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1 Continuité sous le signe /

1.1 Théoréme

Soient A et I deux intervalles de R.

. AxI—K
Soit f
(2,t) = f(z,t)
On suppose :
. Co . A—=K
e f est continue par rapport a x ie pour tout ¢ dans I la fonction f(.,t) est
x— f(x,t)

continue sur A.
I - K

e f est continue par morceaux par rapport a t ie pour tout « dans A la fonction f(z, .) {t )
— x,

est continue par morceaux sur I.

e Hypothése de domination
Il existe ¢ : I — R continue par morceaux, positive, intégrable sur I telle que :
V(z,t) € AXT[f(z,t)] < o(t)

A—K

x /f(:c,t) dt

I

est (définie et) continue sur A.

Alors la fonction g {

1.2 Démonstration du théoréme

La démonstration du théoréeme précédent n’est pas exigible mais constitue une utilisation
intéressante de la caractérisation séquentielle des limites.

Pour tout x € A, la fonction f(z,.) est continue par morceaux et intégrable sur I : cela dé-
coule de I'hypothése de domination.

La fonction g est donc bien définie sur A.

Soit X € A.

On va montrer que g est continue en X.
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On utilise la caractérisation séquentielle de la continuité.
Soit (2, )nen une suite a valeurs dans A qui converge vers X.
I —-K
t = f(an,t)
Pour tout n € N, f,, est continue par morceaux sur I.
f étant continue par rapport & x, on a :
Vie I fo(t) = flzp,t) —— f(X, 1)

n—-+0o00
ie (fn)nen converge simplement sur I vers f(X,.) qui est continue par morceaux.
Vne NVt el |fu(t)] = |f(zn,t)] < o(t)
avec ( continue par morceaux, positive et intégrable sur I.
D’apres le théoreme de convergence dominée :

Pour tout n € N, soit f, = f(xn,.) {

o) = [ fantydt = [ 00— [ 1(X,0dt = g(x)

n—-+00

1.3 Caractére local de la continuité

Montrer qu'une fonction est continue sur un intervalle A, c’est montrer qu’elle est continue
en tout point de cet intervalle. Il suffit donc d’établir I’hypothése de domination au voisinage
de tout point de A, par exemple sur tout segment inclus dans A, ou sur tout intervalle [a; 00|
avec a > 0si A =R%.

1.4 Limite aux bornes

Soient A et I deux intervalles de R.
Soit a une borne de A.
Soit f AxIT—K
(z,t) = f(2,1)
On suppose :
e Pour tout t dans I, f(x,t) — I(t)

Tr—a

I —-K
e Pour tout = dans A la fonction f(z,.) est continue par morceaux sur /.
t— f(x,t)

e La fonction [ est continue par morceaux sur I.

e Hypothése de domination

Il existe ¢ : I — R continue par morceaux, positive, intégrable sur I telle que :

V(z,1) € Ax I |f(z,1)] < (1)
Alors la fonction [ est intégrable sur I et /f(ac, t)dt —2 /l(t) dt.

I z—=a 1
Démonstration
On utilise de nouveau la caractérisation séquentielle des limites.
Soit (2, )nen une suite d’éléments de A qui converge vers a.
I —-K
t f(zn,1)
Pour tout n € N, f,, est continue par morceaux sur 1.
Par hypothese, on a :
Vtel fro(t) = flzp,t) —— (1)
n—-+oo

Pour tout n € N, soit f,, = f(zp,.) {
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ie (fn)nen converge simplement sur I vers [ qui est continue par morceaux.
Vn e NVE€ T |fult)] = |F(an,t)] < (1)

avec ¢ continue par morceaux, positive et intégrable sur 1.

D’apres le théoreme de convergence dominée :

/]f(xn,t)dt:/]fn(t)dtm/jl(t)dt

2 Dérivation sous le signe /

2.1 Théoréme

Soient A et I deux intervalles de R.

Soit f Ax I —K
(,1) = f(z,)

On suppose :
A—-K

e f est de classe C! par rapport & z ie pour tout ¢ dans I la fonction f(.,t)
x> f(x,t)

est de classe C! sur A.

