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Exercice 1 (Banque CCP MP)

On considère la fonction F : x 7→
∫ +∞

0

e−2t

x+ t
dt.

1. Prouver que F est définie et continue sur ]0; +∞[.
2. Prouver que x 7−→ xF (x) admet une limite en +∞ et déterminer la valeur de cette limite.
3. Déterminer un équivalent, au voisinage de +∞, de F (x).

Correction

1. Notons f :


]0; +∞[×[0; +∞[ 7→ R

(x, t) 7→ e−2t

x+ t

(a) ∀x ∈]0; +∞[, t 7→ f(x, t) est continue par morceaux sur [0; +∞[.

(b) ∀t ∈
[
0; +∞

[
, x 7→ f(x, t) = e−2t

x+ t
est continue sur ]0; +∞[.

(c) Soit [a, b] un segment de ]0; +∞[.
∀x ∈ [a, b],∀t ∈

[
0; +∞

[
, |f(x, t)| ≤ 1

a
e−2t et ϕ : t 7→ 1

a
e−2t est continue par morceaux,

positive et intégrable sur [0; +∞[.
En effet, limt→+∞ t

2ϕ(t) = 0, donc ϕ(t) = o
t→+∞

( 1
t2

)
.

Donc ϕ est intégrable sur [1,+∞[, donc sur [0; +∞[.
On en déduit que, d’après le théorème de continuité des intégrales à paramètres, F : x 7→∫ +∞

0

e−2t

x+ t
dt est définie et continue sur ]0; +∞[.

2. ∀x ∈]0; +∞
[
, xF (x) =

∫ +∞

0

x

x+ t
e−2t dt .

Posons ∀x ∈]0; +∞
[
, ∀t ∈

[
0; +∞

[
, hx(t) = x

x+ t
e−2t .

i) ∀x ∈]0; +∞ [, t 7−→ hx(t) est continue par morceaux sur [0,+∞[.
ii) ∀t ∈

[
0; +∞

[
, limx→+∞ hx(t) = e−2t .
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La fonction h : t 7→ e−2t est continue par morceaux sur [0; +∞[.
iii) ∀x ∈]0; +∞

[
, ∀t ∈

[
0; +∞

[
, |hx(t)| ≤ e−2t et t 7→ e−2t est continue par morceaux, posi-

tive et intégrable sur[0; +∞[.
Donc, d’après l’extension du théorème de convergence dominée à (hx)x∈]0;+∞[,

lim
x→+∞

∫ +∞

0
hx(t)dt =

∫ +∞

0
h(t)dt =

∫ +∞

0
e−2t dt = 1

2.

Conclusion : limx→+∞ xF (x) = 1
2.

3. D’après 2., limx→+∞ xF (x) = 1
2, donc F (x) ∼

x→+∞

1
2x .

Exercice 2 (Banque CCP MP)

1. Démontrer que la fonction f : x 7−→
∫ +∞

0
e−t

2 cos (xt) dt est de classe C1 sur R.

2. (a) Trouver une équation différentielle linéaire (E) d’ordre 1 dont f est solution.
(b) Résoudre (E).

Correction
1. On pose ∀ (x, t) ∈ R× [0,+∞[, u(x, t) = e−t2 cos(xt).

i) ∀ x ∈ R, t 7−→ u(x, t) est continue sur [0,+∞[.
De plus, ∀ x ∈ R, |u(x, t)| ≤ e−t2 .
Or lim

t→+∞
t2e−t2 = 0, donc, au voisinage de +∞, e−t2 = o

( 1
t2

)
.

Donc, t 7−→ u(x, t) est intégrable sur [0,+∞[.
ii) ∀ (x, t) ∈ R× [0,+∞[, ∂u

∂x
(x, t) = −te−t2 sin(xt).

- ∀x ∈ R, t 7→ ∂u

∂x
(x, t) est continue par morceaux sur [0,+∞[. .

- ∀t ∈ [0,+∞], x 7→ ∂u

∂x
(x, t) est continue sur R .

-iii) ∀ (x, t) ∈ R × [0,+∞[,
∣∣∣∣∂u∂x(x, t)

∣∣∣∣ ≤ te−t2 = ϕ(t) avec ϕ continue par morceaux,
positive et intégrable sur [0,+∞[.
En effet, lim

t→+∞
t2ϕ(t) = 0 donc, au voisinage de +∞, ϕ(t) = o( 1

t2
).

