INTEGRATION sur un INTERVALLE QUELCONQUE

I Fonctions continues par morceaux

I.1 Fonction continue par morceaux sur un segment

Définition 1 Une fonction $f:[a;b] \to \mathbb{K}$ est continue par morceaux s'il existe une subdivision $\sigma = (a_0, a_1,, a_n)$ de [a;b] telle que :

 $\forall i \in \{0, 1, ..., n-1\}$, la restriction de f à $]a_i; a_{i+1}[$ admet un prolongement continu sur $[a_i; a_{i+1}]$.

Une telle subdivision est dite adaptée à f.

Notation : $CM([a;b], \mathbb{K}) = \{f : [a;b] \to \mathbb{K} \text{ continue par morceaux}\}$

Exemple 1 La restriction de la fonction partie entière à un segment [a, b].

Exemple 2 $\forall x \in [-1,1], \quad f(x) = \frac{1}{x + [1-x]} \text{ et } \forall x \in]0,1], \ g(x) = \sin(\frac{1}{x}) \quad \text{et} \quad g(0) = 0$

f et g sont-elles continues par morceaux?

Proposition 1 (dem) • Toute fonction continue par morceaux sur un segment est bornée.

• $CM([a;b],\mathbb{K})$ est un espace vectoriel, stable par produit.

I.2 Intégrale sur un segment

Définition 2 Soit $f \in CM([a;b], \mathbb{K})$, on note $\sigma = (a_0, a_1, ..., a_n)$ une sudvision de [a;b] adaptée à f. $\forall i \in \{0,1,...n-1\}$, on note f_i le prolongement continue de f sur $[a_i;a_{i+1}]$. Alors :

La somme $S_{\sigma}(f) = \sum_{i=0}^{n-1} \int_{[a_i;a_{i+1}]} \tilde{f}_i$ ne dépend pas du choix de la subdivision .

Cette somme est appelée intégrale de \underline{f} et est notée $\int_{[a;b]} f$.

I.3 Propriétés de l'intégrale d'une fonction continue par morceaux sur un segment

- <u>Linéarité</u> $f \to \int_{[a;b]} f$ est une forme linéaire de $CM([a;b], \mathbb{K})$.
- <u>Inégalité triangulaire</u>

Si $f:[a;b] \to \mathbb{K}$ est continue par morceaux, alors |f| aussi. et on a : $\left| \int_{[a;b]} f \right| \leqslant \int_{[a;b]} |f|$

- Positivité et croissance Dans ce paragraphe, f et g sont continues par morceaux sur [a;b] et sont à valeurs réelles.
 - * Si $f \geqslant 0$ alors $\int_{[a:b]} f \geqslant 0$.
 - \star Si $f\leqslant g$ alors $\int_{[a;b]}f\leqslant \int_{[a;b]}g$
- Relation de Chasles Si $f:[a;b] \to \mathbb{K}$ est continue par morceaux, et si $c \in]a;b[$ alors : $\int_{[a;b]} f = \int_{[a;c]} f + \int_{[c;b]} f$
- Changement de variable Si $f:[a;b] \to \mathbb{K}$ est continue par morceaux, et si $\phi:[\alpha;\beta] \to [a,b]$ est une bijection de classe C^1 strictement croissante alors : $\int_{[a;b]} f(t)dt = \int_{[\alpha;\beta]} f(\phi(u))\phi'(u)du$.
- Attention, si $f:[a;b] \to \mathbb{R}$ est positive, continue par morceaux et telle que $\int_{[a;b]} f = 0$ alors cela n'entraine pas que f = 0. f peut être non nulle aux points de discontinuité.

I.4 Fonction continue par morceaux sur un intervalle quelconque

Définition 3 Soit I un intervalle quelconque de \mathbb{R} .

 $f:I\to\mathbb{K}$ est continue par morceaux sur I, si la restriction de f à tout segment inclus dans I est continue par morceaux.

Notation : On note $CM(I, \mathbb{K})$ l'ensemble des fonctions continues par morceaux sur I et à valeurs dans \mathbb{K} .

Exemple 3 1. On considère la fonction f définie par : $\forall x \in \mathbb{R}^+$, $f(x) = \lfloor x \rfloor$.

f est-elle continue par morceaux sur \mathbb{R}^+ ?

2. On considère la fonction g définie par : $\forall x \in]0,2], \quad g(x) = \lfloor \frac{1}{x} \rfloor.$ g est-elle continue par morceaux sur]0,2]?

Remarque 1 Une fonction continue par morceaux sur un intervalle qui n'est pas un segment peut admettre une infinité de discontinuité et peut ne pas être bornée.

Proposition 2 $CM(I, \mathbb{K})$ est un espace vectoriel stable par produit.

II Intégrale généralisée sur un intervalle de la forme $[a, +\infty[$.

II.1 Généralités

Définition 4 Soit $a \in \mathbb{R}$ et soit $f \in CM([a, +\infty[, \mathbb{K}).$

Pour $x \in [a, +\infty[$, on pose $F(x) = \int_a^x f(t)dt$.

