On considère pour commencer des fonctions à valeurs réelles.

Définition 1 Soit [a,b] un **segment** et $a=a_0 < a_1 < \cdots < a_{n-1} < a_n = b$ un nombre fini de réels. On dit que $(a_0,a_1,\ldots,a_{n-1},a_n)$ est une <u>subdivision</u> du segment [a,b].

Définition 2 Soit [a,b] un segment (a < b). On dit qu'une fonction $f:[a,b] \to \mathbb{R}$ est <u>en escalier</u> s'il existe une subdivision (a_0,\ldots,a_n) de [a,b] et des réels b_0,\ldots,b_{n-1} tels que : $\forall i \in [0,n-1], \ \forall x \in]a_i,a_{i+1}[,\ f(x)=b_i]$. On notera $Esc([a,b],\mathbb{R})$ l'ensemble des fonctions en escalier sur [a,b].

Remarque 1 $Esc([a,b],\mathbb{R})$ est un \mathbb{R} -espace vectoriel

Theorème-Definition 1 Soit $f \in Esc([a,b], \mathbb{R})$ (où a < b), soit $s = (a_i)_{i=0\cdots n}$ adaptée à f. On a donc :

$$\exists (\alpha_1, \dots, \alpha_{n-1}) \in \mathbb{R}^n \text{ tel que } \forall n \in \{0, \dots, n-1\}, \ \forall x \in]a_i, a_{i+1}[, f(x) = \alpha_i.$$

Alors le réel $I = \sum_{i=0}^{n-1} (a_{i+1} - a_i) \cdot \alpha_i$ ne dépend pas de la subdivision choisie. On l'appelle $intégrale \ de \ la fonction \ f$ $sur \ [a,b]$ et il est noté : $\int_I f$ ou $\int_{[a,b]} f$ ou encore $\int_a^b f$ ou $\int_a^b f(x) dx$.

Theorème-Definition 2 Soit $f \in C^0([a, b], \mathbb{R})$, où a < b. On considère :

 $E_1 = \{ \varphi \in Esc([a, b], \mathbb{R}) \text{ telles que } \varphi \leq f \} \text{ et } E_2 = \{ \psi \in Esc([a, b], \mathbb{R}) \text{ telles que } f \leq \psi \}$

L'ensemble $I_1 = \left\{ \int_a^b \varphi$, où $\varphi \in E_1 \right\}$ est non vide et majoré. Il admet donc une borne supérieure notée $I^-(f)$.

L'ensemble $I_2 = \left\{ \int_a^b \psi$, où $\psi \in E_2 \right\}$ est non vide et minoré. Il admet donc une borne inférieure notée $I^+(f)$.

De plus $I^-(f) = I^+(f)$ c'est à dire sup $\left\{ \int_a^b \varphi \text{ où } \varphi \in E_1 \right\} = \inf \left\{ \int_a^b \psi, \text{ où } \psi \in E_2 \right\}.$

le réel $I^-(f) = I^+(f)$ est noté :

$$\int_a^b f$$
 ou $\int_a^b f(x)dx$ ou encore $\int_{[a,b]} f$

Notation : l'intégrale d'une fonction f continue sur un segment [a,b] peut être notée indifféremment :

$$\int_{a}^{b} f(t) dt \quad \text{ou} \quad \int_{[a,b]} f \quad \text{ou} \quad \int_{a}^{b} f$$

On définit ensuite $\int_a^b f(t)dt$ pour $a \ge b$ en posant :

Proposition 1 1. Linéarité

Soient f et g deux fonctions continues sur I, soit $(a, b) \in I^2$, et soit $(\lambda, \mu) \in \mathbb{R}^2$. Alors:

$$\int_a^b (\lambda f + \mu g)(t) dt = \lambda \int_a^b f(t) dt + \mu \int_a^b g(t) dt$$

2. **Positivité**. On suppose $a \leq b$.