I —-K
e Pour tout z € A, la fonction f(z,.) est continue par morceaux et inté-
t— f(z,t)
grable sur I.
o I —-K
e Pour tout x € A, la fonction ——(z,.) of est continue par morceaux sur 1.
Ox t a—(:n, t)
x

e Hypothése de domination
Il existe ¢ : I — R continue par morceaux, positive, intégrable sur I telle que :

V(z,t) e Ax I ’gi(a},t) < p(t)

A=K
Alors la fonction g . / F,t) est (définie et) de classe C! sur A et
I

Vz € Ad () :/Igi:(a:,t)dt

2.2 Remarques

0
e L’hypothese de domination entraine l'intégrabilité des fonctions a—f(x, .) mais pas celle
x

des fonctions f(z,.).

e On peut, comme en 1.3, tirer profit du caracteére local de la classe C! pour remplacer
I’hypothese de domination sur A par ’hypotheése de domination sur tout segment de A
ou sur d’autres intervalles adaptés a la situation.

2.3 Démonstration du théoréme

La démonstration du théoreme précédent n’est pas exigible.

Pour tout = € A, la fonction f(x,.) est continue par morceaux et intégrable sur 1.
La fonction g est donc bien définie sur A.
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Soit X € A et montrons que g est dérivable en X.
Soit (zp)nen une suite a valeurs dans A \ {X} qui converge vers X.
g9(xn) — 9(X) / f(@n,t) = f(X,1)
Vn eN = dt
e -X | aa—X

Tn

I —-K
Pour tout n € N, soit f, . f(zn,t) — f(X,1)
~ Ty —X
e Pour tout n € N, f,, est continue par morceaux sur I (comme combinaison linéaire de
telles fonctions).
e f étant de classe C! par rapport & x, on a :

of
vt el fu(t) P %(XJ)

ie la suite de fonctions (f,,)nen converge simplement sur I vers —f(X ,.) qui est continue

ox

par morceaux sur [.

e En appliquant les accroissements finis & f(.,t) a ¢ fixé on a :
Ve IVn e N |fu(t)] < ol
D’apres le théoréeme de convergence dominée :

wz/lfn(t)dtm/lgi()(,t)dt

Tn

Donc g est dérivable en X et ¢'(X) = g(X, t)dt
1 Ox

Donc g est dérivable sur A et
of
Ve e Ag'(z) = / == (z,t)dt
vedg(@) = [ S

D’apres le théoréme de continuité sous le signe / , dont les hypotheéses sont bien vérifiées,

g est de classe C! sur A.

2.4 Cas des fonctions de classe C*, k € N*

Soient A et I deux intervalles de R.

. AxI—K
Soit f
(@,t) = f(z,1)
On suppose :
A=K

e f est de classe C* par rapport & z ie pour tout ¢ dans I la fonction f(.,t)
x— f(x,t)

est de classe CF.

I —-K
e Pour tout x € A, la fonction f(z,.) est continue par morceaux et inté-
t— f(z,t)
grable sur [.
! I—-K
e Pour tout [ € {1;...;k — 1} et tout x € A, la fonction = (z,.) ot est
x

continue par morceaux et intégrable sur I.
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k I —-K
e Pour tout z € A, la fonction —k(x, ) o f est continue par morceaux sur
T

1.
e Hypothése de domination
Il existe ¢ : I — R continue par morceaux, positive, intégrable sur I telle que :

ak
V(z,t) e Ax I a—x‘{(z,t) < p(t)

A—-K
Alors la fonction g R /f (2.1 dt est (définie et) de classe C¥ sur A et
I

!
Vie{l;...;k}Ve e AgW(z) = ﬂ(aj,t) dt
1 Ox!
Démonstration
On démontre ce théoreme en raisonnant par récurrence sur k.
Le théoréme est vrai pour k = 1.
On suppose qu’il est vrai pour k — 1 (k > 2).
Soit f vérifiant les hypotheéses du théoreme.

Soit xg € A.
6k71f akflf 8k71f akflf
V(z,t)e AxI W(%t) < Py (z,t) — W(ﬂﬁoat) + W(x(bt)
8k—1
< |z —mo| p(t) + W(Ucoﬂf)
k—1

On en déduit que ’hypothése de domination relative a est vérifiée sur tout segment de

Oxk—1
A (et méme sur A en entier si A est borné).
D’aprés I’hypothése de récurrence, g est de classe C¥~! sur A et :

al
Vie{l;...;k—1}Vze Ag¥) = —];(:U,t) dt
1 Ox
akfl
Si on applique le théoreme de dérivation sous le signe / a k1 et gD on a g*—1 de classe
i

