- 1. Condition suffisante simple d'existence d'une primitive d'une fonction f sur un intervalle I?
- 2. Révisions des primitives usuelles :
 - (a) Primitive d'un polynôme sur \mathbb{R} .
 - (b) Primitive de \cos et \sin et \tan sur \mathbb{R} .
 - (c) Primitive de $x \mapsto e^{ax+b}$ sur \mathbb{R} .
 - (d) Primitive de $x \mapsto \frac{1}{\cos^2(x)}$, et $x \mapsto 1 + (\tan(x))^2$
 - (e) Primitive de $x \mapsto \frac{1}{x^n}$ pour $n \in \mathbb{N}^*$ (Attention aux différentes valeurs de n)
 - (f) Primitive de $x \mapsto \frac{1}{\sqrt{x}}$. Plus généralement primitive de $x \mapsto x^{\alpha}$ pour $\alpha \in \mathbb{R}$.
 - (g) Primitive de $x \mapsto a^x$
 - (h) Primitive de $x \mapsto \frac{1}{1+x^2}$ et de $x \mapsto \frac{1}{\sqrt{1-x^2}}$ et de $x \mapsto \frac{1}{1-x^2}$
 - (i) Primitive de ch et de sh.
 - (j) $\int t \ln(t) dt$
- (k) $\int_{4}^{x} \frac{x}{(x-2)(x-3)} dx$ 3. Primitives de fonctions composées : u est une fonction de la variable x. Donner une primitive de v dans les cas suivants :

 (a) $v = u' \times u$ (b) $v = \frac{u'}{u}$ (c) $v = u' \times e^{u}$ (d) $v = \frac{u'}{\sqrt[3]{u}}$

Application : on cherche sur]1; $+\infty$ [une primitive de $x \to \frac{1}{x \ln(x)}$ qui vaut 0 en 3.

- 5. Soit f continue sur \mathbb{R} . Que peut-on dire de $F: x \to \int_{-\infty}^{x} f(t)dt$?
- 6. Soit f continue sur \mathbb{R} . Si F est une primitive de f sur I, alors F est de classe C^1 sur I: Vrai? Faux?
- 7. Soit f continue sur \mathbb{R} . Calculer la dérivée de $\int_{-x}^{3x^2} f(t)dt$.

Sur quel domaine est définie la fonction g définie par $g(x) = \int_{x}^{x^2} \frac{e^t dt}{t}$?

- 8. Soient a et b 2 réels tels que a < b. $\int_a^b f(x)dx$ représente l'aire d'un domaine du plan : Vrai ? Faux ? Ça dépend ?
- 9. Propriétés : a) Relation de Chasles => énoncé?
 - b) Linéarité de l'intégrale => énoncé?
- 10. Propriétés de positivité de l'intégrale : Soit a < b deux réels et f, g continues sur [a; b]
 - (a) Si $f \ge 0$ alors ...? Si $f \le g$ alors ...? Et $\left| \int_a^b f(x) dx \right| \le ...$?
 - (b) Savez-vous démontrer ces propriétés? Que pensez-vous des réciproques?
 - (c) <u>Application</u>: Recherche d'un équivalent de $\sum_{k=1}^{\infty} \frac{1}{k}$.
- 11. f continue sur [a;b], positive sur [a;b] alors $\int_{a}^{b} f(x)dx > 0$: Vrai? Faux? Ça dépend?
- 12. Valeur moyenne : définition?

La valeur moyenne de f sur [a;b] est toujours située entre $\min_{[a;b]} f$ et $\max_{[a;b]} f$: Vrai? Faux? Savez-vous le prouver?

- 13. Intégration par partie : énoncé? Applications :
 - (a) Trouver une primitive de $x \to \overline{\ln x}$ sur \mathbb{R}^{+*}
 - (b) IPP successives : calcular $\int_0^2 (x^2 5x + 1)e^{\frac{x}{3}} dx$
- 14. Formule de changement de variable.

Application : Retrouver l'aire du cercle d'équation $x^2 + y^2 = 1$ en utilisant les fonctions $f: x \to \sqrt{1-x^2}$ et $g: x \to -\sqrt{1-x^2}$, et le changement de variable $x = \sin(u)$.

15. Sommes de Riemann? <u>Application</u>: chercher si elle existe $\lim_{n\to+\infty} \sum_{k=n+1}^{2n} \frac{1}{k}$.