On en déduit que ϕ est intégrable sur [1,+∞[ et comme elle est continue sur [0, 1[, alors
ϕ est bien intégrable sur [0,+∞[.
Donc f est de classe C1 sur R et :

∀ x ∈ R, f ′(x) =
∫ +∞

0
−te−t2 sin(xt)dt

2. (a) On a, ∀ x ∈ R, f ′(x) =
∫ +∞

0
−te−t2 sin(xt) dt.

Procédons à une intégration par parties. Soit A ≥ 0.∫ A

0
−te−t2 sin(xt) dt =

[1
2e−t2 sin(xt)

]A
0
−
∫ A

0

x

2 e−t2 cos(xt) dt

En passant à la limite quand A→ +∞, on obtient f ′(x) + x

2f(x) = 0.

Donc f est solution de l’équation différentielle (E) : y′ + x

2y = 0.
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(b) Les solutions de (E) sont les fonctions y définies par y(x) = Ae
−
x2

4 , avec A ∈ R.

Exercice 3 (Mines 2015)

f(x) =
∫ +∞

0

sin (tx)
t

e−t dt

1. Trouver le domaine de définition.
2. Montrer que que f est de classe C1.
3. Calculer f ′ et en déduire f .

Correction
1. On fixe x ∈ R.

Soit fx

R∗+ → R

t 7→ sin (tx)
t

e−t
.

• fx est continue sur R∗+.
• fx(t) −−→

t→0
x : fx est prolongeable par continuité en 0.

• fx(t) = o+∞( e−t)
Donc fx est intégrable sur R∗+.
Df = R

2. Soit g

R× R∗+ → R

(x, t) 7→ sin (tx)
t

e−t
.

• g est de classe C1 par rapport à x et :
∀(x, t) ∈ R× R∗+

∂g

∂x
(x, t) = cos (tx) e−t

• Pour tout x ∈ R, g(x, .) est continue et intégrable sur R∗+.

• Pour tout x ∈ R, ∂g
∂x

(x, .) est continue sur R∗+.
• Hypothèse de domination
∀(x, t) ∈ R× R∗+

∣∣∣∣∂g∂x(x, t)
∣∣∣∣ ≤ e−t

avec t 7→ e−t continue, positive et intégrable sur R∗+.
On en déduit que f est de classe C1 avec :
∀x ∈ R f ′(x) =

∫ +∞

0
cos (tx) e−t dt

∀x ∈ R f ′(x) = <e
(∫ +∞

0
e(−1+ix)t dt

)
= <e

( 1
1− ix

)
= 1

1 + x2

f(0) = 0 donc :
∀x ∈ R f(x) = arctan (x)

Exercice 4 (Mines 2019)

f(x) =
∫ 1

0

t− 1
ln (t) t

x dt
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1. Domaine de définition ?
2. lim

x→+∞
f(x) ?

3. Calcul de f(x) ?
Correction

1. Soit x ∈ R.

Soit gx


]0; 1[→ R

t 7→ t− 1
ln (t) t

x .

gx est continue sur ]0; 1[.
gx est prolongeable par continuité en 1, par gx(1) = 1
En effet, si on pose h = 1− t alors :
gx(t) = −h

ln (1− h)(1− h)x ∼ −h
−h

= 1

gx(t) ∼0 −
1

t−x ln (t)
Si x > −1 alors gx(t) = o0

( 1
t−x

)
avec −x < 1 donc gx est intégrable sur ]0; 1[ ou ]0; 1].

Si x = −1 alors gx(t) ∼0 −
1

t ln (t)

∀ε ∈]0; 1/2[
∫ 1/2

ε

dt
t ln (t) = [ln (|ln (t)|)]1/2

ε = ln (ln (2))− ln (|ln (ε)|) −−→
ε→0

−∞

Donc la fonction t 7→ 1
t ln (t) n’est pas intégrable sur

]
0; 1

2

]
.