C! ie g de classe C¥ et :

/ k—
vre A (g% V) (@) ie gP(2) = /1 ai (%@J)) dt

o f
= I@(x,t)dt

2.5 Cas des fonctions de classe C*®

Si on doit montrer qu'une fonction de la forme z +— / f(z,t)dt est de classe C*°, on montre
I

ar récurrence qu’elle est de classe C* pour tout k € N.
b q
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2.6 Exemples

o X :
+o00 eft:v
Soit : :/
oit: p(a) = [ 1

1. Vérifier que ¢ est continue sur Ry et C*> sur R*. Calculer p(x) + ¢"(z) pour > 0

d¢

2. Montrer : N
o0 3 t _
V:U>Og0(x):/ Sm(tx)dt
X
+00 gin ¢t
En déduire que : / My =T
0 t 2
Correction

1. On commence par montrer que ¢ est continue sur R..

R+XR+—>R

SOltf e_tx
£) s ——

(2,7) 1+1¢2

— f est continue par rapport a x.
— [ est continue (par morceaux) par rapport a t.
—tx
e 1
— V(z,t) e Ry xR x,t)| = < =Y(t
(@.8) € Re X Re [f(@8)| = 1 < 153 = 900

avec 1) continue, positive et intégrable sur R,.

Donc ¢ est (définie et ) continue sur R.

On montre ensuite que ¢ est C*° sur R7.

Pour tout k € N, soit P(k) : ¢ est de classe C* sur R* et :
* (k) oo (_1)ktk —xt

D’apreés ce qui précede, P(0) est vraie.

On suppose P(k) vraie.

. R% xRy — R
oit g (=L)ktk
(l',t) — We x

— g est de classe C! par rapport a = et :

ag (_1)k+1tk+1
Ve € RY —=(x,t) =
+ Gx( ) 1+ 2
— Pour tout x € RY, g(x,.) est continue et intégrable sur R (implicite dans I’hypo-
these de récurrence)

9

—xt

— Pour tout x € R%, x,.) est continue (par morceaux) sur R .

— L’hypothese de domination est vérifiée sur tout segment de R :

Soit [a;b] (0 < a < b) un segment de RY.
k+1 k1

g —azt —at
V(z,t) € [a;b] x Ry %(x,t) =1 z° < Yt) = el @
avec 1) continue, positive et intégrable sur R, (a > 0 donc t2¢(t) —— 0)

t—+o00
Donc o®) est de classe C! sur R ie ¢ est de classe CFtl et :

. ’ +o00 -1 k-‘rltk—i-l
vz € RE o+ () = (SO(k)) (z) = / (GO

—axt
0 14 ¢2 e dt
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et P(k+ 1) est vraie.

On en déduit que ¢ est de classe C°° sur R* avec :

400 (_1)ktk
k _ —axt
VkENV:L‘ERigo()(a:)—/O 1+t26‘”dt
En particulier :
/! +eo t2 d D
Yz >0 T :/ t D’ou :
)= T
\v/ O " +o0 t2 —tx +o00 e~ tx
p> 09" @) be) = [ T [
+o00 e—zt +00
e tdt =
Tl

I
8= 5~

@ et ¢ étant positives :
V> 00 < p(r) < ¢"(z) + p(z) = —

Donc ¢(x) P 0

Il y a d’autres méthodes possibles, par exemple 'utilisation du théoréme sur les limites
aux bornes :

R+XR+—>R
f ( t)r—>i
“ 1+ ¢2
0sit>0
— Vte R I(t) =
Vi e +f($a)m0 {1511&-0

— Pour tout = € Ry, la fonction f(x,.) est continue.
— La fonction ! est continue par morceaux sur R4
— Hypothése de domination

et 1

V(z,t) € Ry xRy [f(z,t)| = Ty < e = (1)
avec 1 continue, pos1t1ve et intégrable sur R,.
Doncgo()—>/ t)dt =0
2. Soit > 0.
in (t — in (¢ t
Vt € [x; 400 sin(t - z) = cos (z) sin (t) _ sin (x) cost( )

dt

t t
0 gin (t 0 cos (t T gin (t — x
t( ) dt et / t( ) convergent donc par linéarité / ¥
x

Classiquement, /
z t

xX
converge et :

