Partie 1 : Révisions

* Exercice 1 Exercice de base.

Donner des primitives des fonctions suivantes : $(x \mapsto \frac{1}{x^2 + x + 1}), (x \mapsto \frac{x + 5}{x^2 + x + 1})$ et $(x \mapsto \frac{x}{x^2 - 5x + 6})$.

* Exercice 2 Calculer les intégrales suivantes :

1.
$$\int_0^{\pi/2} \sin^3(x) \cos(x) dx$$
 2.
$$\int_0^x t \sqrt{1 + t^2} dt$$
 3.
$$\int_1^x \frac{1}{t(1 + \ln(t))^3} dt$$
 4.
$$\int_1^x \frac{1}{\sqrt{t(t+1)}} dt$$
 5.
$$\int_1^x \frac{\sin(2t)}{1 + \cos^2(t)} dt$$
 6.
$$\int_0^1 \sqrt{1 - t^2} dt$$

Exercice 3 Calculer les intégrales suivantes :

1.
$$\int_{1}^{\sqrt{2}} \frac{dx}{x(x^{2}+1)}$$
4.
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin(x)dx}{1+2\cos(x)}$$
7.
$$\int_{0}^{1} \ln(1+x^{2})dx$$
10.
$$\int_{0}^{1} \max(x, \frac{1}{3})dx$$
2.
$$\int_{-1}^{1} \frac{dx}{x^{2}-4}$$
5.
$$\int_{0}^{\frac{\pi}{4}} \frac{\sin(x)(1-\sin^{2}(x))dx}{\cos^{3}(x)}$$
8.
$$\int_{a}^{b} \frac{dx}{x \ln^{n}(x)}$$
où $n \in$
11.
$$\int_{0}^{1} \left|x-\frac{1}{3}\right| dx$$
3.
$$\int_{0}^{1} \frac{2x+3}{2x+1} dx$$
6.
$$\int_{1}^{2} \ln^{2}(x)dx$$
9.
$$\int_{1}^{2} \frac{1-\ln(x)}{x} dx$$
12.
$$\int_{1}^{e^{\pi}} \cos(\ln(x))dx$$
(IPP)

Exercice 4 Calculer les intégrales suivantes : $\int_{-1}^{1/2} \sqrt{1-t^2} dt$, $\int_{0}^{x} \sqrt{1-t^2} dt$,

$$\int_0^x \frac{\tan(t)}{1 + \sin^2(t)} dt, \qquad \int_0^x \sqrt{4 - t^2} dt, \qquad \int_0^x \sqrt{t^2 - 4} \ dt$$

$$f(x) = \int_{x}^{2x} \frac{1}{t + \sin(t)} dt$$

- 1. Préciser l'ensemble de définition de f.
- 2. Montrer que f est paire.
- 3. Montrer que f est dérivable sur \mathbb{R}^* et calculer la dérivée de f.
- 4. Déterminer la limite de f en $+\infty$.
- 5. Montrer que f admet en zéro la limite $\frac{\ln(2)}{2}$. En déduire que f se prolonge par continuité en zéro.
- * Exercice 6 On définit une fonction f par : $f(x) = \int_x^{\frac{1}{x}} \frac{(1-t^2)}{(1+t^2)\sqrt{1+t^4}} dt$. Déterminer son ensemble de définition, et justifier que f est dérivable sur \mathcal{D}_f .

Montrer que, pour $x \neq 0$, $f(x) = f\left(\frac{1}{x}\right)$ (changement de variables). En déduire que f est identiquement nulle.

Exercice 7 Déterminer l'ensemble de définition/dérivation de chacune des fonctions suivantes et calculer leurs dérivées :

$$F_1(x) = \int_2^x \frac{1}{\sqrt{t^2 - 1}} dt, \qquad F_2(x) = \int_{-3}^x \frac{1}{\sqrt{t^2 - 1}} dt, \qquad F_3(x) = \int_x^{x^2} \frac{1}{\ln(t)} dt$$

<u>Exercice 8</u> Grand classique : Lemme de Lebesgue.