Donc g−1 n’est pas intégrable sur
]
0; 1

2

]
.

g−1 étant positive sur ]0; 1[, il ne peut pas y avoir semi-convergence de l’intégrale.
Si x < −1 alors :
g−1(t)
gx(t) = t−1

tx
= t−(x+1) −−→

t→0
0 car −(x+ 1) > 0

Donc g−1(t) = o0(gx(t)).
Or g−1 n’est pas intégrable sur

]
0; 1

2

]
donc gx n’est pas intégrable sur

]
0; 1

2

]
.

gx étant positive sur ]0; 1[, il ne peut pas y avoir semi-convergence de l’intégrale.
Finalement :

D(f) =]− 1; +∞[

2. • Première méthode
La fonction g0 est prolongeable en une fonction continue sur [0; 1]. Elle est donc
bornée :
∃M ∈ R+ tq ∀t ∈]0; 1[ |g0(t)| = t− 1

ln (t) ≤M
On a alors :
∀x > 0 0 ≤ f(x) ≤M

∫ 1

0
tx dt = M

x+ 1
Et : lim

x→+∞
f(x) = 0

• Deuxième méthode

Soit g


]− 1; +∞[×]0; 1[→ R

(x, t) 7→ t− 1
ln (t) t

x .
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— ∀t ∈]0; 1[ g(x, t) −−−−→
x→+∞

l(t) = 0
— Pour tout x ∈]− 1; +∞[, la fonction g(x, .) est continue (par morceaux).
— La fonction l est continue par morceaux.
— Domination
∀(x, t) ∈ R+×]0; 1[ |g(x, t)| = t− 1

ln (t) t
x ≤ t− 1

ln (t) = |g(0, t)|

avec g(0, .) continue, positive et intégrable sur ]0; 1[.

D’après le théorème de la limite aux bornes, f(x) −−−−→
x→+∞

∫ 1

0
l(t) dt = 1

3. Soit g


]− 1; +∞[×]0; 1[→ R

(x, t) 7→ t− 1
ln (t) t

x .

• g est C1 par rapport à x avec :
∀(x, t) ∈]− 1; +∞[×]0; 1[ ∂g

∂x
(x, t) = (t− 1)tx

• Pour tout x > −1, la fonction g(x, .) est continue et intégrable sur ]0; 1[.
• Pour tout x > −1, la fonction ∂g

∂x
(x, .) est continue sur ]0; 1[.

• L’hypothèse de domination relative à ∂g

∂x
est vérifiée sur tout segment de ]− 1; +∞[ :

soit [a; b] un tel segment.
∀(x, t) ∈ [a; b]×]0; 1[

∣∣∣∣∂g∂x(x, t)
∣∣∣∣ ≤ 2ta

avec t 7→ 2ta continue, positive et intégrable sur ]0; 1[.
Donc f est C1 et :

∀x > −1 f ′(x) =
∫ 1

0
(t− 1)tx dt =

∫ 1

0

(
tx+1 − tx

)
dt = 1

x+ 2 −
1

x+ 1

f(x) = ln
(
x+ 2
x+ 1

)
+ Cte

La constante est nulle à cause de la question précédente.

Exercice 5 (Centrale 2017)

On étudie la fonction :
f(x) =

∫ π

0
ln (1− 2x cos t+ x2) dt

1. Montrer que f est définie sur R et qu’elle est paire.
2. Montrer :
∀x ∈ R f(x2) = 2f(x).

3. ?
La suite naturelle de l’exercice est d’obtenir une expression simple de f(x).

Correction
1. 1− 2x cos t+ x2 = (x− cos t)2 + sin2 t =

∣∣x− eit
∣∣2

Donc si x 6= ±1, il n’y a pas de problème : la fonction t 7→ ln (1− 2x cos t+ x2) est
continue sur [0;π].
Si x = 1 :

5
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1− 2x cos t+ x2 = 2(1− cos t)
L’intégrale est impropre à gauche et :
2(1− cos t) ∼0 t

2 puis ln (1− 2x cos t+ x2) ∼ 2 ln t (logarithme de deux infiniment petits
équivalents)
Si x = −1 :
1− 2x cos t+ x2 = 2(1 + cos t)
L’intégrale est impropre à droite et :
2(1 + cos (π − h)) = 2(1− cosh) ∼0 h

2 puis
ln (1− 2x cos t+ x2) ∼π 2 ln (π − t) = o

( 1√
π − t

)
On montre que f est paire au moyen du changement de variable s = π − t :

∀x ∈ R f(−x) =
∫ π

0
ln (1 + 2x cos t+ x2) dt =

∫ 0

π
ln (1− 2x cos (s) + x2)(−ds)

=
∫ π

0
ln (1− 2x cos s+ x2)ds = f(x)

2.

f(x2) = 2
∫ π

0
ln
(∣∣∣x2 − eit

∣∣∣) dt = 2
∫ π

0
ln
(∣∣∣(x− eit/2)(x+ eit/2)

∣∣∣) dt

= 2
∫ π

0

(
ln
(∣∣∣x− eit/2

∣∣∣)+ ln
(∣∣∣x+ eit/2

∣∣∣)) dt

= 2
∫ π

0
ln
(∣∣∣x− eit/2

∣∣∣) dt+ 2
∫ π

0
ln
(∣∣∣x+ eit/2

∣∣∣) dt

La séparation doit être justifiée dans le cas où x = ±1.
Si x = 1, seule la première intégrale est impropre et la situation est la suivante :
g = g1 + g2 avec

∫ π

0
g(t) dt et

∫ π

0
g2(t) dt qui convergent.