Si F a une limite <u>finie</u> en $+\infty$, on dit que **l'intégrale** $\int_a^{+\infty} f$ converge ou est convergente.

Sinon, l'intégrale $\int_{-\infty}^{+\infty} f(t)dt$ est dite **divergente**.

Dans les deux cas, on dit que $\int_{a}^{+\infty} f(t)dt$ est impropre en $+\infty$.

En cas de convergence : $\lim_{x\to +\infty} \int_a^x f(t)dt$ est notée $\int_a^{+\infty} f(t)dt$ ou $\int_a^{+\infty} f(t)dt$

Exemple 4
$$\int_1^{+\infty} \frac{dt}{t^2}$$
, $\int_{\pi}^{+\infty} \left(2i - \frac{1}{t^2}\right) e^{it^2} dt$, $\int_1^{+\infty} \frac{dt}{\sqrt{t}}$, $\int_0^{+\infty} \cos(t) dt$.

Remarque 2 Si $f:[a;+\infty[\to \mathbb{K}$ est continue par morceaux et si $\lim_{x\to\infty}f(x)=l\neq 0$, alors l'intégrale $\int_a^{+\infty}f$ diverge.

Remarque 3 Soit $a \in \mathbb{R}$. Soit $f \in CM([a, +\infty[, \mathbb{K})$ et enfin soit $c \geq a$

Alors: $\int_{a}^{+\infty} f(t)dt$ converge $\iff \int_{c}^{+\infty} f(t)dt$ converge.

Autrement dit, la nature de $\int_a^{+\infty} f(t)dt$ ne dépend que du comportement de f au voisinage de $+\infty$.

En cas de convergence : $\int_a^{+\infty} f(t)dt = \int_a^c f(t)dt + \int_c^{+\infty} f(t)dt$.

Exemple 5 Le fait que $\int_1^{+\infty} \frac{dt}{t^2}$ converge nous assure que, pour tout réel $c \in [1, +\infty[$, l'intégrale $\int_c^{+\infty} \frac{dt}{t^2}$ converge aussi.

Ainsi $\int_{2}^{+\infty} \frac{dt}{t^2}$ converge, etc...

Remarque 4 • Si $\int_a^{+\infty} f$ converge, alors $\lim_{x \to +\infty} \int_x^{+\infty} f =$

• Si $\int_{a}^{+\infty} f$ converge et si f est continue sur $[a, +\infty[$, alors $\left(x \to \int_{x}^{\infty} f(t)dt\right)$ est de classe \mathcal{C}^{1} sur $[a, +\infty[$; et $\left(x \to \int_{x}^{\infty} f(t)dt\right)' = -f(x)$

Proposition 3 (Linéarité)

 $E = \left\{ f \in CM([a, +\infty[, \mathbb{K}) \text{ telles que} \quad \int_a^{+\infty} f \text{ converge} \right\} \text{ est un sous-espace vectoriel de } CM([a, +\infty[, \mathbb{K});$ et l'application $f \to \int_{-\infty}^{+\infty} f$ est une forme linéaire sur E.

Proposition 4 (Cas où $\mathbb{K} = \mathbb{C}$) Soit $f : [a; +\infty[\to \mathbb{C} \text{ continue par morceaux.}]$

L'intégrale $\int_{a}^{+\infty} f$ converge si et seulement si $\int_{a}^{+\infty} \text{Re}(f)$ et $\int_{a}^{+\infty} \text{Im}(f)$ convergent. Dans ce cas, on a: $\int_{1}^{+\infty} f = \int_{1}^{+\infty} \operatorname{Re}(f) + i \int_{1}^{+\infty} \operatorname{Im}(f)$

Exemple 6 Convergence et valeur de $\int_{0}^{+\infty} e^{-t} \sin(t) dt$

Théorème 1 RAPPEL : Soit F une fonction croissante sur un intervalle $[a, +\infty]$ où $a \in \mathbb{R}$.

Alors F a une limite en $b + \infty$.

Alors F a une limite en $v + \infty$. Si F est majorée, alors F a une limite $\underline{\text{finie}}$ en $+\infty$, qui vaut $\lim_{x \to +\infty} F(x) = \sup_{x \in [a, +\infty[} (F)$.

Si F n'est pas majorée, alors $\lim_{x\to +\infty} F(x) = +\infty$.

Finalement : (F a une limite finie en $+\infty \iff F$ est majorée) et dans ce cas : $\lim_{x\to b} F(x) = \sup_{x\in[a,+\infty[} (F).$

Proposition 5 (Cas où f est à valeurs réelles positives)

Soit $f:[a;+\infty[\to\mathbb{R} \text{ continue par morceaux et à valeurs } \mathbf{positives}]$.

