∫ 1

0
e−xt sin t

t
dt+ e−x

x2 + 1(cos 1 + x sin 1) + 1
x2 + 1

∫ +∞

1

(cos t+ x sin t) e−xt

t2
dt

et sous cette forme on peut utiliser le théorème de continuité sous le signe
∫
.

• Centrale 2018
Soit P ∈ C[X] de degré n ≥ 2.
On suppose par l’absurde que P ne possède pas de racine dans C.

Soit F : r ∈ R+ 7→
∫ 2π

0

rn einθ

P (r eiθ)dθ.

1. Montrer que F est C1 sur R+.
2. Montrer que F est constante.
3. Conclure en regardant le comportement de F en 0 et en +∞.
Correction

1. Soit f


R+ × [0; 2π]→ C

(r, θ) 7→ rn einθ

P (r eiθ)
— f est C1 par rapport à r : la justification essentielle est :
∀(r, θ) ∈ R+ × [0; 2π] P (r eiθ) 6= 0 car on a supposé que P n’a pas de racine.

∀(r, θ) ∈ R+ × [0; 2π] ∂f
∂r

(r, θ) = nrn−1 einθ

P (r eiθ) −
rn ei(n+1)θP ′(r eiθ)

P (r eiθ)2

— f est C0 et intégrable par rapport à θ sur [0; 2π] (pas de problème on est sur un
segment)

— ∂f

∂r
est continue par rapport à θ.

— L’hypothèse de domination est vérifiée sur tout segment de R+ :
Soit [a; b] un tel segment (0 ≤ a ≤ b)

∀(r, θ) ∈ [a; b]× [0; 2π]
∣∣∣∣∂f∂r (r, θ)

∣∣∣∣ ≤ nbn−1

|P (r eiθ)| + bn

∣∣∣∣∣ P ′(r eiθ)
P (r eiθ)2

∣∣∣∣∣
Les fonctions z 7→ 1

|P (z)| et z 7→
∣∣∣∣ P ′(z)P (z)2

∣∣∣∣ étant continues sur le disque fermé de
centre 0 et de rayon b y sont bornées.
D’où la domination :
∀(r, θ) ∈ [a; b]× [0; 2π]

∣∣∣∣; ∂f∂r (r, θ)
∣∣∣∣ ≤M1nb

n+1 +M2b
n

F est bien C1 sur R+.
2.

∀r ∈ R+ F ′(r) =
∫ 2π

0

nrn−1 einθ

P (r eiθ) dθ −
∫ 2π

0
rn−1 einθ r eiθP ′(r eiθ)

P (r eiθ)2 dθ

=
∫ 2π

0

nrn−1 einθ

P (r eiθ) dθ −
[
rn−1 einθ −1

iP (r eiθ)

]2π

0
+
∫ 2π

0
inrn−1 einθ −1

iP (r eiθ)dθ

=
∫ 2π

0

nrn−1 einθ

P (r eiθ) dθ − 0(par périodicité)−
∫ 2π

0

nrn−1 einθ

P (r eiθ) dθ

= 0

11
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3. F étant constante sur R+ :
∀r ∈ R+ F (r) = F (0) = 0 (n > 0)
On note an le coefficient dominant de P .
zn

P (z) −−−−−→|z|→+∞

1
an

Par conséquent :
∃(M,R) ∈ R∗+ × R∗+ tq ∀z ∈ C tq |z| ≥ R

∣∣∣∣ znP (z)

∣∣∣∣ ≤M
— Pour tout θ ∈ [0; 2π], f(r, θ) −−−−→

r→+∞
l(θ) = 1

an
— Pour tout r ∈ R+, la fonction f(r, .) est continue.
— La fonction l est continue.
— Hypothèse de domination
∀(r, θ) ∈ [R; +∞[×[0; 2π] |f(r, θ)| ≤M
avec θ 7→M continue, positive et intégrable sur [0; 2π].

On en déduit : F (r) −−−−→
r→+∞

2π
an

.

On aboutit à une contradiction.
Donc P a au moins une racine dans C.
Le cas n = 1 étant trivial, on a démontré le théorème de d’Alembert-Gauss.

• Soit f : R→ R de classe C∞.

Montrer que la fonction g


R→ R

x 7→ f(x)− f(0)
x

si x 6= 0

0 7→ f ′(0)

est de classe C∞ sur R.

