Table des matières

Ι	Rappels	1
II	Dérivée en un point	2
II.	I Opérations sur les fonctions dérivées	3
	III.1 Combinaison linéaire d'applications dérivables	3
	III.2 Composée avec une application linéaire : Lof	3
	III.3 Composée avec une application bilinéaire : $B(f,g)$	3
	III.4 Composée avec une application p -linéaire : $M(f_1, \dots, f_p)$	4
	III.5 Composée $fo\phi$	4
IV	IV Fonctions de classe C^1	
v	Fonctions de classe C^k	5

Dans tout le chapitre $E = \mathbb{R}^n$ et I désigne un intervalle d'intérieur non vide.

On étudie les fonctions définies sur I et à valeurs dans E: $f \begin{cases} I \to E \\ t \mapsto (f_1(t),....,f_n(t)) \end{cases}$

E étant de dimension finie, toutes les normes sont équivalentes. On note $\|\cdot\|$ une norme sur E.

I Rappels

De manière générale, si $f: t \in I \longrightarrow (f_1(t), \dots, f_n(t))$, où les f_i sont des fonctions définies sur I et à valeurs dans \mathbb{R} , on dit que les f_i sont les **fonctions coordonnées de** f.

Si n=2, on pourra considérer que f est une application qui à un instant $t \in I$ associe un point M du plan, de coordonnées f(t) = (x(t), y(t)) (ce qui suppose qu'on ait préalablement choisi un repère du plan). Par ailleurs, les fonctions coordonnées de f sont alors $(t \to x(t))$ et $(t \to y(t))$.

De même, si n=3, on pourra considérer que f est une application qui à un instant $t\in I$ associe un point M de l'espace, de coordonnées $\overline{f(t)}=(x(t),y(t),z(t))$.

Par ailleurs, les fonctions coordonnées de f sont alors $(t \to x(t)), (t \to y(t))$ et $(t \to z(t))$.

Nous pouvons applique les définitions et propositions du chapitres sur les espaces vectoriels normés....

```
Définition 1 Soit f: I \to \mathbb{R}^n et soit a \in I.
On dit que f admet une limite \ell en a lorsque \lim_{t \to a} ||f(t) - \ell|| = 0.
```

Une telle limité est unique.... d'après le chapitre précédent.

Proposition 1 Soit $a \in I$ et soit $\ell = (\ell_1, \dots, \ell_n) \in \mathbb{R}^n$. Alors : $\left(\lim_{t \to a} \|f(t) - \ell\| = 0\right) \iff \left(\forall i \in [1; n], \lim_{t \to a} f_i(t) = \ell_i\right)$

Cette proposition est un cas particulier de la proposion suivante vue dans le chapitre « Espaces vectoriels normés » :

Proposition 2 (Fonctions coordonnées)

Soit $f:A\to E$ (avec A partie d'un espace vectoriel normé F). Soit $a\in \bar{A}$ et soit $b\in E$.

On note $f_1,....f_p$ les fonctions coordonnées de f et $(b_1,....b_p)$ les coordonnées de b dans la base $\mathcal{B} = \{\varepsilon_1,...,\varepsilon_p\}$.

$$\lim_{x \to a} f(x) = b \quad \Longleftrightarrow \quad \forall k \in \{1, ..., p\}, \ \lim_{x \to a} f_k(x) = b_k$$

De même que pour les fonctions à valeurs réelles, on peut définir les notions de limite à gauche ($\lim_{\substack{t \to a \\ t < a}}$ ou $\lim_{\substack{t \to a \\ t \le a}}$, à préciser...) ou de limite à droite...

- **Définition 2** On dit que f est continue en a lorsque $\lim_{t\to a} f(t) = f(a)$, ce qui revient à dire que les coordonnées de f sont continues en a.
 - La fonction f est dite continue sur I lorsque ses fonctions coordonnées sont continues sur I.
 - On note $C^0(I,\mathbb{R}^n)$ l'ensemble des fonctions continues sur I et à valeurs dans \mathbb{R}^n .

Remarque 1 si f et g sont des fonction continues sur I et à valeurs dans \mathbb{R}^n et λ est une fonction continue sur I et à valeurs dans \mathbb{R} , alors $f + \lambda g$ est aussi continue sur I.

Si n=3, alors $f \wedge g$ est continue.

Si n=2, alors det(f,g) est continue. Etc...

II Dérivée en un point

Définition 3 Soit $f: I \to \mathbb{R}^n$ et $a \in I$.

f est dérivable en a si et seulement si $\tau_a(f)$ admet une limite $l \in \mathbb{R}^n$ en a.