- Si $\int_{-\infty}^{+\infty} f$ converge, alors $\int_{-\infty}^{+\infty} f \geqslant 0$ (positivité de l'intégrale).
- Si f est continue sur $[a; +\infty[$, et si $\int_{a}^{+\infty} f = 0$ alors f = 0.
- $\int_{a}^{+\infty} f$ converge \Leftrightarrow $\left(x \to \int_{a}^{x} f(t)dt\right)$ est majorée sur $[a; +\infty[$.
- $\int_{a}^{+\infty} f$ diverge \Leftrightarrow $\lim_{x \to \infty} \left(x \to \int_{a}^{x} f(t) dt \right) = +\infty.$
- Soit $g:[a;+\infty[\to\mathbb{R} \text{ continue par morceaux telle que }] \forall t\in[a,+\infty[,\ 0\leq f(t)\leq g(t).$

Alors :
$$\left(\int_a^{+\infty} g(t)dt \text{ converge}\right) \Longrightarrow \left(\int_a^{+\infty} f(t)dt \text{ converge}\right)$$

et
$$\left(\int_a^{+\infty} f(t)dt \text{ diverge}\right) \Longrightarrow \left(\int_a^{+\infty} g(t)dt \text{ diverge}\right)$$

II.2Fonctions intégrables

Définition 5 (Convergence absolue) Soit $f:[a;+\infty[\to \mathbb{K} \text{ continue par morceaux.}]$

On dit que $\int_a^{\infty} f$ converge absolument lorsque $\int_a^{+\infty} |f(t)| dt$ converge.

Remarque 5 Attention, |f| désigne la valeur absolue de f si $\mathbb{K} = \mathbb{R}$ et son module si \mathbb{C} .

Proposition 6 Soit $f:[a;+\infty[\to \mathbb{K} \text{ continue par morceaux.}]$

La convergence absolue de $\int_{0}^{\infty} f$ entraine la convergence de $\int_{0}^{\infty} f$

Preuve On suppose que $\int_a^\infty f$ converge absolument.

Premier cas : la fonction \mathring{f} est à valeurs réelles.

 $-|f| \le f \le |f|$ donc $0 \le f + |f| \le 2|f|$. On pose g(x) = (f + |f|)(x) et h(x) = 2|f(x)|.

Alors $0 \le g \le h$ et $\int_{-\infty}^{+\infty} h(t)dt$ converge.

Donc d'après les théorèmes de comparaison d'intégrales de fonctions positives, on en déduit que $\int_{-\infty}^{+\infty} g(t)dt$ converge,

c'est à dire : $\int_a^{+\infty} f + |f|$ converge. On soustrait alors $\int_a^{+\infty} |f|$ et le tour est joué (on utilise la proposition 3, page 3).

Deuxième cas : f est à valeurs complexes : on écrit f = Re(f) + iIm(f). On sait que $|\text{Re}(f)| \le |f|$ donc par comparaison $\int_{-\infty}^{\infty} |\text{Re}(f)|$ converge absolument. De même pour la partie imaginaire. Ensuite on utilise la proposition 4, page 3.

Définition 6 (Fonction intégrable) Soit $f:[a;+\infty]\to\mathbb{K}$ continue par morceaux.

On dit que f est intégrable sur $[a; +\infty[$ lorsque : $\int_{-\infty}^{\infty} f$ converge absolument

L'ensemble des fonctions intégrables sur $[a; \infty[$ est noté $\mathcal{L}^1([a; +\infty[, \mathbb{K}).$

Remarque 6 Comme l'intégrabilité sur $[a, +\infty[$ ne dépend que du comportement de f au voisinage de $+\infty$, on dit aussi que f est intégrable en $+\infty$.

Exemple 7 La fonction $x \mapsto \frac{\cos(t)}{t^2}$ est-elle intégrable sur $[1, +\infty[$?

Remarque 7 Si f est de signe constant sur $[a; \infty[$, alors : $(f \text{ est intégrable} \iff \int_a^{\infty} f \text{ converge})$.

Remarque 8 f intégrable sur $[a; +\infty[\Rightarrow \int_a^{+\infty} f(t)dt]$ converge. Mais la réciproque est fausse! Exemple 8 Montrer que la fonction $(u \mapsto e^{iu^2})$ n'est pas intégrable sur $[1, +\infty[$.

Montrer que l'intégrale $\int_{1}^{+\infty} e^{iu^2} du$ converge (IPP sur [1, X] puis $X \to +\infty$).

Proposition 7 (Théorèmes de comparaison) Soient $f \in CM([a; +\infty[, \mathbb{K}) \text{ et } g \in CM([a; +\infty[, \mathbb{K})$

- Si $|f| \leq |g|$ alors : $(g \text{ intégrable } \Rightarrow f \text{ intégrable}).$
- Si f = O(g) alors : $(g \text{ intégrable } \Rightarrow f \text{ intégrable})$.
- Si f = o(g) alors : $(g \text{ intégrable} \Rightarrow f \text{ intégrable})$.
- Si $f \underset{+\infty}{\sim} g$ alors : $(g \text{ intégrable } \Leftrightarrow f \text{ intégrable})$.

