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I. FONCTIONS DÉFINIES PAR UNE INTÉGRALE
• Savoir chercher l’ensemble de définition de F : x 7→

∫
I
f(x, t)dt (disjonction de cas pour obtenir les

valeurs de x pour lesquelles l’intégrale généralisée converge), ou savoir vérifier que F est bien définie
sur un intervalle donné (pas besoin d’étudier les autres valeurs de x dans ce cas).

• Théorème de continuité sous l’intégrale : échange lim
x→a

et
∫
J
.

Pour l’application pratique, on vérifie les hypothèses de régularité par rapport à x et de domination,
sans expliciter celles relatives à la continuité par morceaux.
Énoncé pratique : Soit f : (x, t) 7→ f(x, t), définie sur I × J et à valeurs dans R ou C. On vérifie que
(i) Pour tout t ∈ J , x 7→ f(x, t) est continue sur I.
(ii) Hypothèse de domination : ∀x ∈ I, ∀t ∈ J , |f(x, t)| 6 ϕ(t) où ϕ est intégrable sur J et

indépendante de x.

Alors F : x 7→
∫
I
f(x, t)dt est définie et continue sur I.

Rq : On pourra avoir recours à une hypothèse de domination locale (en prenant le paramètre dans un
segment quelconque inclus dans I, ou dans un intervalle quelconque [a,+∞[ par exemple). L’intervalle
d’intégration J ne change jamais.

• Théorème de convergence dominée à paramètre continu : échange lim
x→a

et
∫
I

.

Pour l’application pratique, on vérifie les hypothèses de limite par rapport à x et de domination, sans
expliciter celles relatives à la continuité par morceaux.
Énoncé pratique : Soit f : (x, t) 7→ f(x, t) définie sur I ×J et à valeurs dans R ou C. Soit a une borne
finie ou infinie de I. On suppose que f vérifie :
(i) Pour tout t ∈ J , f(x, t) −→

x→a
`(t) (avec ` cpm sur J) ;

(ii) Hypothèse de domination : ∀x ∈ I, ∀t ∈ J , |f(x, t)| 6 ϕ(t) où ϕ est une fonction intégrable sur J
et indépendante de x.

Alors ` est intégrable sur J et lim
x→a

(∫
J
f(x, t)dt

)
=

∫
J

(
lim
x→a

f(x, t)
)
dt.

Rq : On peut vérifier l’hypothèse de domination sur un sous-intervalle de I, à condition que ce soit
bien un voisinage de a (par exemple x ∈ [1,+∞[ lorsque a = +∞).

• Théorème de dérivation sous l’intégrale : échange
d
dx

et
∫
J

.

Énoncé pratique : Soit f : (x, t) 7→ f(x, t), définie sur J × I et à valeurs dans R ou C. On suppose
que :
(i) Pour tout x ∈ I, t 7→ f(x, t) est intégrable sur J (souvent vu au préalable en étudiant l’ensemble

de définition de F ).
(ii) Pour tout t ∈ J , x 7→ f(x, t) est de classe C1 sur I
(iii) Hypothèse de domination ∀x ∈ I, ∀t ∈ J ,

∣∣∣∂f∂x (x, t)∣∣∣ 6 ϕ(t) où ϕ est intégrable sur J et
indépendante de x.

Alors F : x 7→
∫
J
f(x, t)dt est définie et de classe C1 sur I avec F ′(x) =

∫
J

∂f
∂x (x, t)dt.

Possibilité d’utiliser une HD locale. L’intervalle d’intégration ne change jamais.

• Généralisation pour montrer la classe Ck : intégrabilité de t 7→ f(x, t) et des t 7→ ∂jf

∂xj
pour j ∈ [[1, k−1]]

et hypothèse de domination (éventuellement locale) pour
∂kf

∂xk
.

Pour la classe C∞, on montre que la fonction est de classe Ck avec k ∈ N∗ quelconque fixé.



II. SÉRIES ENTIÈRES
Convergence :
• Lemme d’Abel.
• Définition du rayon de convergence de

∑
anz

n et du disque ouvert de convergence :
R = sup{r ∈ R∗+, (anrn) est bornée}, R ∈ R+ ∪ {+∞}.

Si |z| < R, la série
∑
n∈N

anz
n converge absolument ; si |z| > R, elle diverge grossièrement.

→ Application : si
∑
anx

n
0 diverge, alors R 6 |x0| ; si (anxn1 ) converge vers 0, alors R > |x1|, etc.

→ Utilisation de la règle de d’Alembert. On peut employer R = 1
` pour

∑
anz

n si an 6= 0 pour tout n

et si lim
n→+∞

∣∣∣an+1

an

∣∣∣ `, mais on peut aussi choisir d’appliquer systématiquement la règle concernant

les séries numériques (en étudiant
∣∣∣un+1

un

∣∣∣ avec un = anx
n, ou anx2n+1, ou.... selon la série étudiée).

Cas des séries entières lacunaires : on doit appliquer la règle de d’Alembert à la série numérique
(sur le terme général, contenant la variable).

• Comparaison de rayons de convergence. Si an = O(bn), alors Ra > Rb. Si |an| ∼ |bn|, alors Ra = Rb.
• Pour toute suite complexe (an), les séries entières

∑
anz

n,
∑
nanz

n et
∑
n>1

anzn

n ont même rayon de

convergence.
• Opérations sur les séries entières : Somme, combinaison linéaire, produit de Cauchy (le rayon de

convergence de la somme ou du produit est supérieur ou égal au minimum des deux).

Régularité de la fonction somme :
• Sur tout segment inclus dans ]−R,R[, la série entière réelle

∑
anx

n, et ses séries dérivées, convergent
normalement. La fonction somme est de classe C∞ sur ]−R,R[ (et expression des dérivées successives).
Lien entre an et f (n)(0).
• Deux méthodes à connaître pour justifier, si c’est possible, la continuité en R et/ou en −R.

(i) Lorsque
∑
anR

n converge absolument, la série entière converge normalement sur [−R,R]. Dans ce
cas, f est continue sur [−R,R].
(ii) Parfois on peut utiliser le TSSA pour obtenir la convergence uniforme sur [0, R], ou sur [−R, 0]
(caractérisation de la convergence uniforme avec les restes, résultat sur les restes donné par le TSSA).
Tout autre théorème radial est hors programme.
• Primitives de la fonction somme de

∑
anx

n, obtenues par intégration terme à terme sur ]−R,R[.

Fonction développable en série entière sur un intervalle ]−α, α[ :
• Si f est développable en série entière sur ]−α, α[, alors elle est de classe C∞ sur ]−α, α[ et les coefficients
an sont uniques : ce sont les 1

n!f
(n)(0) (donc f est égale à la fonction somme de sa série de Taylor sur

]−α, α[). Réciproque fausse.
• L’ensemble des fonctions développables en série entière au voisinage de 0 est stable par combinaison

linéaire et par produit.
• Développements en série entière à connaître : exp, cos, sin, ch, sh sur R ; x 7→ 1

1−x , x 7→ − ln(1− x),
x 7→ ln(1 + x), x 7→ Arctan(x) et x 7→ (1 + x)α sur ]−1, 1[.