Correction

∀x ∈ R∗ g(x) = 1
x

∫ x

0
f(t) dt

= 1
x

∫ 1

0
f ′(xu)x du t = xu

=
∫ 1

0
f ′(xu) du

Cette expression est valable pour x = 0 donc :

∀x ∈ R g(x) =
∫ 1

0
f ′(xu) du

Pour tout n ∈ N, soit P(n) : g est Cn sur R et :

∀x ∈ R g(n)(x) =
∫ 1

0
tnf (n+1)(tx) dt

La propriété est vraie au rang 0 : la continuité de g est claire sur l’expression de dé-
part et on vient d’établir l’expression intégrale.

On suppose P(n) vraie.

Soit h
{
R× [0; 1]→ R
(x, t) 7→ tnf (n+1)(tx)

.

12
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— h est C1 par rapport à x (f est C1) et :
∀(x, t) ∈ R× [0; 1] ∂h

∂x
(x, t) = tn+1f (n+2)(tx)

— Pour tout x ∈ R, h(x, .) est continue et intégrable sur [0; 1].
— Pour tout x ∈ R, ∂h

∂x
(x, .) est continue sur [0; 1].

— L’hypothèse de domination est vérifiée sur tout segment de R.
Soit [a; b] un segment de R et c = max (|a| , |b|).
f (n+2) est continue sur [−c; c] donc :
∃M ∈ R+ tq ∀y ∈ [−c; c]

∣∣∣f (n+2)(y)
∣∣∣ ≤M

∀(x, t) ∈ [a; b]× [0; 1]
∣∣∣∣∂h∂x(x, t)

∣∣∣∣ = tn+1
∣∣∣f (n+2)(tx)

∣∣∣ ≤M (tx ∈ [−c; c])
avec t 7→M continue, positive et intégrable sur [0; 1].
Donc g(n) est C1 ie g est Cn+1 et :

∀x ∈ R g(n+1)(x) = g(n)′(x) =
∫ 1

0
tn+1f (n+2)(tx) dt

Donc P(n+ 1) est vraie.
Donc P(n) est vraie pour tout n ∈ N et g est C∞.

2.7 Fonction Gamma d’Euler

Mines 2016
Γ(x) =

∫ +∞

0
e−ttx−1 dt

Domaine de définition, continuité, dérivabilité et calcul de Γ(n) pour n ∈ N∗.

Correction
• Domaine de définition

Soit x ∈ R.

Soit fx

{
R∗+ → R
t 7→ tx−1 e−t

.

fx est continue sur R∗+.
fx étant de signe constant :

Γ(x) est défini ⇐⇒
∫ +∞

0
fx(t) dt converge

⇐⇒
∫ +∞

0
fx(t) dt converge absolument

⇐⇒ fx est intégrable sur R∗+
t2fx(t) = tx+1 e−t −−−−→

t→+∞
0 donc fx est intégrable sur [1; +∞[.

De plus, fx(t) ∼0 t
x−1 = 1

t1−x
donc :

fx intégrable sur ]0; 1]⇐⇒ 1− x < 1⇐⇒ x > 0.
Finalement, le domaine de définition de Γ est R∗+.
• Une majoration auxiliaire
Soit x ∈ [a; b].
Soit t ∈ R∗+.
— Premier cas : t ≥ 1.

ln t ≥ 0 donc a ln t ≤ x ln t ≤ b ln t

13
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Donc ta ≤ tx ≤ tb.
Donc tx ≤ tb ≤ max (ta, tb).

— Deuxième cas : t ≤ 1.
ln t ≤ 0 donc a ln t ≥ x ln t ≥ b ln t
Donc ta ≥ tx ≥ tb.
Donc tx ≤ ta ≤ max (ta, tb).

Dans les deux cas, on a donc tx ≤ max (ta, tb).
Enfin, ta et tb étant positifs, max (ta, tb) ≤ ta + tb.
• Caractère C∞ de Γ

On va montrer :
La fonction Γ d’Euler est de classe C∞ sur R∗+ avec :

∀k ∈ N ∀x ∈ R∗+ Γ(k)(x) =
∫ +∞

0
(ln t)ktx−1 e−t dt

Pour tout k ∈ N, soit P(k) : Γ est de classe Ck sur R∗+ et :

∀x ∈ R∗+ Γ(k)(x) =
∫ +∞

0
(ln t)ktx−1 e−t dt

La propriété est vraie au rang 0 :

Soit f
{
R∗+ × R∗+ → R
(x, t) 7→ tx−1 e−t = e−t+(x−1) ln t .

— f est continue par rapport à x ie pour tout t ∈ R∗+, la fonction f(., t)
{
R∗+ → R
x 7→ tx−1 e−t = e−t+(x−1) ln t

est continue.