Exemple 9 Nature de $\int_0^\infty \frac{e^{it}}{\sqrt{ch(t)}} dt$, de $\int_1^\infty \frac{\sin(\ln t)}{t^2} dt$

Exemple 10 • Montrer que l'intégrale $\int_1^{+\infty} \frac{dt}{t^2(1+t^2)}$ est convergente et la calculer.

• Calculer $\int_{1}^{+\infty} \frac{|x-1|}{x^3} dx$.

Fonctions intégrables de référence

 $\begin{array}{lll} \textbf{Proposition 8 Soit } \alpha \in \mathbb{R}. \\ \left(\int_0^\infty e^{-\alpha t} dt \text{ converge} &\iff \alpha > 0 \right) & \text{ et } & \left(\qquad \underbrace{\int_1^\infty \frac{1}{t^\alpha} dt}_{} & \text{ converge} &\iff \alpha > 1 \right) \\ \end{array}$

Autre formulation:

$$\left((t \mapsto e^{-\alpha t}) \text{ est intégrable sur } [0, +\infty[\right) \Longleftrightarrow \quad \alpha > 0$$

$$\left(\left(t \mapsto \frac{1}{t^{\alpha}} \right) \text{ est intégrable sur } [1, +\infty[\right) \Longleftrightarrow \alpha > 1$$

Exemple 11 Quelle est la nature de l'intégrale $\int_{1}^{+\infty} \frac{e^{1/t}}{1+t^2} dt$?

IIIGénéralisation aux autres types d'intervalles

III.1 **Définitions**

Intégrales sur un intervalle [a, b]

Définition 7 Soit $a \in \mathbb{R}$ et soit $b \in \mathbb{R} \cup \{+\infty\}$. Soit $f \in CM([a, b[, \mathbb{K}). \text{ Pour } x \in [a, b[, \text{ on pose } F(x) = \int^x f(t)dt.$

Si F a une limite <u>finie</u> à gauche en b^- , on dit que **l'intégrale** $\int_0^b f(t)dt$ **converge**.

Notation lorsqu'elle converge : $\lim_{x\to b} \int_{0}^{x} f(t)dt = \int_{0}^{b} f(t)dt$.

Dans les deux cas, on dit que $\int_{a}^{b} f(t)dt$ est **impropre en** b.

Ainsi : lorsque $f \in CM([a, b[, \mathbb{K}),$ la nature de $\int_a^b f$ ne dépend que du comportement de f au voisinage de b.

III.1.b Intégrale sur un intervalle de la forme [a, b]

Définition 8 Soit $a \in \mathbb{R} \cup \{-\infty\}$ et soit $b \in \mathbb{R}$. Soit $f \in CM(]a,b],\mathbb{K})$. Pour $x \in]a,b]$, on pose $G(x) = \int_{-\infty}^{b} f(t)dt$.

Si G a une limite <u>finie</u> à droite en a^+ , on dit que **l'intégrale** $\int_a^b f(t)dt$ converge.

Notation: $\int_a^b f = \int_a^b f(t)dt = \lim_{x \to a^+} \int_x^b f(t)dt.$

Si G n'a pas de limite <u>finie</u> en a^+ , on dit que l'intégrale $\int_a^b f(t)dt$ est **divergente**.

Dans les deux cas, on dit que $\int_{a}^{b} f(t)dt$ est une intégrale **impropre en** a.

Exemple 13 Indiquer la nature des intégrales suivantes : $\int_0^1 \frac{dt}{\sqrt{t}}$, $\int_{-\infty}^1 e^t dt$ et $\int_0^2 \frac{1}{2\sqrt{t}} dt$.

Remarque 10 Soit $a \in \mathbb{R} \cup \{-\infty\}$ et soit $b \in \mathbb{R}$. Lorsque $f \in CM(]a,b],\mathbb{K})$, la nature de $\int_{-\infty}^{\infty} f$ ne dépend que

Intégrales sur un intervalle ouvert III.1.c

Dans ce paragraphe, on s'intéresse à des intégrales sur un intervalle |a;b| avec $-\infty \le a < b \le +\infty$.

Définition 9 Soit $f \in CM(]a, b[, \mathbb{K})$. On dit que **l'intégrale** $\int_{a}^{b} f(t)dt$ converge lorsque :

il existe $c \in]a, b[$ tel que $\int_a^c f(t)dt$ **et** $\int_a^b f(t)dt$ convergent.

Dans ce cas, on pose : $\int_a^b f(t)dt = \int_a^c f(t)dt + \int_c^b f(t)dt$

Dans le cas contraire, on dit que $\int_{a}^{b} f(t)dt$ diverge.

Dans les deux cas, on dit que l'intégrale $\int_a^b f(t)dt$ est doublement impropre (en a et en b).

Remarque 11 D'après les remarques 3, 9 et 10, la valeur de c est indifférente.

Remarque 12 Dans ce cas, on étudie la convergence de l'intégrale $\int_{0}^{\infty} f$ en séparant l'intégrale en deux et on effectue

une étude séparée sur chacune des bornes. Exemple 14 Nature de $\int_{-\infty}^{+\infty} \frac{1}{1+t^2}$? de $\int_{0}^{\infty} e^{it} \ln(t) e^{-2t} dt$? de $\int_{-\infty}^{+\infty} e^{-|t|} dt$?