Donc
∫ π

0
g1(t) dt converge.

On raisonne de manière similaire lorsque x = −1.
On fait les changements de variables C1 strictement monotones s = t

2 et s = π − t

2.

f(x2) = 4
∫ π/2

0
ln
(∣∣∣x− eis

∣∣∣)ds + 4
∫ π/2

π
ln
(∣∣∣x− e−is

∣∣∣)(−ds)

= 4
∫ π/2

0
ln
(∣∣∣x− eis

∣∣∣)ds + 4
∫ π

π/2
ln
(∣∣∣x− e+is

∣∣∣)ds

= 4
∫ π/2

0
ln
(∣∣∣x− eis

∣∣∣)ds + 4
∫ π

π/2
ln
(∣∣∣x− eis

∣∣∣)ds

= 4
∫ π

0
ln
(∣∣∣x− eis

∣∣∣)ds = 2f(x)

3. f(0) = 0 est trivial sur la définition.
On déduit de ce qui précède f(1) = 0 puis f(−1) = 0 par parité.
Si x ∈]− 1; 1[, f

(
x2n) = 2nf(x) (récurrence)

On montre la continuité de f en 0 :

soit g


[
−1

2; 1
2

]
× [0;π]→ R

(x, t) 7→ ln (1− 2x cos t+ x2) = 2 ln
(∣∣x− eit

∣∣) .
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g est continue par rapport à x.
g est continue par rapport à t.
Domination
∀(x, t) ∈

[
−1

2; 1
2

]
× [0;π] 1 =

∣∣ eit∣∣ ≤ ∣∣ eit − x∣∣+ |x| ≤ ∣∣x− eit
∣∣+ 1

2
Donc :
∀(x, t) ∈

[
−1

2; 1
2

]
× [0;π] 1

2 ≤
∣∣x− eit

∣∣ ≤ |x|+ ∣∣ eit∣∣ ≤ 3
2 ≤ 2

Donc :
∀(x, t) ∈

[
−1

2; 1
2

]
× [0;π] − ln (2) ≤ ln

(∣∣x− eit
∣∣) ≤ ln (2)

et finalement :
∀(x, t) ∈

[
−1

2; 1
2

]
× [0;π] |f(x, t)| ≤ 2 ln (2)

avec t 7→ 2 ln (2) continue, positive et intégrable sur [0;π].
f est donc continue sur

[
−1

2; 1
2

]
.

On revient à x ∈]− 1; 1[.
La suite (2nf(x)) converge vers f(0) = 0 et f(x) = 0.
Si |x| > 1 :

0 = f

(1
x

)
=
∫ π

0
ln
(

1− 2 1
x

cos t+ 1
x2

)
dt

=
∫ π

0
ln (x2 − 2x cos t+ 1) dt− π ln (x2)

On en déduit f(x) = 2π ln (|x|).
Autre méthode pour le calcul de f(x)

Soit g
{

]1; +∞[×[0;π]→ R
(x, t) 7→ ln (1− 2x cos (t) + x2)

.

On commence par remarquer :
∀(x, t) ∈]1; +∞[×[0;π] 1− 2x cos (t) + x2 = (x− cos (t))2 + sin2 (t) ≥ (x− cos (t))2 > 0

• g est de classe C1 par rapport à x avec :
∀(x, t) ∈]1; +∞[×[0;π] ∂g

∂x
(x, t) = 2(x− cos (t))

1− 2x cos (t) + x2

• Pour tout x > 1, la fonction g(x, .) est continue et intégrable sur [0;π] (intégrable car
continue quand on travaille sur un segment).
• Pour tout x > 1, la fonction ∂g

∂x
(x, .) est continue sur [0;π].