Soit f une fonction de classe C^1 sur un segment [a,b]. Montrer que : $\lim_{n\to+\infty}\int_{-\infty}^{b}f(t)\cos(nt)dt=0$.

 \heartsuit * Exercice 9 On pose $f(x) = \int_{x}^{x^2} \frac{1}{1+t^2} dt$. Donner un développement limité à l'ordre 4 en 0.

- **Exercice 10** Soit p et q des entiers de \mathbb{N} , on pose $B(p,q) = \int_{\mathbb{R}}^{1} t^{p} (1-t)^{q} dt$.
 - 1. Comparer B(p,q) et B(q,p).
 - 2. On suppose $p \ge 1$, montrer que $B(p,q) = \frac{p}{q+1}B(p-1,q+1)$.
 - 3. Pour tout $n \in \mathbb{N}$, calculer B(0,n) et en déduire B(p,q).
 - 4. Donner la valeur de $\int_{0}^{\pi/2} (\sin x)^{2q+1} (\cos x)^{2p+1} dx$. (Indication : poser $u = \sin^2(x)$) TOURNER LA PAGE
 - 5. Montrer que $B(p,p) \leq (\frac{1}{4})^p$ et donner la limite de (B(p,p)).
- Exercice 11 Calculer les limites des suites suivantes :

1.
$$u_n = \sum_{k=1}^n \frac{n}{n^2 + k^2}$$
 3. $u_n = n \sum_{k=n}^{2n-1} \frac{1}{k^2}$ 2. $u_n = \sum_{k=1}^n \frac{2n+k}{n^2 + k^2}$ 4. $u_n = \frac{1}{n} \sqrt[n]{(n+1)(n+2) \cdots (2n-1)(2n)}$

Exercice 12 Trouver un équivalent (quand $n \to +\infty$) des suites suivantes :

$$x_n = \sum_{k=1}^n \sin\left(\frac{k\pi}{n}\right)$$
 et $y_n = \sum_{k=0}^n \frac{1}{k^2 + (n-k)^2}$.

Exercice 13 Soit p un entier naturel, on souhaite montrer que $\sum_{n=0}^{\infty} k^{p} \underset{n \to \infty}{\sim} \frac{n^{p+1}}{p+1}$.

Vérifier cette relation pour $p \in \{0, 1, 2, 3\}$. Puis prouver le résultat annoncé en utilisant $\int_{a}^{b} x^{p} dx$.

Partie 2 : Intégrales impropres (ou généralisées)

Exercice 14 Soit $\phi:[0;1] \to \mathbb{R}$ définie par : $\forall x \in [0;1], \quad \phi(x) = x^3 \sin(1/x)$.

- 1. Montrer que ϕ admet un prolongement continu sur [0;1], on le note encore ϕ . Que vaut $\phi(0)$? Montrer que $\phi([0;1]) \subset [-1;1]$.
- 2. Pour tout réel $x \in [-1, 1]$, on pose $f(x) = \lfloor x \rfloor$. Montrer que f est continue par morceaux.
- 3. Pour tout entier n non nul, on pose $u_n = f \circ \phi(\frac{1}{n\pi})$ et $v_n = fo\phi(\frac{2}{(4n-1)\pi})$. Déterminer les limites des suites (u_n) et (v_n) . La fonction $f \circ \phi$ est-elle continue par morceaux?

- Exercice 15 On définit la fonction f continue et affine par morceaux sur $[0; +\infty[$ par : Pour tout entier n non nul, f est affine sur les intervalles $[n-\frac{1}{4^n}, n]$ et $[n; n+\frac{1}{4^n}]$.
 - Pour tout entier n non nul, $f(n-\frac{1}{4^n})=f(n+\frac{1}{4^n})=0$ et $f(n)=2^n$. En dehors des intervalles $[n-\frac{1}{4^n},n]$ et $[n;n+\frac{1}{4^n}]$, f est nulle.

Montrer que $\int_{0}^{\infty} f(t)dt$ converge.

