S

RÉPONSES

L'arc-en-ciel

- 1. Lois de Snell-Descartes
- **2.** Différenciation de la relation précédente et identité trigonométrique $\cos \theta = \sqrt{1 \sin^2 \theta}$:

$$\frac{\mathrm{d}r}{\mathrm{d}i} = \sqrt{\frac{1 - \sin^2 i}{n^2 - \sin^2 i}}$$

3. Premier cas.

a.
$$\alpha$$
 = r et β = i .

b.
$$D_1 = i - r + i - r = 2(i - r)$$
.

c. Condition d'émergence d'un faisceau parallèle :

$$\frac{\mathrm{d}D_1}{\mathrm{d}i} = 0 \Leftrightarrow \frac{\mathrm{d}r}{\mathrm{d}i} = 1$$

Cela impose n = 1. Commentaire.

3. Deuxième cas.

a.
$$\alpha = \beta = \gamma = r$$
 et $\delta = i$.

b.
$$D_2 = 2(i-r) + \pi - 2r = \pi + 2i - 4r$$
.

c. Condition d'émergence d'un faisceau parallèle :

$$\frac{\mathrm{d}D_2}{\mathrm{d}i} = 0 \Leftrightarrow \frac{\mathrm{d}r}{\mathrm{d}i} = \frac{1}{2}$$

Cela impose:

$$\sin^2 i = \frac{4 - n^2}{3}$$

3. Troisième cas.

a.
$$\varphi = \delta = \gamma = \beta = r$$
 et $\xi = i$.

b.
$$D_3 = 2(i-r) + 2(\pi - 2r) = 2i - 6r$$
.

c. Condition d'émergence d'un faisceau parallèle :

$$\frac{\mathrm{d}D_3}{\mathrm{d}i} = 0 \Leftrightarrow 2 - 6\frac{\mathrm{d}r}{\mathrm{d}i} = 0 \Leftrightarrow \frac{\mathrm{d}r}{\mathrm{d}i} = \frac{1}{3}$$

Cela impose:

$$\sin^2 i = \frac{9 - n^2}{8}$$

- 4. La personne ne verra la lumière émergente que si la condition d'émergence d'un faisceau parallèle est vérifiée. Schéma. On voit $\theta_2 = \pi - D_2$ et $\theta_3 = D_3 - \pi$. Commentaire sur la forme conique.
- **5.** Les angles θ_2 et θ_3 s'obtiennent à partir des angles de déviations D_2 et D_3 , eux-mêmes dépendant de i et r. L'angle r se calcule à partir de la troisième loi de Snell-Descartes : $r = \arcsin(\sin i/n)$. L'angle d'incidence dépend de la configuration :

- réflexion simple : $i = \arcsin(\sqrt{(4-n^2)/3})$; - réflexion double : $i = \arcsin(\sqrt{(9-n^2)/8})$.

Faire les applications numériques sous forme d'un tableau clair, par exemple :

Angle (°)	i_2	r_2	D_2	θ_2	i_3	r_3	D_3	θ_3
Violet $(n = 1, 3448)$								
Rouge $(n = 1, 3317)$								

- 6. Dessin soigné. Commentaire.
- 7. La réflexion au niveau d'un dioptre ne correspond qu'à une faible proportion de l'intensité lumineuse du rayon incident. Commentaire sur l'aspect visuel des arcs primaire et secondaire.
- **8.** En introduisant d comme la distance entre l'observateur et le rideau de pluie, et h l'altitude d'une goutte, exprimer θ . Réaliser les applications numériques sous forme d'un tableau clair, par exemple :

d	500 m	1 000 m
$h_{\text{violet}}^{\text{secondaire}}$		
$h_{\text{rouge}}^{\text{secondaire}}$		
$h_{\text{rouge}}^{\text{primaire}}$		
$h_{\text{violet}}^{\text{primaire}}$		

Bonus. Une différence de direction est d'autant plus perceptible qu'elle est considérée à grande distance... commentaire?