+o0 _ +00 i +oo
V:J:>0/ Sm(ttx)dt—cos()/ Smt(t>dt—sin(x)/ Cost(t)dt
t

+oo +00 T qj +00 gj
Ve > 0 / sin () gt _/ smt( ) s / smt(t) g — / smt(t) it / Slnt(t) gt
1

ce qui permet d’ apphquer le théoreme fondamental du calcul différentiel intégral.
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R% — R
Sous cette forme, la fonction v +0 sin (t) est C*° et :
T / - dt
+00 oj . +oo ]
Ve >04/(z) = —sin (az)/ smt(t) gr _ 8 (x)msm (z) cos (x)/ cost(t) dt + &% (:L‘)xsm (z)
+00 gj t “+o00 t
= —sin (ZL')/ smt( ) dt — cos (x)/ Cost() dt
+oo sin (¢ in? +o0 t 2
W'(z) = —cos (x)/ smt( )dt+ smx(w) 4 sin (:c)/ Cost( ) dt + cosx(x)
1

1

© et 1) sont solutions de 1’équation différentielle 3y +y = — donc ¢ — 1) est solution
x

dey"+y=0et:

3(a,b) € R? tq Vo > 0 ¢(x) — 1 (z) = acos (z) + bsin ()

@) 55 0

Y(x) = cos (x) /+Oo sin (1) dt — sin (z) /+Oo cos (¢) dt 0

2 t 2 t T—+00

+00 i
En effet / smt(t) dt converge donc :

1
/Jroo sin (t) gt — /+°° sin (t) dt—/m sin (t) dt /+°° sin (t) dt_/+°° sin (t) g —
s 1 1 e | 13 1

t t t t

La fomctiJorIéO cos é’gant bornée :
sin
cos () / ®) dt >0
X

t T—+00
o0 cos (t)

De méme sin (w)/ 0
x t T—r~+00
Donc acos (z) + bsin(z) —— 0et a=b=0
T—+00

Donc :
o0 gin (t — x)
Vm>090(x):w(x):/ fdt
+00 gin (¢ +o0 t
Vo > 0 p(z) = cos (:U)/ smt() dt — sin (x)/ cost( ) dt
+00 gin (¢ ’ +00 gin (¢ *
cos (ZL')/ smt( ) dt — / smt( ) dt
T i} 0
+oo
Il reste a prouver : sin (a:)/ cost(t) dt — 0
x T—r
>0
+o0 t 1 t oo t
sin (x)/ cost( ) dt = sin (m)/ cost( ) dt + sin (m)/ cost( ) dt
T T 1
~+oo t
et sin (x)/ Cost( ) dt — 0
1 T—r
>0
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L cos
Il reste a prouver : sin (3:)/ t( ) dt — 0
x T—
x>0

1 1
Vz €]0; 1] [sin (x)/ cost(t) dt' = sin (x)/ cost(t) dt
L dt )
< sin(z) | — =—sin(z)ln(z) ~zln(x) — 0
x t z—0
x>0
e X 2020
+o00 e—xt
Pour tout > 0, on pose f(z) = /0 TIe dt.

1. Montrer que f est bien définie puis montrer que f est continue sur R..
Montrer que f est C? sur R% puis trouver une équation différentielle vérifiée par f.
00 gin (¢
/ () 4
0

r+1t

2. Pour tout x > 0, on pose g(x) =

Mémes question qu’en 1).

L ¢ gin (t)
3. Montrer que f = g et en déduire la valeur de / ; dt.
0
e Mines 20}0'2 -
F(z) = / S
0 t
1. Existence, continuité et caractere C! de F.
2. Calcul de F
Correction
1. — Domaine de définition
R% — R
Pour z € R soit f, . _ ¢ Sint
ta .
fz est prolongeable en une fonction continue sur R .
. 1

Siz >0, fz(t) = 0400 (t2)

Si z = 0, c’est une intégrale classique.

Siﬁ <50/:6

m+om 27 1 1
t)dt > S x e RkTHT/6) o % 00
/2k7r+7r/6 fo(t) dt 2 3 2 2km4+57/6 k—+oo +

On conclut classiquement.

— Continuité sur R*Jr

La continuité sur R4 est délicate et 'examinateur a demandé au candidat de
différer.