Exercise 16 $\forall t \ge 1$, on pose $f(t) = \frac{t - \lfloor t \rfloor}{t^2}$

- 1. Montrer que f est continue par morceaux sur $[1; +\infty[$ et que $\int_{\cdot}^{\infty} f(t)dt$ converge.
- 2. Justifier l'existence de la constante d'Euler $\gamma = \lim_{n \to \infty} \left(\sum_{i=1}^{n} \frac{1}{k} \ln(n) \right)$.
- 3. Calculer $\int_{1}^{\infty} f(t)dt$ en fonction de γ .

Exercice 17 Déterminer la nature des intégrales suivantes :

$$I_{1} = \int_{0}^{\pi/2} \frac{1}{\sqrt{\cos(x)}} dx \qquad I_{2} = \int_{0}^{\infty} \frac{\arctan(x)}{e^{x} - 1} dx \qquad I_{3} = \int_{1}^{e} \frac{1}{\ln(u)} du$$

$$I_{4} = \int_{0}^{\infty} \frac{1}{u^{\alpha}(1 + u)^{\beta}} du \qquad I_{5} = \int_{1}^{\infty} \frac{\ln(t^{2} - t)}{(1 + t)^{2}} dt \qquad I_{6} = \int_{0}^{\infty} \frac{\sin(x)}{x^{2}} dx$$

$$I_{7} = \int_{-1}^{1} \frac{1}{(t + 2)\sqrt{1 - t^{2}}} dt \qquad I_{8} = \int_{0}^{1} \frac{\cos(u)}{\sqrt{u}} du \qquad I_{9} = \int_{0}^{1} \frac{\ln(u)}{u^{\alpha}} du$$

Exercice 18 Étudier la convergence de $\int_0^{+\infty} \ln\left(\frac{x}{1-e^{-x}}\right) \frac{e^{ax}}{x} dx$ pour $a \in \mathbb{R}$.

Exercice 19 Calculer $\int_0^{\pi/2} \frac{dx}{\cos x + 2\sin x + 3}$ à l'aide du changement de variable $t = \tan(x/2)$.

Exercice 20 Existence et calcul de $\int_0^{+\infty} xe^{-\lfloor x\rfloor} dx$.

N.B. : vers la fin du calcul, il pourra être utile de démontrer que : $\forall x \in]-1,1[,[,\sum_{k=1}^{\infty}kx^{k-1}=\frac{1}{(1-x)^2}]$

Exercice 21 Convergence et calcul de $\int_0^\infty \ln\left(1 + \frac{1}{t^2}\right) dt$.

Exercice 22 Convergence et calcul de $\int_{2/\pi}^{\infty} \frac{\cos(1/t)}{t^2 \sqrt{\sin(1/t)}} dt$. (Indication : changement de variable u = 1/t).

Exercice 23 L'intégrale $\int_0^\infty \frac{e^{it}}{1+it} dt$ est-elle absolument convergente? Convergente?

Exercice 24 Fonction Gamma:

- 1. Montrer que pour tout réel x > 0, l'intégrale $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ est convergente.
- 2. Montrer que pour réel x > 0, on a : $\Gamma(x+1) = x\Gamma(x)$.
- 3. En déduire la valeur de $\Gamma(n)$ pour tout entier n non nul.

Exercice 25 Donner un équivalent de $S_n = \sum_{k=2}^n \frac{1}{k \ln(k)}$.

Exercice 26 Donner un équivalent de $u_n = \frac{1}{(\ln 2)^2 + (\ln 3)^2 + \dots + (\ln(n))^2}$. La série $\sum u_n$ est-elle convergente?

Exercice 27 Soit, pour $n \ge 1$, $I_n = \int_0^{+\infty} \frac{1}{(1+x^4)^n} dx$.

- 1. (a) Démontrer l'existence de I_n .
 - (b) Trouver une relation entre I_{n+1} et I_n .
 - (c) Montrer que $\ln(I_{n+1}) = \ln(I_1) + \sum_{k=1}^{n} \ln(1 \frac{1}{4n}).$
 - (d) Trouver la limite de I_n quand $n \to \infty$.
- 2. En posant u=1/x, montrer que $I_1=\frac{1}{2}\int_0^{+\infty}\frac{1+u^2}{1+u^4}du$. Puis, en posant v=u-1/u, calculer I_1 .
- 3. Calculer I_n .

