RÉDUCTION.

1. Éléments propres (pour un endomorphisme en dim finie ou infinie, pour une matrice carrée) : valeur propre, vecteur propre, sous-espace propre, spectre.

Exemples à connaître : homothéties, projecteurs, symétries (spectre et sev propres); matrices diagonales ou triangulaires (les valeurs propres sont les coefficients diagonaux).

2. Propriétés

- 0 est valeur propre de f si et seulement si f est non injectif (non bijectif en dim finie)
- Lien entre valeurs propres de f et de f^{-1} (si f bijectif), ou de $af + bId_E$ (avec $a \neq 0$), ou de f^k $(k \in \mathbb{N})$, ou de P(f) $(P \in \mathbb{K}[X])$. Comparaison des sous-espaces propres dans ces deux cas.
- Si P est un polynôme annulateur de f, alors toute valeur propre de f est racine de $P:|\operatorname{Sp}(f)\subset\operatorname{Rac}(P)|$
- $x \neq 0$ est un vecteur propre de f ssi Vect(x) est stable par f.
- Si $g \circ f = f \circ g$, tout sous-espace propre de l'un est stable par l'autre. En particulier tout sev propre de f est stable par f, l'endomorphisme de $E_{\lambda}(f)$ induit par f est $\lambda \operatorname{Id}_{E_{\lambda}}$.
- p vecteurs propres associés à p valeurs propres distinctes forment une famille libre. p sous-espaces propres associés à p valeurs propres distinctes sont en somme directe. Le lemme de décomposition des noyaux est hors programme. En dimension n, un endomorphisme admet au plus n valeurs propres distinctes.

3. Polynôme caractéristique

En dimension $n: \chi_f(x) = \det(x \operatorname{Id}_E - f)$ est de degré n, unitaire (coefficient dominant 1), de coefficient constant $(-1)^n \det(f)$. Le coefficient de x^{n-1} est $-\operatorname{tr}(f)$. Analogue pour une matrice.

- Les valeurs propres sont les racines du polynôme caractéristique. Multiplicité.
- Pour $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$, avec $A \in \mathcal{M}_p(K)$ et $C \in \mathcal{M}_{n-p}(K)$, $\chi_M = \chi_A \times \chi_C$.
- Si $\lambda \in \operatorname{Sp}(f)$, d'ordre de multiplicité m_{λ} , alors $1 \leqslant \dim(\ker(f \lambda \operatorname{Id}_E)) \leqslant m_{\lambda}$. Lorsque χ_f est scindé, $\operatorname{tr}(f) = \sum_{\lambda \in \operatorname{sp}(f)} m_{\lambda}.\lambda$ et $\det(f) = \prod_{\lambda \in \operatorname{Sp}(f)} \lambda^{m_{\lambda}}$.
- \bullet Théorème de Cayley-Hamilton, démonstration non exigible. Application : si A admet 0 comme seule vp (réelles et complexes), alors $A^n = 0$ (nilpotente).

4. Endomorphismes et matrices diagonalisables

- Définition de : endomorphisme diagonalisable (peut être représenté par une matrice diagonale), matrice diagonalisable (semblable à une matrice diagonale). f est diagonalisable ssi toute matrice associée à f l'est, A est diagonalisable ssi l'endomorphisme canoniquement associé l'est. f diagonalisable ssi il existe une base de E formée de vecteurs propres. C'est dans une base de ce type que l'on peut obtenir une matrice diagonale associée à f.
- Cas particulier à connaître : $(f \text{ admet une seule vp et } f \text{ diagonalisable}) \Leftrightarrow f \text{ homothétie})$ Donc si f admet une seule valeur propre λ et n'est pas égal à $\lambda \operatorname{Id}_E$, c'est que f n'est pas diagonalisable. Analogue pour les matrices.
- Exemples à connaître: Projecteurs et symétries son toujours diagonalisables, homothéties aussi.

Conditions nécessaires et suffisantes

$$f \in L(E) \text{ diagonalisable} \Leftrightarrow E = \bigoplus_{\lambda \in Sp(f)} \ker(f - \lambda \operatorname{Id}_E)$$

$$\Leftrightarrow \dim(E) = \sum_{\lambda \in sp(f)} \dim(\ker(f - \lambda \operatorname{Id}_E))$$

$$\Leftrightarrow \chi_f \text{ scind\'e et pour tout } \lambda \in Sp(f), \dim(\ker(f - \lambda \operatorname{Id}_E)) = m_\lambda$$

$$(\dim \operatorname{du sev propre} = \operatorname{ordre de multiplicit\'e}).$$

Condition suffisante

Si f admet n valeurs propres distinctes, alors f est diagonalisable. Réciproque fausse.

Théorème spectral (1ère version) : Toute matrice symétrique réelle est diagonalisable.

Admis pour l'instant. Pas de notion de matrice de passage orthogonale, ni d'endomorphisme symétrique pour l'instant.

Avec les polynômes annulateurs

Un endomorphisme en dimension finie (ou une matrice) est diagonalisable si et seulement si il existe un **polynôme annulateur** de cet endomorphisme (ou cette matrice) **scindé à racines simples**. Démo non exigible pour le sens (\Leftarrow).

Il faut savoir que si f est diagonalisable, alors il annule le polynôme (scindé à racines simples) $\prod_{X \in \operatorname{Sp}(f)} (X - \lambda).$

 $Le\ polyn\^ome\ minimal\ n\'est\ pas\ au\ programme.$

5. Trigonalisation

- A est trigonalisable si elle est semblable à une matrice triangulaire. Si on obtient une matrice triangulaire supérieure dans \mathcal{B} , on a une matrice triangulaire inférieure dans \mathcal{B}' obtenue en inversant l'ordre des vecteurs.
- f est trigonalisable s'il peut être représenté par une matrice triangulaire supérieure dans une certaine base. C'est le cas si et seulement si n'importe quelle matrice associée à f est trigonalisable.
- A ou f est trigonalisable si et seulement si son polynôme caractéristique est scindé (démo non exigible pour le sens (=)). Donc toute matrice carrée est trigonalisable dans C.

 Tout exercice portant sur la trigonalisation doit contenir des indications. Sauf en dimension 2, ou en

dimension 3 avec deux valeurs propres. Les notions de sous-espaces caractéristiques, de réduction de Jordan (ou tout autre méthode générale) sont hors-programme.

6. Applications classiques de la diagonalisation

- Matrices semblables ou non. Recherche des puissances ou de l'inverse d'une matrice diagonalisable....
- Systèmes différentiels linéaires à coefficients constants (et homogènes). Systèmes linéaires de suites récurrentes. Suites récurrentes linéaires d'ordre 2 ou plus.