• L’hypothèse de domination est vérifiée sur tout intervalle [a; +∞[ avec a > 1 :

∀(x, t) ∈ [a; +∞[×[0;π]
∣∣∣∣∂g∂x(x, t)

∣∣∣∣ ≤ 2 |x− cos (t)|
(x− cos (t))2 = 2

x− cos (t) ≤
2

a− 1
avec t 7→ 2

a− 1 continue, positive et intégrable sur [0;π].

7
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Donc f est de classe C1 sur ]1; +∞[ et :

∀x > 1 f ′(x) =
∫ π

0

2(x− cos (t))
1− 2x cos (t) + x2 dt =

∫ π

0

2x− eit − e−it

(x− eit)(x− e−it) dt

=
∫ π

0

( 1
x− eit + 1

x− e−it
)

dt = 1
x

∫ π

0

( 1
1− eit/x + 1

1− e−it/x

)
dt

= 1
x

∫ π

0

(+∞∑
n=0

(
eit

x

)n
+

+∞∑
n=0

(
e−it

x

)n)
dt car

∣∣∣∣∣ eit

x

∣∣∣∣∣ =
∣∣∣∣∣ e−it

x

∣∣∣∣∣ = 1
x
< 1

= 1
x

∫ π

0

+∞∑
n=0

eint + e−int

xn
dt = 2

x

+∞∑
n=0

∫ π

0

cos (nt)
xn

dt

On fixe x > 1.

Pour tout n ∈ N, soit fn

[0;π]→ R

t 7→ cos (nt)
xn

.

• Pour tout n ∈ N, fn est continue sur [0;π].
• La série de fonctions

∑
n≥1

fn converge uniformément sur [0;π].

En effet :
∀n ∈ N ∀t ∈ [0;π] |fn(t)| ≤ 1

xn
indépendant de t et terme général d’une série convergente

Donc la série de fonctions
∑
n≥1

fn converge normalement sur [0;π].

Donc la série de fonctions
∑
n≥1

fn converge uniformément sur [0;π].

On a donc :

f ′(x) = 2
x

+∞∑
n=0

1
xn

∫ π

0
cos (nt) dt

= 2
x

(∫ π

0
dt+

+∞∑
n=1

1
xn

[sin (nt)
n

]π
0

)

= 2π
x

On en déduit qu’il existe une constante C telle que :
∀x > 1 f(x) = 2π ln (x) + C

Mais :
∀x > 1 f(x)−2π ln (x) =

∫ π

0
ln (1− 2x cos (t) + x2) dt−

∫ π

0
ln (x2) dt =

∫ π

0
ln
(

1− 2
x

cos (t) + 1
x2

)
dt

On applique ensuite le théorème de la limite au bord.

Soit g


[0;π]→ R

(x, t) 7→ ln
(

1− 2
x

cos (t) + 1
x2

) .

• ∀t ∈ [0;π] g(x, t) −−−−→
x→+∞

l(t) = 0
• Pour tout x > 1, la fonction g(x, .) est continue sur [0;π].
• La fonction l est continue sur [0;π].
• Domination
∀(x, t) ∈]1; +∞[×[0;π] 1 − 2

x
+ 1
x2 =

(
1− 1

x

)2
≤ 1 − 2

x
cos (t) + 1

x2 ≤ 1 + 2
x

+ 1
x2 =

8
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(
1 + 1

x

)2

∀(x, t) ∈ [2; +∞[×[0;π]
(

1− 1
2

)2
= 1

4 ≤ 1− 2
x

cos (t) + 1
x2 ≤

(
1 + 1

2

)2
= 9

4
Donc :
∀(x, t) ∈ [2; +∞[×[0;π] − 2 ln (2) ≤ g(x, t) ≤ 2 ln (3)− 2 ln (2)
Donc :
∀(x, t) ∈ [2; +∞[×[0;π] |g(x, t)| ≤ max (2 ln (2), 2 ln (3)− 2 ln (2)) = M une constante.
avec t 7→M continue, positive et intégrable sur [0;π].

Donc f(x)− 2π ln (x) −−−−→
x→+∞

0 et C = 0.
On a donc prouvé :
∀x > 1

∫ π

0
ln (1− 2x cos (t) + x2) dt = 2π ln (x)

Exercice 6 (Mines 2016)

Etude de f(x) =
∫ π

0

ln (1 + x cos t)
cos t dt.

Correction
La fonction t 7→ 1

cos t n’est pas défini en π

2 : c’est un problème inhabituel.