Avec $\tau_a(f)(t) = \frac{f(t) - f(a)}{t - a}$ pour $t \in I$ et $t \neq a$.

Notation: $\lim_{t \to a} \frac{f(t) - f(a)}{t - a} = f'(a) = \frac{df}{dt}(a)$

Proposition 3 (Autre formulation)

f est dérivable en a si et seulement si : il existe $\ell \in \mathbb{R}^n$ et $\varepsilon : I \to \mathbb{R}^n$ tels que

$$\forall t \in I, f(t) = f(a) + (t - a)\ell + (t - a)\varepsilon(t)$$
 avec $\lim_{t \to a} \varepsilon(t) = 0$

Exemple 1 Pour $E = \mathbb{R}^2$, f(t) = (x(t), y(t)) coordonnées d'un point M en fonction du temps t. $f'(t_0)$ représente la vitesse instantanée du point à l'instant t_0 .

Proposition 4 (La dérivablilité en a entraîne la continuité en a)

Si f est dérivable en a, alors f est continue en a.

La réciproque est fausse.

Proposition 5 (Fonctions composantes f_i)

f est dérivable en a si et seulement si chaque composante f_i est dérivable en a.

Exemple 2 Soit $u \in \mathbb{R}^n$ et $h: I \to \mathbb{R}$ une application dérivable en a. On pose f(t) = h(t).u Montrer que f est dérivable en a et calculer f'(a).

Proposition 6 (Conséquences)

• Fonctions à valeur dans $\mathbb C$:

 $f: t \mapsto f(t) = a(t) + ib(t)$ avec a = Re(f) et b = Im(f)f est dérivable en t_0 si et seulement si a et b sont dérivables en t_0 .

 \bullet Fonctions à valeurs dans un espace vectoriel F de dimension n :

Si $(e_1, e_2, ...e_n)$ est une base de F et si $g: I \to F$ avec $\forall t \in I$, $g(t) = \sum_{i=1}^n g_i(t)e_i$,

alors on peut définir la dérivée de g en a:

g est dérivable en a si et seulement si $\forall i \in \{1,...,n\}$ g_i est dérivable en a

Dans ce cas, on a $g'(t) = \sum_{i=1}^{N} g'_i(t)e_i$

Définition 4 (Fonction dérivée)

f est dérivable sur I si et seulement si f est dérivable en tout point a de I.

Si f est dérivable sur I, on note f' la fonction $(t \mapsto f'(t))$.

Proposition 7 f est dérivable sur I si et seulement si chaque composante f_i est dérivable sur I.

Exemple 3 Coordonnées polaires. On suppose que : $\forall t \in I$, $f(t) = (r(t)\cos\theta(t); r(t)\sin\theta(t))$

On suppose r et θ dérivables sur I. Montrer que f est dérivable sur I et calculer f'(t).

Exemple 4 Coordonnées cylindriques.

On suppose que : $\forall t \in I$, $f(t) = (r(t)\cos\theta(t); r(t)\sin\theta(t); z(t))$

On suppose r, θ et z dérivables sur I. Montrer que f est dérivable sur I et calculer f'(t).

Exemple 5 Coordonnées sphériques. On suppose que : $\forall t \in I$, $f(t) = \rho(t)(\sin \theta(t) \cos \phi(t); \sin \theta(t) \sin \phi(t); \cos \theta(t))$ On suppose r, θ et ϕ dérivables sur I. Montrer que f est dérivable sur I et calculer f'(t).

Caractérisation des fonctions constantes

```
Proposition 8 (dem) Soit f: I \to \mathbb{R}^n.
Alors f est constante si et seulement si : f est dérivable sur I et \forall t \in I, f'(t) = 0.
```

Exemple 6 Trouver un exemple de fonction f définie sur \mathbb{R} et à valeurs dans \mathbb{R}^2 montrant qu'il n'existe pas de généralisation du théorème de Rolle pour les fonctions à valeurs dans \mathbb{R}^2 ou \mathbb{R}^3 .