RY xRY — R
Soit ¢ sint
(m,t) > e P ——
— ¢ est continue par rapport & x.
— g est continue par rapport a t.
— L’hypothese de domination est vérifiée sur tout segment de R :
Soit [a;b] un segment de RY.
W(a,t) € a:b] x R} lg(a,t)] < e — |g(a, )|

avec |g(a,.)| continue, positive et intégrable sur R .

—at |Sint|
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On conclut avec le théoréme de continuité sous le signe / .

— Caractere C! sur R%
— g est ct par rapport a x et :

0
V(z,t) € RY xR} %(m,t) = —sinte
— g est continue et intégrable par rapport a .

0
99 est continue par rapport a t.

x
— L’hypothese de domination est vérifiée sur tout segment de R :
Soit [a;b] un segment de RY.

V(x,t) € [a;b] x RY %

(@) < e = olt)
avec ¢ continue, positive et intégrable sur RY .

ox

On conclut avec le théoréme de dérivation sous le signe / .

+o0o 400 ]
Ve >0F () = —/ sinte*dt = —Qm (/ o (@it dt)
0 0

-1 1
— Cx —
- Jm(a:—i)_ 1+ 22

On en déduit :
3C e Rtq Ve >0 F(z) = C — arctanx

— Pour tout t € R, g(x,1) P I(t)=0.

— Pour tout x € R, la fonction g(z,.) est continue par morceaux sur R .
— La fonction [ est continue (par morceaux) sur R .
— Hypothése de domination

vVt € R [sin (t)| < |¢| (accroissements finis)

Donc :

V(z,t) € [1;+0o[xRY |g(,1)] < e

avec t — e~ continue, positive et intégrable sur R*.
On en déduit : F(z) —— 0

T—+00

D’ou :
T 1
Ve >0 F(x) = 5 arctan () = arctan ()
x
. N . . [T sint T
Enfin, il reste & montrer que F' est continue sur R, pour obtenir / — t= 5
0

Pour cela on écrit :

. —(z—i)t
/sinte‘xt dt = QOm (/ e_(x_z)tdt) = -0Om <ex—z>

—xt

= 952_—|— 1%m ((x +1) e*(x*i)t) =
—xt

= 25 1(cost+xsint)

241

Sm ((m +1) eit>

10
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puis

1 int +o0 int
Vr>0F(z) = / e—ﬂ% dt +/ e‘“% dt
0 1

1 . —x +00 : —xt
B _psint e . 1 (cost +zsint)e
= /0 o ; dt+362_’_1((30514—:nsm1)+362_1_1/1 2

et sous cette forme on peut utiliser le théoreme de continuité sous le signe / .

e Centrale 2018
Soit P € C[X] de degré n > 2.
On suppose par 'absurde que P ne possede pas de racine dans C.
) 21 pn ein@
SOItF.T‘ER+HA W
1. Montrer que F est C' sur R,.

2. Montrer que F' est constante.
3. Conclure en regardant le comportement de F' en 0 et en +oc.

Correction
Ry x [0;27] = C
1. Soit f rh ein@
0) = ———
— f est C! par rapport & r : la justification essentielle est :
Y(r,0) € Ry x [0;27] P(re') # 0 car on a supposé que P n’a pas de racine.
af nrn—1 gind rn ei(n+1)9p/(r ei@)
V(r,0) e R 0; 27| = = — — :
(T, )6 + X [ ’ ﬂ] or (T7 ) P(re“’) P(rew)?
— f est C¥ et intégrable par rapport & @ sur [0;27] (pas de probléme on est sur un
segment)

— —— est continue par rapport a 6.

r
— L’hypotheése de domination est vérifiée sur tout segment de R :
Soit [a; b] un tel segment (0 < a < b)

8f nb"—l P,(T ei@)
5 ;2 e < ni— \' > /
Y 0) lastl szl 15,0 0)’ = |P(re?)]| " P(reif)2
1 ad
Les fonctions z — ——— et z ()

étant continues sur le disque fermé de

PG| | (=
centre 0 et de rayon b y sont bornées.
D’ou la domination :

(r,0) € [a;b] x [0; 27] ’; or .. 9)’ < Mynb™ + My

or
F est bien C! sur R,
2.
21 =1 gind 2r . ,r.eiGPl(,reiG)
Vr e Ry F = / %dQ—/ n-leind_— — 2 — /49
reRe Fr) o Plre?) 0 P(rcif)2