A x fixé : ln (1 + x cos t) ∼π/2 x cos t donc la fonction t 7→ ln (1 + x cos t)
cos t est prolongeable en

une fonction continue au voisinage de π2 .
f(0) = 0 ne pose pas de problème de définition.
Soit x ∈ R∗.
Lorsque t décrit ]0;π[, 1 + x cos t décrit ]1− |x| ; 1 + |x| [.
Si |x| > 1, f(x) n’est pas défini : la question de l’intégrabilité ne se pose même pas.
Supposons |x| < 1.

La fonction t 7→ ln (1 + x cos t)
cos t est continue sur [0;π] (après le prolongement en π/2 bien sûr)

donc f(x) est bien défini.
Supposons x = −1.
f(−1) est défini par une intégrale impropre à gauche.

En 0, 1− cos t ∼ t2

2 et c’est un infiniment petit donc :
ln (1− cos t)

cos t ∼0 2 ln t

On en déduit que t 7→ ln (1− cos t)
cos t est intégrable sur ]0;π].

Le changement de variable y = π− t C1 strictement décroissant transforme
∫ π

0

ln (1 + x cos t)
cos t dt

en −
∫ π

0

ln (1− x cos y)
cos y dy.

Finalement, f est définie sur [−1; 1] et c’est une fonction impaire.

Appliquer les théorèmes du cours va poser problème à cause de π2 .
La relation de Chasles et le changement de variable y = π − t permettent d’établir :

∀x ∈ [−1; 1] f(x) =
∫ π/2

0

ln (1 + x cos t)
cos t dt−

∫ π/2

0

ln (1− x cos t)
cos t dt = g(x)− g(−x)

9
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Soit h

[−1; 1]×]0;π/2[→ R

(x, t) 7→ ln (1 + x cos t)
cos t

.

• h est continue par rapport à x.
• h est continue par rapport à t.
• L’hypothèse de domination est vérifiée :
∀(x, t) ∈ [−1; 1]×]0;π/2[ 0 < 1 − cos t ≤ 1 + x cos t ≤ 1 + cos t (cos t est positif sur
l’intervalle considéré)
D’où :

∀(x, t) ∈ [−1; 1]×]0;π/2[ |h(t)| ≤ max (|ln (1− cos t)| , ln (1 + cos t))
cos t

≤ |ln (1− cos t)|+ ln (1 + cos t)
cos t

D’après le début de l’exercice, t 7→ ln (1− cos t)
cos t est intégrable sur

[
0; π2

[
et t 7→ ln (1 + cos t)

cos t
est prolongeable en une fonction continue sur

[
0; π2

]
.

Donc t 7→ |ln (1− cos t)|+ ln (1 + cos t)
cos t est continue, positive et intégrable sur

[
0; π2

[
.

Donc g est continue sur [−1; 1].
De même f par composition et opérations algébriques.

Soit h

]− 1; 1[×[0;π/2[→ R

(x, t) 7→ ln (1 + x cos t)
cos t

.

• h est C1 par rapport à x avec :
∀(x, t) ∈]− 1; 1[×[0;π/2[ ∂h

∂x
(x, t) = 1

1 + x cos t
• h est continue et intégrable par rapport à t.
• ∂h

∂x
est continue par rapport à t.

• L’hypothèse de domination est vérifiée sur tout segment de ]− 1; 1[ :
Soit [a; b] un segment contenu dans ]− 1; 1[ (−1 < a < b < 1).
∀(x, t) ∈ [a; b]× [0;π/2[

∣∣∣∣∂h∂x(x, t)
∣∣∣∣ = 1

1 + x cos t ≤
1

1 + a cos t
avec t 7→ 1

1 + a cos t continue, positive et intégrable sur
[
0; π2

[
(car prolongeable en une

fonction continue sur le segment)
Donc g est C1 sur ]− 1; 1[.
Donc f est C1 sur ]− 1; 1[ avec :

10
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∀x ∈]− 1; 1[ f ′(x) = g′(x) + g′(−x).

