PC Balzac 2024-25

Programme de colles – Semaine 18 – du 10/03 au 14/03

Endomorphismes des espaces euclidiens

— Endomorphisme autoadjoint d'un espace euclidien. Caractérisation des projecteurs orthogonaux. Caractérisation d'un endomorphisme autoadjoint à l'aide de sa matrice dans une base orthonormée. Théorème spectral (admis). Forme matricielle du théorème spectral. Endomorphisme autoadjoint positif, défini positif. Caractérisation spectrale. Matrice symétrique positive, définie positive. Caractérisation spectrale.

Espaces vectoriels normés

— Normes

- Norme sur un espace vectoriel réel ou complexe. Espace vectoriel normé. Distance associée à une norme.
- Normes usuelles $\| \|_1$, $\| \|_2$ et $\| \|_{\infty}$ sur \mathbb{K}^n . Norme associée à un produit scalaire sur un espace préhilbertien réel. Norme $\| \|_{\infty}$ sur un espace de fonctions bornées à valeurs dans \mathbb{K} .
- Boule ouverte, boule fermée, sphère.
- Partie convexe. Convexité des boules.
- Partie bornée, suite bornée, fonction bornée.
- Suites d'éléments d'un espace vectoriel normé
 - Convergence et divergence d'une suite. Unicité de la limite. Opérations sur les limites. Une suite convergente est bornée. Toute suite extraite d'une suite convergente est convergente.

— Comparaison des normes

- Normes équivalentes. Invariance du caractère borné, de la convergence d'une suite.
- Utilisation de suites pour montrer que deux normes ne sont pas équivalentes.

— Topologie d'un espace vectoriel normé

- Point intérieur à une partie. Ouvert d'un espace normé. Une boule ouverte est un ouvert. Stabilité par réunion quelconque, par intersection finie.
- Fermé d'un espace normé. Caractérisation séquentielle. Une boule fermée, une sphère, sont des fermés. Stabilité par réunion finie, par intersection quelconque.
- Point adhérent à une partie, adhérence. Caractérisation séquentielle.
- Partie dense.
- Invariance des notions topologiques par passage à une norme équivalente.

- Limite et continuité en un point
 - Limite d'une fonction en un point adhérent à son domaine de définition. Caractérisation séquentielle.
 - Opérations algébriques sur les limites, composition.
 - Continuité en un point. Caractérisation séquentielle.
- Continuité sur une partie
 - Opérations algébriques, composition.
 - Image réciproque d'un ouvert, d'un fermé par une application continue.
 - Si f est une application continue de E dans \mathbb{R} alors l'ensemble défini par f(x) > 0 est un ouvert et les ensembles définis par f(x) = 0 ou $f(x) \ge 0$ sont des fermés.
 - Fonction lipschitzienne. Toute fonction lipschitzienne est continue.
- Espaces vectoriels normés de dimension finie
 - Équivalence des normes en dimension finie (admis)
 - La convergence d'une suite (ou l'existence de la limite d'une fonction) à valeurs dans un espace vectoriel normé de dimension finie équivaut à celle de chacune de ses coordonnées dans une base.
 - Théorème des bornes atteintes (admis).
 - Continuité des applications linéaires, multilinéaires et polynomiales. Exemples du déterminant, du produit matriciel.

Calcul différentiel

- Dérivabilité des fonctions vectorielles
 - Dérivabilité en un point. Dérivabilité sur un intervalle. Définition par le taux d'accroissement, caractérisation par le développement limité d'ordre un. Traduction par les coordonnées dans la base canonique. Interprétation cinématique.
 - Combinaison linéaire de fonctions dérivables. Dérivée de L(f), où L est linéaire et f à valeurs dans \mathbb{R}^n .
 - Dérivée de B(f,g), où B est bilinéaire, de $M(f_1,\ldots,f_p)$, où M est p-linéaire, et f,g,f_1,\ldots,f_p à valeurs vectorielles. Application au produit scalaire et au déterminant. Dérivée de $f \circ \varphi$ où φ est à valeurs réelles et f à valeurs vectorielles.
 - Fonction de classe \mathcal{C}^k , de classe \mathcal{C}^{∞} sur un intervalle.