— f est continue par rapport à t ie pour tout x ∈ R∗+, la fonction f(x, .)
{
R∗+ → R
t 7→ tx−1 e−t = e−t+(x−1) ln t

est continue.
— Hypothèse de domination

Elle est vérifiée sur tout segment de R∗+ :
Soit [a; b] un segment de R∗+.

∀(x, t) ∈ [a; b]× R∗+ |f(x, t)| = tx−1 e−t = 1
t
tx e−t

≤ 1
t

(
ta + tb

)
e−t

≤ f(a, t) + f(b, t) = ϕ(t)

avec ϕ positive, continue et intégrable (d’après le début de l’exercice) sur R∗+.
On suppose la propriété vraie au rang k.

Soit f
{
R∗+ × R∗+ → R
(x, t) 7→ (ln t)ktx−1 e−t = (ln t)k e−t+(x−1) ln t .

— f est C1 par rapport à x avec :
∀(x, t) ∈ R∗+ × R∗+

∂f

∂x
(x, t) = (ln t)k+1tx−1 e−t

— Pour tout x ∈ R∗+, la fonction f(x, .) est continue par morceaux et intégrable sur R∗+
(implicite dans l’hypothèse de récurrence)

— Pour tout x ∈ R∗+, la fonction ∂f

∂x
(x, .) est continue par morceaux sur R∗+.

14
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— Pour tout x ∈ R∗+, la fonction ∂f

∂x
(x, .) est intégrable sur R∗+ : ce point ne figure

pas dans l’énoncé du théorème du cours. Il est destiné à faciliter la rédaction de la
domination.
t2
∂f

∂x
(x, t) = (ln t)k+1tx+1 e−t −−−−→

t→+∞
0 donc ∂f

∂x
(x, .) est intégrable sur [1; +∞[.

t1−x/2∂f

∂x
(x, t) = (ln t)k+1tx/2 e−t −−→

t→0
0 car x2 > 0 donc ∂f

∂x
(x, t) = o

( 1
t1−x/2

)
en 0.

1− x

2 < 1 donc ∂f
∂x

(x, .) est intégrable sur ]0; 1].
— L’hypothèse de domination est vérifiée sur tout segment de R∗+ :

Soit [a; b] un segment de R∗+

∀(x, t) ∈ [a; b]× R∗+
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ = |ln t|k+1 ktx−1 e−t = |ln t|
k+1

t
tx e−t

≤ |ln t|k+1

t

(
ta + tb

)
e−t

≤
∣∣∣∣∂f∂x (a, t)

∣∣∣∣+ ∣∣∣∣∂f∂x (b, t)
∣∣∣∣ = ϕ(t)

avec ϕ positive, continue et intégrable (d’après le point précédent) sur R∗+.
On en déduit que la propriété est vraie au rang k + 1.

• Calcul de Γ(n)
Soit x ∈ R∗+.

Γ(x+ 1) =
∫ +∞

0
tx e−t dt

On procède à une intégration par parties :
u(t) = tx, u′(t) = xtx−1

v′(t) = e−t, v(t) = − e−t
u et v sont de classe C1 sur R∗+ et :
u(t)v(t) −−→

t→0
0 (car x > 0) et u(t)v(t) −−−−→

t→+∞
0

L’intégration par parties est justifiée et :
Γ(x+ 1) = x

∫ +∞

0
tx−1 e−t dt = xΓ(x)

Pour tout n ∈ N∗, soit :

P(n) : ∀x > 0 Γ(x+ n) = Γ(x)
n−1∏
k=0

(x+ k)

P(1) est vraie d’après ce qui précède.
On suppose P(n) vraie.

∀x > 0 Γ(x+(n+1)) = Γ((x+n)+1) = (x+n)Γ(x) = Γ(x)
n∏
k=0

(x+k) d’après l’hypothèse

de récurrence.
Donc P(n+ 1) est vraie.
On a donc :

∀x > 0 ∀n ∈ N∗ Γ(x+ n) = Γ(x)
n−1∏
k=0

(x+ k)

En prenant x = 1, on a :
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∀n ∈ N∗ Γ(n+ 1) = Γ(1)
n−1∏
k=0

(1 + k) = Γ(1)
n∏
l=1

l = Γ(1)n!

Γ(1) =
∫ +∞

0
e−t dt =

[
− e−t

]+∞
0

= 1
Donc :
∀n ∈ N∗ Γ(n+ 1) = n!
ou encore :
∀n ≥ 2 Γ(n) = (n− 1)!
Cette égalité est vraie pour n = 1 donc :

∀n ∈ N∗ Γ(n) = (n− 1)!
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