TP3: Synthère, Analyse of an complexe

Onvoiet synthetise le complexe (C(C2O4)) y

gu'on obteint via le sel KW (Ce(C2O4)), 2 M2O

L'objectif est de déterminer W, y, 2

On a cleanc Roscein de 3 relations.

- Une grave à l'électrorentralité: W + 2 2y = 0
- On va enseite closer le nombre d'ions cu²⁺ peux axabete deens le complexe ce qui permettra d'avair accès ai y.

On commitmalen Wet y.

On en décluit Z grâce à la masse molaire du cumplexe qu'en vertient acc M = mperie M cu²t, titrée

Analyx préliminaire du complexe: Céconétrie passières. Le lijent excelate étant bilentate et un complexe cen plus coctaéolique, con en cléchuit géannetrie tétroréchique au plan rancé géametrie octarilique.

Synthère du complexe

Q1)

mol

lom

Equations de mire en salution:

$$K_{2}C_{2}O_{4}, H_{2}O = 2K^{+} + C_{2}G_{4}^{2-} + H_{2}O$$

$$9, 6 \times 10^{-2}$$
 $1, 0, 10^{-1}$
 $0, 6 \times 10^{-2}$

Formalian du complexe.

Q2)

On love à l'on distillé, salvent polaire son éliminer les ions K^t, SUL²⁻, C2OL²en excès.

L'ear ent glacée pour éviter de clinoudre le complexe blocage cinétique

32.1. Etalonnage de la solution de thiosulfate <u>Le sordium</u>

$$10_{3(q)} + 5I_{(q)} + 6H_{(qq)} = 3I_{2(q)} + 3H_{2}0(e)$$

C'est une réaction d'oxydoréduction et nême une média mutation (IO, d.o.=+V, Id.o.=-I

→ I₂ d.o=+0) 4. Réaction de litrage:

$$I_2 + 2 S_2 O_3^{2-} \rightarrow 2I^- + S_4 O_6^{2-}$$

A
$$\ell'$$
 équilibre, $n(S_2O_3^{2-}) = n(I_2)$

On
$$(I_2) = 3n(IO_3)$$
 ar lare est totale
(2) $C_{520_3^{-2}} \times \frac{\text{Veg}}{2} = 3 \times \frac{m(\text{KIO}_3)}{\Pi(\text{KIO}_3)}$

(e)
$$C_{5_20_3^{-2}} \times \frac{V_{eg}}{2} = 3 \times \frac{m(KIO_3)}{\Pi(KIO_3)}$$

$$\frac{AN}{C} = \frac{C}{S_2O_3^{2-}} = 0,052 \text{ mol } L^{-1}$$

Titrage icon oxolate

C'est ce que l'on a fait précédemment pour vérifier la concentration de S2O32-

Un étalon primaire est un solicle car on peut le perer avec une grande précision et cleare connaître son quantitée de matière avec grande précision.

On se place en milieu a cicle pour pouvoir dissoudre le

2H+ Kw Cu (C2O4)g, 12Oz = WK + gH2C2O4 + Cu+zH2O

On titre over l'oxydeent MnOg.

le réducteur acide oxalique (l'acide de la tomate).

Equation redox de titrage

Demi - Equation
$$5e + M_{M}O_{4} + 8H^{+} = M_{M}^{2+} + 4 H_{2}O$$

$$H_{2}C_{2}O_{4} = 2CO_{2} + 2H^{+} + 2e$$

2 Mm On + 6H + 5H2 (204=10002 + 2Mm + 8H20, K=10 332 = 10

Titray ion cerivre

On va procéder vier un tirage indirect.

On met I en exan via KI qui va farmer

arc le Cer CuI relean une réaction quantitetive

On titre ensuite avec le thiosulfate I 2 fermé

pour rementer à Cur

Min en solution:
$$K I_{(n)} = K_{eq} + I_{eq}$$

mol 3.10
 0
 3.10^2
 3.10^2

Réaction nicles centre

Demi équation

$$\frac{2+}{2}\frac{-}{4}\frac{-}{1} = 2 \cos x + 4 \sin x + 1 \cos x + 1 \cos$$

Cerne I est en exès Iz est rous forme Iz en réalité le complexe rend soluble 12 qui est apolaire aprotique

On agente le thiorselfate pour lever I2

réaction de titrage

Demi-cjuation

$$2S_2O_3 = S_4O_6 + 2e$$

$$2S_2O_3 + I_2 = 2I + S_4O_6$$
, $K = 10$

$$\Rightarrow M\omega^{2+} = CVE$$

$$M\omega^{2+} = 2.1.10^{3} \text{ mol}$$

Explicitation des misures

Il faut raisonner sur la mise en solution du solide

WK + g C2Oh + Ch + ZH2O = Kw Ch (C2Oh)g, H2O2

D'après c'équation de formation de complexe,

Poem 1 Cu 24 commené, y jours coxalates scent comamér

 $\frac{\mathcal{M}(OX)}{\mathcal{M}(\omega^{24})} = g = \frac{2 \text{ cf tableau d'avancement ci-dessus}}{2}$

On en décluit v grave à l'électronentrolité:

 $W + 2 - 2y = 0 \implies W = 2$

Pour z, con colcule Manplexe = Mountere = 338g.mol

On risent:

WM(K) + M(Cu) + yM(Coo) + ZM(H2O) = Manglexe

On obtaint \Longrightarrow Z = 2 on Z=1