21 ppn—1 gind ) -1 2T 2 ) 1
— . do — n—1 _inf . :| / . n—1 _inf __d6
/0 P(rei) [r ¢ iP(re?) ], * o e iP(rei?)
21 1 ein@ o 2m ppn—1 ein@
= /0 Wd& — O(par périodicité) — /0 Wd@

= 0

11

dt
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3. F' étant constante sur Ry :
VreRy F(r)=F(0)=0 (n>0)
On note a,, le coefficient dominant de P.
2" 1
[ % —_—
P(Z) |z]=>+o0  Gp
Par conséquent :
n
I(M,R) € R%, x R% tq ¥z € C tq |2| >R‘ -

P02 <M

1
— Pour tout 6 € [0;27], f(r,0) . 1(0) = .

— Pour tout r € R4, la fonction f(r,.) est continue.
— La fonction [ est continue.
— Hypothése de domination
V(r,0) € [R; +o0[x[0;27] |f(r,0)| < M
avec 6 — M continue, poszitive et intégrable sur [0; 27].
T

On en déduit : F(r) —— —.
r—+00 Gy
On aboutit a une contradiction.
Donc P a au moins une racine dans C.
Le cas n = 1 étant trivial, on a démontré le théoréme de d’Alembert-Gauss.

e Soit f: R — R de classe C™.
R—R

Montrer que la fonction g ¢ x — M siz#0 estdeclasse C* sur R.
T

0+ f'(0)
Correction
1 x
Vz € R g(z) = 7/ F(b) dt
T Jo
1

1
= f/ fl(ru)rdu t=2zu
xJo
1
= / f/(zu) du
0
Cette expression est valable pour x = 0 donc :
1
Ve e Rg(x) = / f(zu) du
0

Pour tout n € N, soit P(n) : g est C" sur R et :
1
Vo e R g™ (z) = / ) () de
0

La propriété est vraie au rang 0 : la continuité de g est claire sur 'expression de dé-
part et on vient d’établir ’expression intégrale.

On suppose P(n) vraie.

Soit h Rx[0;1] = R
(x,t) — t"f("+1)(tm)

12
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— h est C! par rapport & o (f est Cl) et :
h
V(z,t) € R x [0;1] gx(x,t) = ¢+ (0 42) (1)
— Pour tout x € R, h(z,.) est continue et intégrable sur [0;1].

h
— Pour tout z € R, —(z,.) est continue sur [0; 1].

— L’hypothese de domination est vérifiée sur tout segment de R.
Soit [a;b] un segment de R et ¢ = max (|al, [b]).
f(+2) est continue sur [—¢; ¢] donc :
IM € Ry tq Wy € [~e;d |[fH(y)| < M

V(z,t) € [a;b] x [0;1] 'gh(:c,t) =1L f<n+2>(m)] <M (tz € [-¢;d])
x
avec t — M continue, positive et intégrable sur [0; 1].
Donc g™ est C! ie g est C"H! et :
1
Wz € R g (z) = g (2) = / £ 02 (1)
0

Donc P(n + 1) est vraie.
Donc P(n) est vraie pour tout n € N et g est C™.

2.7 Fonction Gamma d’Euler

Mines 2016
“+o00
I(z) = / e it*dt

Domaine de définition, continuité, dérivabilité et calcul de I'(n) pour n € N*.

Correction
e Domaine de définition
Soit z € R.
. R: — R
Soit f. {t el gt
fz est continue sur RY .
fz étant de signe constant :

+o0
['(z) est défini <= / f=(t) dt converge
0

“+o0o

= / f=(t) dt converge absolument
0

< f, est intégrable sur R’

t2f.(t) = t*1e™" ——— 0 donc f, est intégrable sur [1; +o0l.
t——400

De plus, fu(t) ~o t* 1 = ﬂ% donc :
[z intégrable sur [0;1] <=1 -z < 1 <=z > 0.
Finalement, le domaine de définition de I" est R7 .
e Une majoration auxiliaire
Soit = € [a; b].
Soit t € R*.
— Premier cas : t > 1.
Int >0donc alnt < zxlnt <blnt
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Donc t% < t% < b,
Donc t* < t* < max (t%,t?).
— Deuxiéme cas : t < 1.
Int <0Odoncalnt>zlnt>blnt
Donc t@ > t* > tb.
Donc t* < t% < max (t%,t%).
Dans les deux cas, on a donc % < max (t%,t%).
Enfin, % et t® étant positifs, max (¢, %) < t@ + t°.
e Caractére C*° de I
On va montrer :
La fonction I' d’Euler est de classe C* sur R’ avec :