Exemple 15 Soit g une fonction continue sur $[a, +\infty[$ telle que $\int_a^{+\infty} g(t)dt$ converge.

Justifier que $\lim_{x \to +\infty} \int_{-\infty}^{+\infty} g(t)dt = 0$. Montrer que $\lim_{x \to +\infty} \int_{-\infty}^{2x} g(t)dt = 0$.

Définition 10 Soient f et g continues par morceaux sur I (ouvert ou semi-ouvert). On dit que $\int_{0}^{b} f(t)dt$ et $\int_{0}^{b} g(t)dt$ sont de même nature si elles sont toutes les deux convergentes ou bien toutes les deux divergentes.

III.2 **Propriétés**

Toutes les propriétés vues pour les intégrales sur un intervalle $[a, +\infty]$ se généralisent aux intervalles de la forme [a,b] (où b est réel strictement supérieur à a) en remplaçant $+\infty$ par b.

Nous énonçons dans ce paragraphe les propriétés analogues pour les intervalles de la forme [a, b] avec $a \in \mathbb{R} \cup \{-\infty\}$.

Proposition 9 (Linéarité

 $E' = \left\{ f :]a;b] \to \mathbb{K}, \text{ telles que } \int_a^b f \text{ converge} \right\} \text{ est un sous-espace vectoriel de } CM(]a;b], \mathbb{K});$

et l'application $f \to \int_{-\infty}^{b} f$ est linéaire.

Proposition 10 (Cas où $\mathbb{K} = \mathbb{C}$) Soit $f:]a;b] \to \mathbb{C}$ continue par morceaux.

L'intégrale $\int_a^b f$ converge si et seulement si $\int_a^b \text{Re}(f)$ et $\int_a^b \text{Im}(f)$ convergent. Dans ce cas, on a : $\int_a^b f = \int_a^b \text{Re}(f) + i \int_a^b \text{Im}(f)$

Exemple 16 Convergence de $\int_{0}^{1} \frac{e^{it}}{\sqrt{t}} dt$?

Proposition 11 (Cas où f est à valeurs réelles positives)

Soit $f:[a,b]\to\mathbb{R}$ continue par morceaux et à valeurs **positives.**

- Si $\int_{-}^{b} f$ converge, alors $\int_{-}^{b} f \ge 0$ (positivité de l'intégrale).
- Si f est **continue** sur]a;b], et si $\int_{a}^{b} f = 0$ alors f = 0.
- $\int_a^b f$ converge \Leftrightarrow $\left(x \to \int_x^b f(t)dt\right)$ est majorée sur]a;b].
- $\int_a^b f$ diverge $\Leftrightarrow \lim_{x \to a^+} \left(x \to \int_x^b f(t) dt \right) = +\infty.$
- Soit $g:]a; b] \to \mathbb{R}$ continue par morceaux telle que $\forall t \in]a; b], 0 \le f(t) \le g(t)$. Alors

$$\left(\int_a^b g(t)dt \text{ converge}\right) \Longrightarrow \left(\int_a^b f(t)dt \text{ converge}\right) \quad \text{ et } \quad \left(\int_a^b f(t)dt \text{ diverge}\right) \Longrightarrow \left(\int_a^b g(t)dt \text{ diverge}\right)$$

Définition 11 (Convergence absolue) Soit $f:[a;b] \to \mathbb{K}$ continue par morceaux.

On dit que $\int_a^b f$ converge absolument lorsque $\int_a^b |f(t)| dt$ converge.

Proposition 12 Soit $f \in CM(]a;b],\mathbb{K})$. La convergence **absolue** de $\int^b f$ entraı̂ne la convergence de

Définition 12 (Fonction intégrable) Soit $f:[a;b] \to \mathbb{K}$ continue par morceaux.

 $\int_{0}^{b} f$ converge absolument On dit que f est intégrable sur]a;b] (ou intégrable en a), lorsque :

L'ensemble des fonctions intégrables sur [a;b] est noté $\mathcal{L}^1([a,b],\mathbb{K})$.

Proposition 13 (Théorèmes de comparaison) Soient f et g continues par morceaux $[a;b] \to \mathbb{K}$.

- $|f| \leq |g|$ alors g intégrable sur $[a;b] \Rightarrow f$ intégrable sur [a;b].
- Si f = O(g) alors g intégrable en $a \Rightarrow f$ intégrable en a.
- Si $f = a \ o(g)$ alors g intégrable en $a \Rightarrow f$ intégrable en a. Si $f \sim a \ g$ alors g intégrable en $a \Leftrightarrow f$ intégrable en a.

Exemple 17 Nature des intégrales $I = \int_0^1 (\ln(t))^2 \cos(t) dt$, $J = \int_{-1}^1 \frac{dt}{\sqrt{1-t^2}}$ et $K = \int_0^{+\infty} \frac{e^{-x}}{1+x^2} dx$.

