Programme de colles mathématiques PC Semaine 11 du 1/12 au 5/12

1 Espaces vectoriels normés

Définition d'une norme, d'une distance. Parties, suites et fonctions bornées. Normes équivalentes. Parties convexes. Suites convergentes. Ouverts et fermés.

• Si $f: E \to \mathbb{R}$ est continue, démonstration de ce que $\{x \in E, f(x) > 0\}$ est un ouvert de E.

2 Suites définies par une relation de récurrence

Révisions de première année : suites arithmétiques et géométriques, sommes finies, suites récurrentes linéaires d'ordre 2, étude de suites définies par une relation de récurrence $u_{n+1} = f(u_n)$ lorsque f est croissante sur I stable, décroissante sur I stable.

- Calcul de $\sum_{k=n}^{p} u_k$ sachant (u_n) géométrique de raison ρ (formule et démonstration, bien sûr, on n'oublie pas de discuter sur ρ)
- Base de l'ensemble des solutions de $u_{n+2} = a u_{n+1} + b u_n$ selon les racines de l'équation caractéristique dans \mathbb{K} .

3 Séries de fonctions

Modes de convergence d'une série de fonctions (simple, uniforme, normale). Régularité de la limite d'une série de fonction (continuité, caractère \mathcal{C}^1 et \mathcal{C}^k). Lien avec l'intégration.

- Démonstration de ce que la convergence normale entraîne la convergence simple et uniforme (P.3)
- Enoncé des théorèmes de dérivation (cas \mathcal{C}^1 et \mathcal{C}^k) des séries de fonctions
- Enoncé de conditions suffisantes à ce que $\int_I \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_I f_n$ (trois réponses attendues : voir la feuille des questions de cours sur les séries de fonctions si nécessaire. On énonce chacun des trois théorèmes avec précision.)