“+00
Wk € Nz € R: T (z) = / (Int)k o1 et dt
0

Pour tout k € N, soit P(k) : I' est de classe C* sur RY et :
+oo

vz e R: T (z) = / (Int)k o1 et dt
0

La propriété est vraie au rang O :
R xR% — R
Soit f¢ T +
(:L', t) — tCE—l e—t — e—t+(£€—1) Int
R? - R
. N * . +
— f est continue par rapport a x ie pour tout t € R* | la fonction f(.,t) {:z g ot — ot
est continue.
. < R* I foncti R% — R
— f est continue par rapport a ¢ ie pour tout x € 1, la tonction f(x,.) b =1 gt — g—tH(e—1)nt

est continue.

— Hypothése de domination
Elle est vérifiée sur tout segment de R :
Soit [a;b] un segment de RY.

Via,t) € [ab] x B [fa,t)] = et = %t“’“ ot
% (t“ + tb) et
< f(CL?t) + f(bvt) = So(t)

IN

avec ¢ positive, continue et intégrable (d’apres le début de Iexercice) sur R .
On suppose la propriété vraie au rang k.

R* xR%* - R
Soit f4 e k 11
(z,t) — (Int)kt*~1e~t = (Int)k e~ tH@—1)Int
— fes ar rapport a x avec :
f est C' par rapport a
0
V(z,t) € R% x R% 8—f(:c,t) = (Int)Ftiz—let
x
— Pour tout x € R, la fonction f(x,.) est continue par morceaux et intégrable sur R
implicite dans I’hypothése de récurrence
implicite dans ’hypothese de ré

— Pour tout z € R* , la fonction —f(a;, .) est continue par morceaux sur R .

ox
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0
— Pour tout x € R, la fonction —f(w, .) est intégrable sur R : ce point ne figure

pas dans I’énoncé du théoréme du cours. Il est destiné a faciliter la rédaction de la

domination. 3

tan(g;,ft) = (Int)ktlgrtl et P 0 donc a—i(a}, .) est ;n;égrable sur [1;1—|—oo[.
1-z/29] _ k+1p2/2 —t €z o7 _

t o (x,t) = (Int)" ¥ =e Py 0 car 5 > 0 donc o (x,t) =0 (tl—x/Q) en 0.

0
1-— g < 1 donc 8—f(:1:, .) est intégrable sur ]0; 1].
x
— L’hypothese de domination est vérifiée sur tout segment de R :
Soit [a; b] un segment de R*.

k+1
V(z,t) € [a;b] x RYL gf(a:,t)‘ = |t/ Er et = hltt|tx e !
x
k+1
Ll (14 8) et
of of
< —_— —_— —
< ||+ [gen)| = e

avec  positive, continue et intégrable (d’apres le point précédent) sur R .
On en déduit que la propriété est vraie au rang k + 1.

e Calcul de I'(n)
Soit x € RY..
+o00o
L(z+1) = / tY et dt
0
On procede a une intégration par parties :
u(t) =%, u/(t) = at* !
V(t)=e L ot)=—et
u et v sont de classe C! sur R% et :
L’intégration par parties est justifiée et :

+o0
Mz+1) = $/ t*te7tdt = 2T (x)
0

Pour tout n € N*, soit :
n—1
P(n):Ve >0 (x+n)=T(z) H(:U—l—k)
k=0
P(1) est vraie d’apres ce qui précede.

On suppose P(n) vraie.
n

Ve >0 (xz+(n+1)) =T((x+n)+1) = (z+n)I'(z) = (x) H(w—i—k) d’apres I'hypothese
k=0
de récurrence.

Donc P(n + 1) est vraie.

On a donc :
n—1

Vo >0Vn e N*I(z+n) =T(z) [[(z+k)
k=0
En prenant x =1, on a :
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n—1

VneN*T(n+1)=0(1) [[(1+k) =TQ) [ =T1)n!
oo k=0 . =1
—t —t
I‘(l)z/o e dt:{—e }0 =1
Donc :
VneN*T'(n+1)=n!
ou encore :

Vn>2I'(n)=(n—1)!
Cette égalité est vraie pour n = 1 donc :

Vn e N*T'(n) = (n—1)!
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