Soit f une fonction continue et **positive** sur [a,b]. Alors : $\int_a^b f(t) dt \ge 0$

3. <u>Croissance</u>. On suppose $a \leq b$. Soient f et g deux fonctions continues sur [a,b] et telles que : $\forall x \in [a,b], \ f(x) \leqslant g(x)$. Alors : $\int_a^b f(t) \ dt \leqslant \int_a^b g(t) \ dt$

Remarque 2 Pour l'item 3 de la proposition précédente : Réciproque fausse!

Proposition 2 Soit f une fonction continue sur [a,b] (avec $a \le b$). Alors : $\left| \int_a^b f(t) \, dt \right| \le \int_a^b |f(t)| \, dt$

Proposition 3 Relation de Chasles

Soient f une fonction continue sur [a,b] et $c \in [a,b]$. Alors : $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_b^b f(t) dt$

Théorème 1 Stricte positivité

- i) Soit f continue et **positive** sur [a, b] telle que $\int_a^b f(t) dt = 0$. Alors : $\forall x \in [a, b], f(x) = 0$.
- ii) Soit f continue, **positive** sur [a,b] et **différente de la fonction nulle sur** [a,b]. Alors : $\int_{a}^{b} f(t) dt > 0$.

Remarque 3 ii) est la contraposée de i).

Définition 3 Soient f une fonction continue sur I et soit $(a,b) \in I^2$. Si a > b on pose $\int_a^b f(t)dt = -\int_b^a f(t)dt$.

Proposition 4 Relation de Chasles Soient f une fonction continue sur I et soit $(a,b,c) \in I^3$. Alors : $\int_a^b f(t) \, dt = \int_a^c f(t) \, dt + \int_c^b f(t) \, dt$

Proposition 5 Sommes de Riemann. Si $f \in \mathcal{C}^0([a,b],\mathbb{R})$, alors : $\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a+k\frac{b-a}{n}\right) = \int_a^b f(t) dt$.

1. Très souvent a = 0 et b = 1, ce qui donne : $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) = \int_0^1 f(t) dt$.

2. Le résultat reste valable même si l'indice k varie entre 1 et n ou entre 1 et n-1.

Théorème 2 Théorème fondamental de l'intégration

Soit f une fonction **continue** sur un intervalle réel I et soit $a \in I$. Alors la fonction

$$F: x \mapsto \int_a^x f(t) dt$$

est l'unique primitive de f sur I qui s'annule en a. Ainsi F est de classe C^1 sur I et F'=f.

Remarque 5 Ce théorème est parfois appelé théorème fondamental de l'analyse.

Corollaire 1 1. Toute fonction f continue sur un segment [a,b] admet des primitives sur [a,b].

2. Soit f une fonction continue sur [a,b] et F une **primitive** de f sur [a,b]. Alors : $\int_a^b f(t) dt = F(b) - F(a)$.

Remarque 6 Si f est de classe C^1 sur [a,b] alors $\int_a^b f'(t) dt = f(b) - f(a)$. Remarque 7 Soit f une fonction continue sur I. Soient u et v deux fonctions dérivables sur J et à valeurs dans I. Alors la fonction G définie par $G(x) = \int_{u(x)}^{v(x)} f(t)dt$ est dérivable et sa dérivée vaut :

Quel est le domaine de définition de la fonction G définie par : $G(x) = \int_{x^2}^{x^4} \frac{e^t}{t} dt$? Justifier sa dérivabilité et calculer G'(x).

Même question pour la fonction H définie par $H(x) = \int_{-\pi}^{x^2} \frac{e^{-t^2}}{t} dt$.