Proposition 14 (Fonctions intégrables de référence) Soit $\alpha \in \mathbb{R}$ et a et b deux réels tels que a < b.

- La fonction ln est intégrable sur]0,1]. Ainsi $\int_0^1 \ln(t)dt$ converge.
- La fonction $\left(t \mapsto \left(\frac{1}{t^{\alpha}}\right)\right)$ est intégrable sur]0,1 si et seulement si $\alpha < 1$.

Ainsi $\int_{0}^{1} \frac{1}{t^{\alpha}} dt$ converge $\iff \alpha < 1$ (intégrale de Riemann)

• La fonction $(t \mapsto e^{\alpha t})$ est intégrable sur $]-\infty,0]$ si et seulement si $\alpha>0$.

Ainsi $\int_{0}^{0} e^{\alpha t} dt$ converge $\iff \alpha > 0$.

• La fonction $\left(t \mapsto \frac{1}{|t|^{\alpha}}\right)$ est intégrable sur $]-\infty,-1]$ si et seulement si $\alpha>0$.

Ainsi $\int_{-\infty}^{1} \frac{1}{|t|^{\alpha}} dt$ converge $\iff \alpha > 1$ (intégrale de Riemann)

IV Propriétés de l'integrale sur un intervalle quelconque

Dans cette partie I désigne un intervalle de \mathbb{R} d'intérieur non vide.

Proposition 15 (Linéarité)

L'ensemble $\left\{f:I\to\mathbb{K},\quad \text{t.q} \quad \int_I f \text{ converge}\right\}$ est un sous espace vectoriel de $CM(I,\mathbb{K})$;

et l'application $f \to \int_{\mathcal{X}} f$ est linéaire.

L'ensemble des fonctions continues par morceaux sur I et intégrables sur I est noté $\mathcal{L}^1(I,\mathbb{K})$.

 $\mathcal{L}^1(I,\mathbb{K})$ est un sous espace vectoriel de $CM(I,\mathbb{K})$.

Proposition 16 (Cas où f est à valeurs réelles) Soit $f: I \to \mathbb{R}$ continue par morceaux.

- Si $\int_I f$ converge et si f est positive, alors $\int_I f \ge 0$.
- Si f est continue et positive sur I, et si $\int_I f = 0$ alors f = 0.
- Si f et g sont continues par morceaux sur I, telles que $f \leqslant g$ et telles que $\int_I f$ et $\int_I g$ convergent, alors $\int_I f \leqslant \int_I g$

Proposition 17 (Inégalité triangulaire) Soit f continue par morceaux et intégrable sur I, alors : $\left| \int_{I} f \right| \leqslant \int_{I} |f|$

Proposition 18 Relation de Chasles : Soit f continue par morceaux sur I, telle que $\int_I f$ converge.

Soient x, y et z, trois points ou extrémités de I.

Alors les intégrales $\int_x^{\hat{y}} f$, $\int_x^z f$ et $\int_z^y f$ convergent et $\int_x^y f = \int_x^z f + \int_z^y f$

Proposition 19 (Résultat spécifique aux intervalles bornés) Soit $f:]a;b] \to \mathbb{K}$ continue par morceaux. Si f est bornée sur [a;b], alors f est intégrable sur [a;b].

Exemple 18 Nature de $\int_0^1 \sin\left(\frac{1}{t}\right) dt$? de $\int_0^1 x \ln(x) dx$?

V Calculs d'intégrales

V.1 Technique déjà à notre disposition si f est continue sur I

Si $f \in \mathcal{C}^0(I)$ et l'on connait une primitive F de f , on peut écrire

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt = \lim_{x \to a^{+}} (F(c) - F(x)) + \lim_{y \to b^{-}} (F(y) - F(c)) = \lim_{y \to b^{-}} F(y) - \lim_{x \to a^{+}} F(x) = \lim_{x \to a^{+}} F(x) + \lim_{x \to a^{+}} F(x) = \lim_{x \to a^{+}} F($$

si toutefois ces limites sont finies évidemment....

N.B. : il n'est pas nécessaire de calculer F(c). Il est toutefois très conseillé de décomposer le calcul : le correcteur doit être convaincu que vous avez examiné la convergence de l'intégrale impropre EN a ET EN b.

V.2 Utilisation précautionneuse de la linéarité

Si f s'écrit comme combinaison linéaire de fonctions **dont les intégrales convergent** sur [a,b[, on peut écrire

$$\int_a^b f(t)dt = \int_a^b (\alpha g(t) + \beta h(t))dt = \alpha \int_a^b g(t)dt + \beta \int_a^b h(t)dt$$

Attention à bien justifier ceci en notant/prouvant que les intégrales $\int_a^b g(t)dt$ et $\int_a^b h(t)dt$ convergent!