III Opérations sur les fonctions dérivées

III.1 Combinaison linéaire d'applications dérivables

```
Proposition 9 (dem)
Si f: I \to \mathbb{R}^n et g: I \to \mathbb{R}^n sont dérivables sur I, alors :
pour tout (\lambda, \mu) \in \mathbb{R}^2, \lambda f + \mu g est dérivable sur I
```

III.2 Composée avec une application linéaire : Lof

```
Proposition 10 (dem) Si f \begin{cases} I \to \mathbb{R}^n \\ t \mapsto (f_1(t), ...., f_n(t)) \end{cases} et si L : \mathbb{R}^n \to \mathbb{R}^q est une application linéaire, alors Lof \quad \begin{cases} I \to \mathbb{R}^q \\ t \mapsto L(f_1(t), ...., f_n(t)) \end{cases} Si f est dérivable sur I, alors Lof est dérivable sur I et : \forall t \in I, (Lof)'(t) = L(f'(t))
```

III.3 Composée avec une application bilinéaire : B(f,q)

```
Proposition 11 (dem) Soit B \begin{cases} \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n \\ (x,y) \mapsto B(x;y) \end{cases} une application bilinéaire.
Soient f: I \to \mathbb{R}^n et g: I \to \mathbb{R}^n deux applications dérivables sur I.
On pose \forall t \in I, h(t) = B(f(t); g(t))
Alors h est dérivable sur I et \forall t \in I, h'(t) = B(f'(t), g(t)) + B(f(t); g'(t)).
```

Exemple 7 Produit scalaire dans \mathbb{R}^n .

Soient $f: I \to \mathbb{R}^n$ et $g: I \to \mathbb{R}^n$ deux applications dérivables sur I et soit <,> un produit scalaire sur \mathbb{R}^n .

On pose $h(t) = \langle f(t), g(t) \rangle$.

Montrer que h est dérivable sur I et calculer h'(t).

Remarque 2 Si $\|\cdot\|$ est la norme euclidienne associée au produit scalaire $\langle\cdot,\cdot\rangle$, alors $\|f\|^2 = \langle f,f\rangle$ donc $\|f\|^2$ est dérivable et $(\|f\|^2)' = 2\langle f',f\rangle$

Application à un cercle ou une courbe tracée sur une sphère : Si pour tout r, f(t) appartient à un cercle donné du plan ou à une shère donnée de l'espace, alors $\forall t \in I, ||f||^2 = R^2$ donc $(||f||^2)' = 0$, ce qui permet d'affirmer, d'après la proposition ci-dessus, que $2\langle f', f \rangle = 0$ ou encore $f \perp f'$.

Exemple 8 Dérivée d'un produit vectoriel. On se place dans \mathbb{R}^3 , espace euclidien orienté.

Soient f et g deux fonctions définies sur I et à valeurs dans \mathbb{R}^3 , dérivables sur I.

Alors $f \wedge g$ est dérivable sur I et :

$$(f \wedge g)' =$$

Exemple 9 Soient f et g des fonctions dérivables sur I et à valeurs dans \mathbb{R}^2 . Soit \mathcal{B}_0 la base canonique de \mathbb{R}^2 . On pose $d(t) = det_{\mathcal{B}_0}(f(t), g(t))$. Montrer que la fonction d est dérivables et calculer d'(t).

III.4 Composée avec une application p-linéaire : $M(f_1, \dots, f_p)$

Proposition 12 (non exigible)

Soit
$$M \left\{ \begin{array}{l} (\mathbb{R}^n)^p \to \mathbb{R}^q \\ (x_1, \cdots, x_p) \mapsto M(x_1, \cdots, x_p) \end{array} \right\}$$
 une application p -linéaire.

On suppose que : $\forall i \in [1; p]$, la fonction $f_i : I \to \mathbb{R}^n$ est une application dérivable sur I.

On pose $\forall t \in I$, $h(t) = M(f_1(t), \dots, f_p(t))$.

Alors h est dérivable sur I et

$$\forall t \in I, h'(t) =$$

Exemple 10 Soit \mathcal{B} une base de \mathbb{R}^p . On suppose que f_1, \dots, f_p sont des applications définies sur $I \subset \mathbb{R}$, à valeurs dans \mathbb{R}^p , et dérivables sur I.

Soit $d: t \mapsto Det_{\mathcal{B}}(f_1(t), \cdots, f_p(t))$. Alors d est dérivable et de plus d'(t) =

III.5 Composée $f \circ \phi$

Proposition 13 (dem) Soient $\phi: J \to \mathbb{R}$ et $f: I \to \mathbb{R}^n$ avec $\phi(J) \subset I$ et soit $a \in J$.

• Si ϕ est dérivable en a et si f est dérivable en b=f(a), alors $fo\phi$ est dérivable en a et de plus

$$(f \circ \phi)'(a) = \phi'(a) \times f'(\phi(a))$$

• Si ϕ est dérivable sur J et si f est dérivable sur I, alors $f \circ \phi$ est dérivable sur J et de plus :

$$(f \circ \phi)' = \phi' \times f' \circ \phi$$

Exemple 11 $\forall t \in \mathbb{R}, \ \phi(t) = e^t \text{ et } f(t) = (\cos t, \sin t).$

On pose $h(t) = fo\phi(t)$. Montrer que h est dérivable sur \mathbb{R} et calculer h'(t).