∀x ∈]− 1; 1[ g′(x) =
∫ π/2

0

dt
1 + x cos t

=
∫ 1

0

1
1 + x1−y2

1+y2

2 dy
1 + y2 changement de variable y = tan (t/2)

= 2
∫ 1

0

dy
1 + y2 + x(1− y2) = 2

∫ 1

0

dy
1 + x+ (1− x)y2

= 2
1− x

∫ 1

0

dy
y2 + 1+x

1−x
= 2

1− x

√
1− x
1 + x

[
arctan

(
y

√
1− x
1 + x

)]1

0

= 2√
1− x2

arctan
(√

1− x
1 + x

)

On en déduit :

∀x ∈]− 1; 1[ f ′(x) = g′(x) + g′(−x) = 2√
1− x2

arctan
(√

1− x
1 + x

)
+ 2√

1− x2
arctan

(√
1 + x

1− x

)

= 2√
1− x2

(
arctan

(√
1− x
1 + x

)
+ arctan

(√
1 + x

1− x

))
= 2√

1− x2
π

2

= π√
1− x2

Compte tenu de f(0) = 0 et de la continuité de f sur le segment :

∀x ∈ [−1; 1]
∫ π

0

ln (1 + x cos t)
cos t dt = π arcsin (x)

Variante

Exercice 7 (X 2021)

f(a) =
∫ π

0

ln (1 + a cos t)
cos t dt

1. f(a) est-elle définie pour tout a ∈ [0; 1[ ?
2. Exprimer f(a) en fonction de a.

Exercice 8 (Mines 2015)

f(x) =
∫ +∞

0

arctan (xt)
t(1 + t2) dt

1. Montrer que f est continue.
2. Montrer que f est de classe C1.
3. Exprimer f(x) en fonction de x.

Remarque
Cet exercice a été posé à l’X en 2019 avec une seule question : calcul de f(x).
Correction

11
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1. Soit g


R× R∗+ → R

(x, t) 7→ arctan (xt)
t(1 + t2)

• g est continue par rapport à x.
• g est continue par rapport à t.
• Hypothèse de domination
On remarque que :
∀y ∈ R |arctan y| ≤ |y| (A.F.)
L’hypothèse de domination est donc vérifiée sur tout segment [−a; a] avec a ∈ R∗+ :

∀(x, t) ∈ [−a; a]× R∗+ |g(x, t)| ≤ t |x|
t(1 + t2) = |x|

1 + t2
≤ a

1 + t2
= ϕ(t)

avec ϕ continue, positive et intégrable sur R∗+.
On en déduit que f est continue sur [−a; a] pour tout a > 0.
On en déduit que f est continue sur R.

2. Soit g


R× R∗+ → R

(x, t) 7→ arctan (xt)
t(1 + t2)

• g est de classe C1 par rapport à x.
∀(x, t) ∈ R× R∗+

∂g

∂x
(x, t) = 1

(1 + t2)(1 + x2t2)
• Pour tout x ∈ R, g(x, .) est continue et intégrale sur R∗+ (cf la domination dans la
question précédente).
• Pour tout x ∈ R, ∂g

∂x
(x, .) est continue sur R∗+.

• Hypothèse de domination
∀(x, t) ∈ R× R∗+

∣∣∣∣∂g∂x(x, t)
∣∣∣∣ ≤ 1

1 + t2
= ϕ(t)

avec ϕ continue, positive et intégrable sur R∗+.
On en déduit que f est de classe C1 sur R avec :
∀x ∈ R f ′(x) =

∫ +∞

0

dt
(1 + t2)(1 + x2t2)

3. Pour x 6= −1, 0, 1, on a :
1

(1 + t2)(1 + x2t2) = at+ b

1 + t2
+ ct+ d

1 + x2t2

La parité donne : a = c = 0.
On multiplie par 1 + t2 et on remplace t par i : b = 1

1− x2 .

On multiplie par 1 + t2x2 et on remplace t par i

x
: d = x2

x2 − 1.

∀x ∈ R f ′(x) = 1
1− x2

∫ +∞

0

(
1

1 + t2
− x2

1 + x2t2

)
dt

= 1
1− x2 [arctan t− x arctan (xt)]+∞0

∀x ∈ R∗+ \ {1} f ′(x) = π

2
1− x
1− x2 = π

2(1 + x)
Par continuité de f ′ et parité :
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∀x ∈ R f ′(x) = π

2(1 + |x|)

∀x ∈ R+ f(x) = f(0) +
∫ x

0

π

2(1 + t) dt = π

2 ln (1 + x)

∀x ∈ R− f(x) = −f(−x) = −π2 ln (1− x)

Exercice 9 (Mines 2022)

Soit F : x 7→
∫ +∞

0
e−t2 sin (tx) dt.

1. Soit In =
∫ +∞

0
t2n+1 e−t2 dt.