Primitives usuelles

f(x)	$(\mathbf{F}(\mathbf{x}))$
(x^n)	
$\frac{1}{x^n}$	
(x^{lpha})	
$\frac{1}{\sqrt{x}}$	
$\exp(x)$	
a^x	
$\frac{1}{1-x^2}$	

$\mathbf{f}(\mathbf{x})$	$ \mathbf{F}(\mathbf{x}) $
$\frac{1}{1+x^2}$	
$\sqrt[3]{1-x^2}$	
$\sin(x)$	
$\cos(x)$	
$\overline{(\cos^2(x))}$	
$(1+(\tan(x))^2)$	
$1 + (\cot(x))^2$	
$\frac{1}{\sin^2(x)}$	
$\operatorname{ch}(x)$	
$(\operatorname{sh}(x))$	

Si on a une expression de la forme $g(x) = u'(x) \cdot f(u(x))$ (avec F' = f), une primitive de g est

Donner par exemple des primitives des fonctions f définies par :

$$f(x) = 2x\sin(x^2), \ f(x) = \frac{e^{2x}}{\sqrt{1 + e^{2x}}}, \ f(x) = \sin(x) \cdot \exp(\cos(x))...$$

On doit aussi savoir qu'une primitive de $\frac{u'(x)}{u(x)}$ est

Attention : cela suppose que la fonction u ne s'annule pas sur I, donc que u est de signe constant (car continue)

$$f_1(x) = \frac{x}{x^2 + 1}, \ f_2(x) = \frac{2x + 1}{x^2 + x + 1}$$

Trouver par exemple des primitives des fonctions définies par les expressions suivantes : $f_1(x) = \frac{x}{x^2+1}, \ f_2(x) = \frac{2x+1}{x^2+x+1}$ Peut-on faire de même pour $f_3(x) = \frac{2x-3}{x^2-3x+2}$?

Trouver des primitives de : tan, cotan en précisant bien les intervalles sur lesquels on travaille.

Théorème 3 Intégration par parties

Soient u et v deux fonctions de classe \mathcal{C}^1 sur [a,b]. Alors : $\int_a^b u'(t)v(t) dt = \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t) dt.$

Remarque 8 Cela s'applique

- aux intégrales de la forme $\int_a^b e^t P(t) dt$ où p est une fonction polynomiale
- au calcul de $\int_a^b \ln(t)dt$ ou de $\int_a^b \arctan(t)dt...$

Théorème 4 Soient I et J deux intervalles. Soit $f \in \mathcal{C}^0(J, \mathbb{K})$ et soit φ une fonction de classe \mathcal{C}^1 sur I telle que $\varphi(I) \subset J$. Alors $f \circ \varphi$ est bien définie et continue sur I. De plus :

$$\forall (a,b) \in I^{2}, \ \int_{a}^{b} f\left(\varphi\left(t\right)\right) \cdot \varphi'\left(t\right) dt = \int_{a}^{b} f \circ \varphi\left(t\right) \cdot \varphi'\left(t\right) dt = \int_{\varphi\left(a\right)}^{\varphi\left(b\right)} f\left(u\right) du.$$

Remarque 9 Calcul à savoir faire absolument : Trouver une primitive de $\frac{1}{x^2+x+1}$ ou de $\frac{1}{x^2+a^2}$ ou de $\frac{1}{x^2+2x+9}$ ou de $\frac{x^2}{x^2+2x+9}$

Attention : vous avez vu cette formule en PTSI. Elle sera au programme de la PT*. Vous devez la connaîtyre en en connaître la démonstration. Si vous souhaitez qu'elle soit revue en cours, il faut le dire....

Théorème 5 Formule de Taylor avec reste intégral Soit $f \in C^{n+1}(I)$ et soit $a \in I$. Alors :

Pour tout
$$x \in I$$
, $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$.

<u>Généralisation</u> pour des fonctions à valeurs **complexes**: on définit l'intégrale d'une fonction continue à l'aide des parties réelles et imaginaires. Les propriétés suivantes sont notamment conservées: linéarité, majoration en module, intégration par parties, changement de variable, formule de Taylor avec reste intégral.