Exercice 28 Intégrale de Gauss : On note $I = \int_0^\infty e^{-x^2} dx$.

Pour tout entier n, $I_n = \int_0^{\pi/2} (\sin(x))^n dx$ et $J_n = \int_0^1 (1 - x^2)^n dx$ et pour n non nul, $K_n = \int_0^\infty \frac{1}{(1 + x^2)^n} dx$

- 1. Justifier la convergence de I.
- 2. Retrouver rapidement que, pour tout entier $n \ge 2$, on a $nI_n = (n-1)I_{n-2}$. En déduire que, pour tout entier n non nul, on a $nI_nI_{n-1} = \frac{\pi}{2}$.
- 3. Montrer que $I_n \sim I_{n-1}$ (indication : remarquer que la suite (I_n) décroit). En déduire que $I_n \sim \sqrt{\frac{\pi}{2n}}$.
- 4. A l'aide d'un changement de variable, exprimer J_n en fonction des intégrales I_k . A l'aide du changement $x = \tan(t)$, exprimer K_n en fonction des I_k .
- 5. Montrer que pour tout réel x, on a : $1-x^2 \leqslant e^{-x^2} \leqslant \frac{1}{1+x^2}$. En déduire que, pour tout entier $n \geqslant 2$, on a : $I_{2n+1} \leqslant \frac{I}{\sqrt{n}} \leqslant I_{2n-2}$. Puis montrer que $I = \frac{\sqrt{\pi}}{2}$

Exercice 29

- 1. Pour tout réel $x \in]0;\pi]$, on pose $f(x) = \frac{1}{x} \frac{1}{2\sin(x/2)}$. Montrer que f se prolonge en une fonction de classe C^1 sur $[0;\pi]$.
- 2. Pour tout entier n, on pose $I_n = \int_0^\pi \frac{\sin(\frac{2n+1}{2}t)}{\sin(t/2)} dt$. Justifier l'existence de I_n . Calculer $I_{n+1} - I_n$; puis I_n .
- 3. Montrer que pour toute fonction g de classe C^1 sur un segment [a;b], on a $\lim_{\lambda \to +\infty} \int_a^b g(x) \sin(\lambda x) dx = 0$.
- 4. Montrer que l'intégrale $I = \int_0^\infty \frac{\sin(t)}{t} dt$ converge et déduire des questions précédentes la valeur de I

Partie 3: exercices d'oral

Exercice 30 N.B.: les deux questions sont indépendantes.

- 1. La fonction $x \mapsto \frac{e^{-x}}{\sqrt{x^2-4}}$ est-elle intégrable sur $]2,+\infty[?]$
- 2. Soit a un réel strictement positif. La fonction $x \longmapsto \frac{\ln x}{\sqrt{1+x^{2a}}}$ est-elle intégrable sur $]0,+\infty[\,?$

Exercice 31 Nature de $\int_0^{+\infty} \frac{\arctan x}{x} \ln(\frac{2+x}{1+x}) dx$.

Exercice 32 Existence et valeur de $\int_1^{+\infty} \left[\arcsin\left(\frac{1}{x}\right) - \frac{1}{x} \right] dx$.

Exercice 33

- 1. Montrer que $I = \int_0^{+\infty} \frac{\sin^5(x)}{x^2} dx$ existe.
- 2. Montrer que $\sin^5(x) = \frac{1}{16}(\sin(5x) 5\sin(3x) + 10\sin(x))$.
- 3. En déduire que $\forall A>0, \ \int_A^{+\infty} \frac{\sin^5(x)}{x^2} \, \mathrm{d}x = \frac{1}{16} (-15 \int_{3A}^{5A} \frac{\sin(x)}{x^2} \, \mathrm{d}x + 10 \int_A^{5A} \frac{\sin(x)}{x^2} \, \mathrm{d}x).$
- 4. En déduire la valeur de I.

Exercice 34 Nature de $\int_0^{+\infty} \sin(x^2) dx$?

Exercice 35 Convergence et calcul de $\int_0^{+\infty} \frac{x \ln x}{(1+x^2)^2} dx$.