Montrer que In est bien définie et déterminer sa valeur.
2. Développer F en série entière.
3. Trouver une équation différentielle dont F est solution et en déduire une expression

simplifiée de F .
Correction

1. Pour tout n ∈ N, fn

{
R+ → R
t 7→ t2n+1 e−t2

est continue sur R+ et :

t2fn(t) = t2n+3 e−t2 −−−−−→
n→+∞

0
Donc, pour tout n ∈ N, fn est intégrable sur R+ et In est bien définie.

Soit n ∈ N.
In+1 =

∫ +∞

0
t2n+3 e−t2 dt =

∫ +∞

0
t2n+2 t e−t2 dt

u(t) = t2n+2, u′(t) = (2n+ 2)t2n+1

v′(t) = t e−t2 , v(t) = −1
2 e−t2

u et v sont de classe C1 sur R+ et u(t)v(t) = −1
2 t

2n+2 e−t2 −−−−→
t→+∞

0.
L’intégration par parties est justifiée.
Comme u(0)v(0) = 0, on a directement :

In+1 = 2n+ 2
2

∫ +∞

0
t2n+1 e−t2 dt = (n+ 1)In

Une récurrence immédiate donne :
∀n ∈ N In = n!I1

I1 =
∫ +∞

0
t e−t2 dt =

[
−1

2 e−t2
]+∞

0
= 1

2
On en déduit :
∀n ∈ N In = n!

2

2. ∀x ∈ R F (x) =
∫ +∞

0

+∞∑
n=0

(−1)nx2n+1t2n+1 e−t2

(2n+ 1)! dt.

On fixe x ∈ R.

Pour tout n ∈ N, soit fn


R+ → R

t 7→ (−1)nx2n+1t2n+1 e−t2

(2n+ 1)!
• Pour tout n ∈ N, fn est continue et intégrable sur R+.
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• La série de fonctions
∑
n≥0

fn converge simplement sur R+.

• La fonction
+∞∑
n=0

fn

{
R+ → R
t 7→ e−t2 sin (tx)

est continue sur R+

• La série
∑
n≥0

∫ +∞

0
|fn(t)| dt converge :

∀n ∈ N
∫ +∞

0
|fn(t)| dt = |x|2n+1

(2n+ 1)!

∫ +∞

0
t2n+1 e−t2 dt = |x|2n+1

(2n+ 1)!In noté un
Le cas x = 0 est clair. Dans le cas x 6= 0, un > 0 et :
un+1
un

= |x|
2n+3 In+1

(2n+ 3)! ×
(2n+ 1)!
|x|2n+1 In

= (n+ 1)x2

(2n+ 2)(2n+ 3) = x2

2(2n+ 3) −−−−−→n→+∞
0 < 1

D’après la règle de d’Alembert, la série de terme général
∫ +∞

0
|fn(t)| dt converge.

D’après le théorème N1 :

∀x ∈ R F (x) =
+∞∑
n=0

(−1)nx2n+1 In
(2n+ 1)!

La fonction F est donc développable en série entière sur R.

3. Soit f
{
R× R+

(x, t) 7→ e−t2 sin (tx)
.

• f est C1 par rapport à x avec :
∀(x, t) ∈ R× R+

∂f

∂x
(x, t) = t e−t2 cos (tx)

• Pour tout x ∈ R, la fonction f(x, .) est continue et intégrable sur R+ (f(x, t) =
Ot→+∞

(
e−t2

)
)

• Pour tout x ∈ R, la fonction ∂f

∂x
(x, .) est continue sur R+

• Hypothèse de domination
∀(x, t) ∈ R× R+

∣∣∣∣∂f∂x (x, t) = t e−t2
∣∣∣∣ ≤ t e−t2 = φ(t)

avec φ continue, positive et intégrable sur R+ (t2φ(t) −−−−→
t→+∞

0)
Donc F est de classe C1 sur R et :

∀x ∈ R F ′(x) =
∫ +∞

0
t e−t2 cos (tx) dt

=
[
− e−t2

2 cos (tx)
]+∞

0
−
∫ +∞

0

− e−t2

2 (−x sin (tx)) dt

IPP facile à justifier

= 1
2 −

x

2F (x)

La solution générale de l’équation homogène associée est y = C e−x2/4.
La variation de la constante donne C ′(x) e−x2/4 = 1

2.
Par conséquent :
∃C ∈ R tq ∀x ∈ R F (x) = 1

2 e−x2/4
∫ x

0
et2/4 dt+ C ex2/4

Mais F (0) = 0 donc :
∀x ∈ R F (x) = 1

2 e−x2/4
∫ x

0
et2/4 dt
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