Exemple 19 Convergence et calcul de $\int_0^{+\infty} \left(\frac{t}{(1+t^2)^2} + te^{-t^2}\right) dt$

Intégration par parties sur un intervalle quelconque

Théorème 2 Soient u et v deux fonctions <u>de classe C^1 </u> sur]a,b[. On suppose que la fonction $t\mapsto u(t)v(t)$ **admet une limite finie en** a **et en** b. Alors les intégrales $\int_a^b u'(t)v(t)dt$ et $\int_a^b u(t)v'(t)dt$ sont de même nature.

En cas de convergence, on a de plus : $\int_a^b u(t)v'(t)dt = \lim_{t \to b^-} (u(t)v(t)) - \lim_{t \to a^+} (u(t)v(t)) - \int_a^b u'(t)v(t)dt$

ce que l'on peut aussi écrire : $\int_a^b u(t)v'(t)dt = [u(t)v(t)]_a^b - \int_a^b u'(t)v(t)dt$

Exemple 20 Justifier la convergence de $I = \int_{0}^{+\infty} te^{-t} dt$ et calculer I.

Remarque 13 Il peut arriver qu'on ne puisse pas utiliser ce théorème, mais qu'une intégration par parties soit néanmoins judicieuse. Prenons par exemple $I = \int_0^1 \frac{\ln(t)}{(1+t)^2} dt$.

Commencer par justifier l'existence de

Pour calculer I, on souhaite ensuite effectuer une intégration par parties en posant :

$$u(t) = \ln(t)$$
 et $v'(t) = \frac{1}{(1+t)^2}$ et enfin $v(t) = -\frac{1}{1+t}$.

Mais on ne peut pas appliquer le théorème car $\lim_{t\to 0} u(t)v(t) = +\infty$.

On peut toutefois écrire : $I = \lim_{x \to 0} \int_{x}^{1} \frac{\ln(t)}{(1+t)^2} dt$.

Calculer $\int_{-\infty}^{1} \frac{\ln(t)}{(1+t)^2} dt$ puis faire tendre x vers 0 pour trouver I.

V.4 Changement de variable

Théorème 3 Etant données une fonction f continue sur [a, b] et une fonction $\varphi: [\alpha, \beta] \to [a, b]$ bijective, strictement monotone et de classe C^1 , les intégrales

$$\int_{0}^{b} f(t)dt \text{ et } \int_{0}^{\beta} f(\varphi(u)) |\varphi'(u)| du$$

sont de même nature et égales en cas de convergence.

Preuve (dém. non exigible) Démontrons le théorème dans le cas où φ est strictement croissante. Si F est une primitive de f, alors $F \circ \varphi$ est une primitive de $u \mapsto \varphi'(u) f \circ \varphi(u)$.

Soit $c \in]a, b[$. On s'intéresse tout d'abord à $\int_a^c f(t)dt$. Le théorème de la bijection monotone permet d'écrire que $a = \lim_{t \to \alpha} \varphi(t)$. Soit $X \in]a, b[$. On pose $x = \varphi(X)$ et $c = \varphi(C)$.

$$\int_{X}^{C} f \circ \varphi(u) \varphi'(u) du = [F \circ \varphi(C) - F \circ \varphi(X)] = [F(x) - F(c)] = \int_{x}^{c} f(t) dt$$

Ainsi l'intégrale $\int_{X}^{C} f \circ \varphi(u) \varphi'(u) du$ converge si et seulement si $F \circ \varphi(X)$ a une limite quand X tend vers α , ce qui revient à dire que x tend vers a, car φ bijective et monotone. Et $F \circ \varphi(X) \underset{X \to a}{\to} L \iff F(x) \underset{x \to a}{\to} L$.

Dans le cas où ces deux intégrales convergent, elles sont donc bien égales. Puis on procède de même en b...

Démonstration analogue si φ est strictement décroissante.

Remarque 14 En pratique, si φ est croissante, alors $\varphi'>0$ et donc l'égalité s'écrit :

$$\int_{a}^{b} f(t)dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du$$

Et si φ est décroissante, alors $\varphi' < 0$ et donc l'égalité s'écrit :

$$\int_a^b f(t)dt = -\int_\alpha^\beta f(\varphi(u)) \; \varphi'(u) \; du = \int_\beta^\alpha f(\varphi(u)) \; \varphi'(u) \; du$$

1. Effectuer le changement de variable $t = \sqrt{u}$ dans l'intégrale $\int_{\hat{a}}^{+\infty} e^{-t^2} dt$. Exemple 21

- 2. Montrer que $\int_{1}^{2} \frac{dt}{(t-1)^{\alpha}}$ converge si et seulement si
- 3. Soit $I = \int_0^{\pi/2} \frac{dt}{1 + \cos^2(t)}$.
 - (a) Justifier l'existence de I.
 - (b) Effectuer le changement de variable $u = \tan(t)$ dans l'intégrale I, après avoir justifié qu'il est licite.
 - (c) Calculer I.

Proposition 20 (Intégrales de Riemann sur un intervalle borné.) Soit deux réels a < b.

Les intégrales $\int_a^b \frac{1}{(t-a)^{\alpha}} dt$ et $\int_a^b \frac{1}{(b-t)^{\alpha}} dt$ convergent si et seulement si $\alpha < 1$.