IV Fonctions de classe C^1

Définition 5 $f: I \to \mathbb{R}^n$ est dite « de classe \mathcal{C}^1 » lorsque f est dérivable sur I et $f': I \to \mathbb{R}^n$ est continue.

Proposition 14 (Propriétés) • $C^1(I, E) = \{f : I \to \mathbb{R}^n, \text{ de classe } C^1\}$ est un espace vectoriel.

- Si $L: E \to F$ est linéaire et si $\in \mathcal{C}(I, \mathbb{R}^n)$, alors $Lof: I \to F$ est de classe \mathcal{C}^1 .
- Si $B: E \times F \to G$ est bilinéaire, et si $f: I \to E$ et $g: I \to F$ sont de classe \mathcal{C}^1 , alors $t \to B(f(t); g(t))$ est de classe \mathcal{C}^1 sur I.
- Si ϕ est de classe \mathcal{C}^1 sur J et si f est de classe \mathcal{C}^1 sur I (avec $\phi(J) \subset I$), alors $f \circ \phi$ est de classe \mathcal{C}^1 sur J

Proposition 15 (Théorème de limite de la dérivée. (dem)) Soit $f: I \to \mathbb{R}^n$ continue sur I. Soit $a \in I$. On suppose que f est de classe \mathcal{C}^1 sur $I \setminus \{a\}$ et que f' admet une limite $\ell \in \mathbb{R}^n$ en a. Alors f est de classe \mathcal{C}^1 sur I et $f'(a) = \ell$.

V Fonctions de classe C^k

Définition 6 Soit $f: I \to \mathbb{R}^n$.

- f est de classe \mathcal{C}^0 sur $I \iff f$ est continue sur I
- f est de classe C^k sur $I \iff f$ est dérivable sur I et f' est de classe C^{k-1} sur I.
- f est de classe \mathcal{C}^{∞} sur $I \iff f$ est de classe \mathcal{C}^k pour tout entier k.

Exemple 12 Si $E = \mathbb{R}^2$, pour f(t) = (x(t); y(t)) avec t = temps, le vecteur $f''(t_0)$ est le vecteur accéleration à l'instant t_0 .

Proposition 16 (Propriétés) • $C^k(I, E) = \{f : I \to \mathbb{R}^n, C^k\}$ est un espace vectoriel.

- Si $L: \mathbb{R}^n \to F$ est linéaire et si $f \in \mathcal{C}(I, \mathbb{R}^n)$, alors $L \circ f: I \to F$ est de classe \mathcal{C}^k .
- Si $\phi \in \mathcal{C}(J,\mathbb{R})$ et si $f \in \mathcal{C}(I,\mathbb{R}^n)$ (avec $\phi(J) \subset I$), alors $f \circ \phi$ est de classe \mathcal{C}^k sur J.

Proposition 17 (Formule de Leibniz) Soit $B = \begin{cases} \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^q \\ (x,y) \mapsto B(x;y) \end{cases}$ une application bilinéaire.

Si $f: I \to \mathbb{R}^n$ et $g: I \to \mathbb{R}^n$ sont de classe \mathcal{C}^k sur I,

alors $B(f,g): I \to \mathbb{R}^q$ est de classe \mathcal{C}^k et : $(B(f,g))^{(k)} = \sum_{p=0}^k \binom{k}{p} B(f^{(p)}; g^{(k-p)})$

Exemple 13 Soient f et g des fonctions de classe \mathcal{C}^k sur I, à valeurs dans \mathbb{R}^n . Soit $\lambda \in \mathcal{C}^k(I,\mathbb{R})$. Alors:

- λf est de classe C^k et de plus : $(\lambda f)^{(k)} = \sum_{i=0}^k \binom{k}{i} \lambda^{(k-i)} f^{(i)}$
- $\langle f, g \rangle$ est de classe \mathcal{C}^k et de plus : $(\langle f, g \rangle)^{(k)} = \sum_{i=0}^k \binom{k}{i} \langle f^{(i)}, g^{(k-i)} \rangle$
- Pour n=3, le produit vectoriel $f \wedge g$ est de classe \mathcal{C}^k et de plus : $(f \wedge g)^{(k)} = \sum_{i=0}^k \binom{k}{i} f^{(i)} \wedge g^{(k-i)}$
- Si n=2, et si on pose $d(t)=det_{\mathcal{B}_0}(f(t),g(t))$, alors d est de classe \mathcal{C}^k et de plus $d^{(k)}(t)=det_{\mathcal{B}_0}(f(t),g(t))$