Exemple 22 Nature de $\int_{1}^{3} \frac{1}{(3-t)^{0.3}} dt$.

Remarque 15 De même : la fonction $x \mapsto f(x)$ est intégrable en $a^+ \iff t \mapsto f(a+t)$ est intégrable en 0^+ . Et : $x \mapsto f(x)$ est intégrable en $b^- \iff t \mapsto f(b-t)$ intégrable en 0^+ .

VI Conclusion

Etude de $\int_{r}^{b} f(t)dt$ ou de $\int_{r} f(t)dt$ où I est un intervalle d'extrémités a et b ($a = \inf(I)$ et $b = \sup(I)$).

- 1. Reconnaître une intégrale impropre.
 - (a) si I n'est pas borné, c'est une intégrale impropre.
 - (b) Si I est borné et si f est continue sur [a,b] ce n'est pas une intégrale impropre. Il n'y a pas de convergence à justifier.
 - (c) Si f est continue sur [a, b] ou [a, b] ou [a, b], sans l'être sur [a, b], c'est une intégrale impropre dont il faut justifier la convergence. Avant tout chose, on précise si elle est impropre en a, en b, ou les deux. Si I =]a, b[, on étudie séparément la convergence en a et en b, autrement dit, on étudie $\int_{a}^{c} f$ et $\int_{a}^{b} f$ séparément (avec $c \in]a, b[$)
- 2. Pour montrer que $\int_{-b}^{b} f(t)dt$ converge :
 - (a) Si I = [a, b[, on peut montrer que $\left(x \mapsto \int_{-\infty}^{x} f(t)dt\right)$ a une limite finie quand $x \to b^{-}$
 - (b) Si f est positive, on trouve g intégrable telle que $0 \le f \le g$.
 - (c) Si f est positive, on trouve g intégrable telle que $f \sim g$.
 - (d) On peut montrer que la fonction f est intégrable (\Rightarrow items suivant)
- 3. Pour montrer que f est intégrable :
 - (a) On trouve g réelle positive intégrable sur I, telle que $|f| \leq g$.
 - (b) Si I = [a, b[. On trouve g réelle positive intégrable telle que $|f| \sim g$.
 - (c) Si I = [a, b[. On trouve g réelle positive intégrable telle que $f \underset{t \to b}{=} O(g(t))$
 - (d) Si I = [a, b[. On trouve g réelle positive intégrable telle que $f \underset{t \to b}{=} o(g(t))$
- 4. Techniques pour calculer une intégrale impropre, par exemple pour I = [a, b[.
 - (a) On calcule $\int_{-\infty}^{\infty} f$ puis on fait tendre x vers b.
 - (b) Changement de variable. Bien vérifier que le changement de variable φ est de classe \mathcal{C}^1 , strictement monotone,
 - (c) Utilisation **précautionneuse** de la linéarité : pour écrire $\int_{\mathcal{C}} (f + \lambda g) = \int_{\mathcal{C}} f + \lambda \int_{\mathcal{C}} g$, il faut que $\int_{\mathcal{C}} f$ et $\int_{\mathcal{C}} g$ convergent.
 - (d) Integration par parties sur I = [a, b[par exemple, et on veut intégrer f() = u(t)v'(t).
 - si u(t)v(t) a des limites finies aux bornes, on utilise le théorème d'IPP.
 - On écrit l'IPP entre a et x et on fait tendre x vers b.
 - (e) On se laisse guider par l'énoncé...

Table des matières

Ι	Fonctions continues par morceaux	1	
	I.1 Fonction continue par morceaux sur un segment	1	
	I.2 Intégrale sur un segment	1	
	I.3 Propriétés de l'intégrale d'une fonction continue par morceaux sur un segment		
	$ {\rm I.4} {\rm Fonction \ continue \ par \ morceaux \ sur \ un \ intervalle \ quelconque} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	2	
II	Intégrale généralisée sur un intervalle de la forme $[a,+\infty[$.	2	
	II.1 Généralités	2	
	II.2 Fonctions intégrables		
	II.3 Fonctions intégrables de référence		
III Généralisation aux autres types d'intervalles		5	
	III.1 Définitions	5	
	III.1.a Intégrales sur un intervalle $[a,b[$	5	
	III.1.b Intégrale sur un intervalle de la forme $]a,b]$		
	III.1.c Intégrales sur un intervalle ouvert	6	
	III.2 Propriétés	6	
I	Propriétés de l'integrale sur un intervalle quelconque	8	
\mathbf{v}	Calculs d'intégrales	8	
	V.1 Technique déjà à notre disposition si f est continue sur I	8	
	V.2 Utilisation précautionneuse de la linéarité		
	V.3 Intégration par parties sur un intervalle quelconque		
	V.4 Changement de variable		
	$V.5 \ \ Approfondissement: Etude d'intégrales semi-convergente \ \ . \ . \ . \ . \ . \ . \ . \ . \ . $		
\mathbf{V}	VI Conclusion		